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We carry out an extended study of the Vary-Sauer-Wong effect on the second-order core-polarization

diagrams G3p]Q and G3p]Q in the effective interaction between two valence nucleons. As in Vary-Sauer-Wong,

we first calculate G3p]h using a harmonic oscillator propagator for the intermediate particie states p,
including particle-hole excitations with energies up to 22A'co. Results are in close agreement with those of
Vary-Sauer-Wong. We then calculate G3p]Q where a free particle propagator for p is used. This is obtained

by including the —U, the oscillator one-body potential, insertions of all orders to p of 63p]h Although the

resulting matrix elements are generally smaller in magnitude than those of Vary-Sauer-Wong„ the qualitative
feature of the Vary-Sauer-Wong effect is clearly maintained. Namely there are strong cancellations between

the contributions from the low and high energy p states. This makes the net effect from the core
polarization diagrams significantly weaker than from G3„» calculated with 2%co excitations alone, We also

study some intermediate choices for the propagator of p, where the free particle propagator is used only for

high energy valence states. The Brueckner reaction matrix elements in a mixed representation where one

particle is in a harmonic oscillator state and the other in a plane wave state are needed in our calculations.

By using the vector transformation brackets of Wong and Clement and of Balian and Brezin and the Tsai-
Kuo treatment of the Pauli exclusion operator, we have developed a technique for accurately calculating
these matrix elements.

NUCLEAB STBUCTUBE Contributions to effective interaction for A. =18 nuclei
calculated from converged values of lowest order core polarization diagrams as
function of intermediate state propagator using new momentom space techniques.

I. INTRODUCTION

The core-polarization diagram 6»f„as shown in
Fig. 1 has played a very important role in micro-
scopic effective interaction theory, as pointed out
some years ago by Bertsch' and by Kuo and
Brown. ~ A primary function of this diagram is to
provide' the much needed long range quadrupole-
quadrupole component, the P2 force, in the empir-
ical effective interaction between valence nucleons.
Since then, there have been many studies of the
various aspects of this diagram. ' The 63,fh dia-
gram is second order in G, the Brueckner reac-
tion matrix. How important are the core-polari-
zation diagrams (e.g. , in Fig. 2) with higher or-
ders in 6 ~ In the extensive calculations of Bar-
rett and Kirson, ' it was found that the core-po-
larization diagrams third order in G were of a
magnitude comparable to 63yfh However, the in-
clusion of these higher order processes was
found to result in poorer agreement with the em-
pirical spectra of 4=18 nuclei than had been
achieved by Kuo-Brown. This raised a basic
question about the convergence behavior of expand-
ing the core-polarization process as a power

series in'6, and it has received extensive investi-
gatl011

The issue of convergence of the effective interac-
tion expansion in powers of 6 has been reopened
in a fundamental way by the investigations of Vary,
Bauer, and Wong. s Early calculationsf " of 6»fh
argued that the summation of the intermediate
particle line P could be restricted by the energy
condition e~ —&„=2hu where the e's are single par-
ticle energies of the particle p and hole h of 6»»
(see Fig. 1) and h'e is the harmonic oscillator
energy spacing. We shall denote the contribution
to G»,„from terms with e~ e„=NK&o as -G»„(N).
Var'y, Sauer, and Wong challenged the argument
that 63yfh could be adequately a,pproximated by
G»»(2). They performed the first converged cal-
culation of G»&h by summing G~,&h(N) through N
=22 for A=18 nuclei. They found a rather slow
rate of convergence and could trace this to the
dynamical effects of the tensor component of the
Reid soft-core interaction. The net result was
that the sum of G»»(N) for N &4 frequently has
opposite sign from that of G3»(2) and therefore
the resuLting 63pih is considerably reduced in
strength from the original G»»(2) estimate. No
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are treated in plane wave representation appro-
priately orthogonalized to the low lying states.
Our results are presented and analyzed in Sec. IV.

II. FORMULATION

FIG. &. The G»&z core-polarization diagram.

longer can the converged value of G~»„be
claimed to provide all the long range quadrupole-
quadrupole components indicated by the empirical
effective interaction between valence nucleons.
There is the further implication that the noncon-
verged values of diagrams higher than second or-
der in G cannot be regarded as reliable evidence
on the question of the convergence of the effective
interaction in powers of the reaction matrix. Vary,
Sauer, and Wong teach us that henceforth calcula-
tions of the effective interaction must guarantee
adequate treatment of the dynamics of the nucleon-
nucleon interaction.

The objective of the present work is to carry out
an independent and extended investigation of the
Vary-Sauer-Wong (VSW) effect. Our primary in-
terest is to investigate the dependence of the con-
verged value of G»&„upon the treatment of the in-
termediate particle state. To this end we present
the results of four independent calculations of
Gsp» which are discussed in Sec. II. In parallel
with VSW we first treat the intermediate particle
state and propagator in harmonic oscillator rep-
resentation, our main difference being in the
treatment of the Pauli operator using the Tsai-
Kuo' transformation rather than an angle-aver-
age approximation. At the other extreme we
treat the intermediate particle state and propaga-
tor in plane wave representation and introduce
techniques based on vector bracket transforma-
tions'4'" that appear useful for the eventual calcu-
lation of higher order diagrams. These techniques
are discussed in Sec. III. Finally we merge these
approaches in two calculations in which low lying
states are treated in oscillator representation
whereas high lying intermediate particle states

When we include highly excited single particle
states P in the calculation of the core-polarization
diagram G3,», the choice of representation 'for P
and the self-energy insertions in the particle line
become of particular interest. The many-body
Hamiltonian is usually written as

H =H() +H),

H() ——T+ U,

H, =V-U,
where T and V denote, respectively, the kinetic
and potential energy of the many-body system un-
der consideration. The auxiliary one-body poten-
tial U is introduced to yield a suitable unperturbed
Hamiltonian Ho, the total Hamiltonian H being un-
altered as a -U term is then included in the inter-
action Hamiltonian H&. We repeat the usual. obser-
vation that if a complete evaluation of the series
expansion were possible, the final answer would
be found to be independent of our choice of U.

In treating low-lying nuclear states, the success
of the nuclear shell model indicates that the choice
of U as a harmonic oscillator potential

A

V =Q ,'m~'r, '-+C, (2)

seems to be appropriate. This yields harmonic
oscillator single particle states given by the solu-
tion of

E; (MeV)

23 2s ld Og ~ Intermediate
particle states

lp Of

Is Od

6 Od pgp
Valence ~

states
- 4= Od5/2

with e, =(2n, + f, +-, )A~+ Co. As it will be needed
later for discussion of our results, we give a typi-
cal spectrum of this Hp in Fig. 3. With this choice,
the 63yfh diagram of Fig. 1 may be w ritten as

-l9

-33

Op
-+ Hole states

Os

FIG. 2. Some core-polarization diagrams third order
in G.

FIG. 3. The harmonic oscillator states and energies.
Note that we have chosen the constant term Cp of Kq. (2)
as —54 MeV so that the energy of the valence states is
—5 MeV. We use bur=14 MeV.
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~0 —~c+~4 ~

The energy e for each state is given in Fig. 3, and
the summation of the particle state P is over all
the harmonic oscillator states except Os and OP.
The formula given above is only one of the four
terms contained in 6»», the other three being the
diagrams obtained by exchanging gb, cd, and both
ab and cd of the diagram shown in Fig. 1. In
actual calculations, we of course include all the
four terms. For the remainder of our discussion
we will suppress all the factors in Eq. (4) except
the last three matrix elements, remembering that
these suppressed factors remain unchanged
throughout the discussion.

We may remove the restriction over the summa-
tion P in Eq. (4) by introducing the one-particle
projection operator q defined by

qln) = In), if n)n„

=0, if n ~np,

where n& rt.presents the "Fermi" energy level,
namely the OP&f2 orbit. In other words, q projects
onto one particle oscillator states in the 1sQd shell
and above. We can then rewrite Eq. (4), in abbre-
viated form, as
(ab I G,y, |,t cd)

=P( hbltGl ada a')(aa'tGlah). (6)
ns'h +p p

The operator q/&oo -HD is diagonal in the oscillator
representation and therefore only terms with n =n'
would contribute in the evaluation of Eq. (6). With
the particle summation unrestricted, we are then
free to change the representation of the particle
summation as we please. Thus in plane-wave rep-
resentation of the intermediate state we would
have

(ablGaatad) fdkfdk P(hblGtkd) =6 'k')
h COp —H p

I &d(ck' I G I ck) . (7)

The operator q/({h)0 -H0) is no longer diagonal in
the plane-wave representation of Eq. (7).

The question concerning the choice of the single
particle spectrum in the calculation of G3»„ is
rather similar to that in the calculation of the
bare Brueckner reaction matrix. Because of the
strong short range repulsions contained in the
free nucleon-nucleon interaction V, it is necessary
to make a partial summation of the V interactions
between two nucleons to all orders. This leads to
the reaction matrix interaction, to be denoted by a
wavy line vertex. When using an oscillator single
particle spectrum, the resulting reaction matrix
is given as

G((b)) = V+ V — G({d),
4) -Hp (6)

~ ~
~ ~
~ ~

(a)

FIG. 4. Two-body ladder diagrams for the Brueckner
reaction matrices G and G~. Each railed line represents
a single particle state which lies outside the chosen mo-
del space. The V interactions are represented by dotted
lines (. . . .) and the —U insertions by crosses (. . .. .x).

where &u is the energy variable and Q is a two par-
ticle projection operator insuring that at least one
of the two intermediate particle lines must be out-
side the chosen model space [see Fig. 4(a)]. Our
choice of the model space will be discussed later.
It may be noted that Q and Ho commute. Detailed
calculations of G((k)) defined according to Eq. (8)
have been carried out by Barrett, Hewitt, and
McCarthy. '

As indicated by Eq. (1), we add a one-body poten-
tial U to T to form a unperturbed Hamiltonian Hp.
Thus we must subtract U from V to form the in-
teraction Hamiltonian H& ——V —U, to insure that
the total Hamiltonian II be unaltered. The reaction
matrix of Eq. (8) corresponds to the use of a Ham-
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iltonian H =Ho + V instead of Ho +H&. In terms of
diagrams, this G(to} includes diagrams like Fig.
4(a). But it does not include the -U insertions in
diagrams such as the diagram of Fig. 4(b). One
should have these -U insertion diagrams, if the
interaction Hamiltonian H& ——V —U is used. This
point has been discussed by several authors. ~'

The inclusion of these -U insertions to all orders
leads to a reaction matrix defined by

G (&o) = V+ VQ QG (e),

ca)o Ho coo Ho

o -Ho ~o Ho ~o -Ho
~ OO (10)

Together with G3~&„, this series can be readily
summed up and we obtain

(ah I G,y„I cd)

dk' dk' ',hb I G I kd k q „„k'
&&(&&' I G I ch), (11)

where we note that the connection between this
equation and Eq. (7) for G»&~ is very similar to
that between G (~) of Eq. (9) and G(e) of Eq. (8).

where we note that Q and T do not commute. A
detailed investigation of G (v) has been carried
out by Krenciglowa, Kung, Kuo, and Osnes. In
the above, co is the energy variable. For the re-
mainder of this paper we shall always understand
by G that of Eq. (9) rather than that of Eq. (8).

The same argument about the -U insertions may
be applied to the calculation of the core-polariza-
tion diagram G»&„. This together with the consid-
eration of being consistent with the calculation of
G (v) seems to strongly indicate that we should
include the -U insertions in the calculation of
G 3p $g To investigate this effeet we then add —U
insertions to all orders to the particle line P of the

G»» diagram of Fig. 1, as illustrated by Fig. 5.
These insertions lead to a geometric series of the

~

form

We have used an abbreviated notation in Eq. (11).
As the vertex -U is inserted to the particle line
P only, the operator ~0 —qTq in fact means

( )

where Ho operates on the intermediate states ex-
cluding P and the one-body kinetic energy operator
I; operates on p alone. For example, the G3pfp di-
agram of Fig. 5 has &uo

—(e, +e„)—(c, +e„-e„). As
was true in the transition from Eq. (8) to Eq. (9),

q~q e.o -Ho -q~q = vo —qI;q

the inclusion of -U in H& to all orders has the ef-
fect of removing all dependence of the single par-
ticle propagator on our choice of U.

One may ask why we do not include the -U in-
sertions to the hole line h in G3,». This is based
on physical considerations. As is well known, '3

the Brueckner-Hartree-Fock (BHF) self-consis-
tent single particle wave functions for the hole
states (Os&~2, OP3/2 and OP, ~, ) are well represented
by harmonic oscillator wave functions. Thus the

structs one to perform a complete intermediate
particle sum subject only to the condition that
these particle states be properly orthogonalized
to the occupied low-lying states. This is ensured
by exact treatment of the one-body projection op-
erator q in Eq. (11}.What is essential is that our
inclusion of the -U insertions from H& in the in-
termediate particle line, in parallel with the con-
ventional treatment of G, has transformed the
particle propagator into a form which is more
easily handled in plane wave representation.

Physical considerations of the nature of the low-
lying states suggests that one investigate treat-
ment of the intermediate particle states as a com-
pound spectrum. This idea is illustrated in Fig.
7. In Fig. 7(a) the entire intermediate particle

-U insertions to the hole line in G»&„will be can-
celed, essentially, by the corresponding BHF
self-energy insertions, as illustrated in Fig. 6.
In fact, this type of cancellation may be reason-
ably expected for low-lying particle states such as
those in the M-1s and even the Of-1p shell.

The wave functions of particle states at higher
excitation energies should not be expected to re-
semble those of the harmonic oscillator. In fact
for very high excitation energy they should be-
come well represented by free particle states.
However, the exact choice of representation should
not be crucial in the calculation of the converged
value of G3pfb since the formalism merely in-

3plh
+" + +j I +

c d

FIG. 5. Inclusion of the —0' insertions in the core po-
larization diagram. G& &„. The first term in the series is
G3pih FIG. 6. Cancellation of hole-line —U insertions.
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sum is performed in plane wave representation
properly orthogonalized to the occupied Os and OP

orbitals. In Figs. 7(b) and 7(c) the intermediate
particle sum is broken into two components. The
first one or two excited major shells are treated
in harmonic oscillator representation with a I/&u,
-IIO propagator. The balance of the particle sum
is then treated in plane wave representation as in
Eq. (11) but with q orthogonalizing these plane
waves to all states, both occupied and unoccupied,
which have been treated in oscillator representa-
tion. In terms of the language introduced above,
this compound spectrum approach corresponds to
the exclusion of -U insertions from low-lying
states where Brueckner-Hartree-Fock considera-
tions suggest cancellation of such insertions with
self-energy bubbles, but inclusion of -U inser-
tions to all orders at energies above which BHF
considerations should no longer be applicable.
The results of all three choices of Fig. 7 in the
calculation of G3p)h will be reported in Sec. IV.

FIG. 7. Three choices of compound spectrum. The
discrete states are those of a harmonic oscillator while
the continuum states are plane waves made orthogonal to
the fprmer. The projectors for these two sets of states
are denoted by P and q, respectively.

In summa. ry then we present four separate con-
verged calculations of the core-polarization dia-
gram which differ from each other solely in the
treatment of the propagator of the intermediate
particle state. These range from thy extreme of
Eq. (6) in which all intermediate particle states
are in oscillator representation to the extreme of
Eq. (11) in which all are in plane-wave representa-
tion. However, in each case the pair of reaction
matrices used in the core-polarization calcula-
tion are those of G ((o) of Eq. (9) in which the
plane-wave propagator is used for the intermedi-
ate particle states. From a strictly formal point,
of view, we observe that it is in the calculation
of G»&h, using Fig. 7(a) to define q in Eq. (11),
that the intermediate particle propagators of G ((d)
and those of the core-polarization diagrams are
treated in identical manner. However, by using
the same G ((d) in all four cases, our results
focus clearly on the effect of choice of the single
particle propagator on the converged value of the
core-polarization diagram.

III. METHOD OF CALCULATION

The reaction matrix elements used in the evalumm

ation of G„,„ofEq. (11)are of the form (n,n, lGIkan~)
where n„n„arnd n4 are oscillator states and
k3 is a plane-wave state with 6-function
normalization. Both bra and ket are antisymmet-
erized as indicated by our use of angular brackets.
Since the use of such a "mixed representation" of
plane wave and harmonic oscillator is somewhat
unusual, we briefly abandon our condensed nota-
tion to express the familiar antisymmeterized,
coupled, and normalized oscillator kets as a line-
ar combination of uncoupled, product kets (de-
noted by rounded brackets) of the mixed represen-
tation:

In, l,nl LM)=
~k (l l „r g r: rfr(kk„, „n.„..( )kl(kl, m, nl m )-Inl m , ,k()]m,

34~

where P„, (k) is the radial wave function of then3l3
oscillator in momentum space representation

(kin, l,m, ) = 'P„, (k) Y, „(5);-
which is related to the usual oscillator radial
wave function R„, (r) in coordinate. space repre-3'3
sentation by

1 2 z/2—8„,(r) =i'a dk — j, (k~)kP„, (k) .

Working backwards we arrive at the required
matrix element (n,n, lG Ik,n,) by transformation of
the ket from pure plane wave representation

(nn, lG Ilr n) fdk (nn, lnllr k )(k=In ). ()6)
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The coupling scheme actually used is of course
that appropriate to a discussion of shell model
orbitals

(nn IGlk k)
-(n, l,j„n,lj2d JTIG 'Ik, l,j„k,l,j„JT).'(1&)

The calculation of these matrix elements in turn

requires transformation into the two-body rela-
tive-center of mass (RCM) coordinate system.
The transformation of the oscillator bra into ROM
coordinates,

(n, l,j„n,ly'„JT I-(nls(d))NL; JT I,
is accomplished by the well known Moshinsky
tr ans for ma.tion'

(n l j n lg ~ JT I=,
q [(2j +1)(2j +l)(2]].+1)(2S+1)]

s8

I, /, x
x —,

'
~ S (nlNLX In, l,n, l,]])(2K+1)(28+1)j'~'W(4LSX; Jl)(nES(g)NL; JTI,

jy j2~f

1+L = ](. = f, + f, ,

(2n+l) +(2N+L) = (2n, +l,) +(2n, +l,) . (20)

where (nlNLX In, l,n, l,X) is the Moshinsky bracket
subject to angular momentum and energy condi-
tions

The transformation of the plane-wave ket into
HCM coordinates

I k lj„k lJ;OT) I klS(g)'EL; JT)'
is accomplished in para, llel fashion by the less
known vector bracket transformation'

(21)

(d („„d,(„„dr) gP fdk f=dK [(dd, +()(2), +1)(2K+1)(2S+1)]'~
lLS .

2

x —,
'

—,
' S (klEL]]. Ik,l,k,l,]()[(28+1)(2]].+1)]"'W(gLSx; Jl) I kls(8)EL; J T),

(22)

where (klELX Ik3l, k4ld]]) is the vector bracket sub-
ject to angular momentum and energy conditions

ge = k'+ ,'E' ——,'(k, '+k '),—

x = (k,' k' —-',E')ikE,
7 + L = ](. = 1 ~ + j~,
k'+ ,'E' = —,'(k, '+k, ') . - (23) A (x) =

2 1 g [Y'(k) x Y (E)]"„*

The vector bracket transformation has been ex-
tensively discussed by Wong and Clement. " For
the purpose of numerical computation we find the
formulation of the vector bracket given by Balian
and Brezin" to be more convenient; We therefore
use

(klELAlksl, k4l4][.) = 4m'5(w) . 8(1 —x')A (x), (24)

x [Y'3(k,) x Y ' (k,)]'„~ (25)

We note that x is just the cosine of the angle be-
tween k and K and therefore the step function in
Eg. (24) merely restricts x to it's range of physi-
cal significance.

SinceA(x) is a scalar (luantity, it can be calcu-
lated in any convenient coordinate system. The
coordinate system we actually use is shown in
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those of RCM momentum space representation.
These in turn are calculated by the Tsai-Kuo
method"" in which 6 is written exactly as the sum
of two terms, G„which is free of the two-body
Pauli operator Q, and &G in which we have re-
placed Q by its complement P. If we set e —= +
—T then the G of Eq. (9) may be written as

FIG. 8. Coordinate system used for evaluating vector
transformation brackets.

G((d) = V+VQ QG((0) = Gz-&G,
1

where

G~((k)) = V+ V-G~(&o),
1

(29)

Fig. 8. The z axis is chosen to be in the direction
of k, and the P = 0 plane is chosen to be the plane
spanned by k, and k,. The y axis is directed into
the paper. In this way, dt(x) becomes

1 1+I+x

v, N

x y'„(p, 0)V,s(0, 0) I'„d(~, 0),

where

, k,'+k'-IP/4
Q c os

~ e P[I/e+(I/e)G~(1/e)]P e

The single particle propagator of Eq. (11) in the
calculation of G„» can be handled by the Tsai-
Kuo method in complete analogy to the above divi-
sion of G. Denoting the single particle projection
operators of Eq. (11) and Fig. (7) by P+q = 1 we
have

(kig, Q lk') = (kI, Ik') —(kIB Ik'),
1 1

0

, k,2+IP/4 —k2
J3 ' c os

3

2+k 2 -4k2
COS

(27) where

P
1 1

~'. -f A[I/(~0-t)V ~!-& (32)

%'e have found the vector transformation brackets
depend on k and K quite smoothly thus being suit-
able for numerical integration techniques using
momentum space Gaussian mesh points. (This
numerical method was described in some detail
in Ref. 9).

If we denote by MBT(...) and by VBT(...) the
factors of the Moshinsky bracket transformation
and of the vector bracket transformation of Eq.
(19) and Eq. (22), respectively, then the trans-
formation from the basic G-matrix elements to
those needed in the calculation of G„» in Eq. (11)
can be realized in the following sequence of steps

(n,n IG Ik ng

dkd(n, n, I G I k,kd)(kd I nd)

PfdkM))T( =)Vt)T ( ,)... ...
x (nlNL

I
G ik'l'K'I ')(k, I n,)

Zfdk, fdk fdtt(k=t ttk (d (k't'tt'k')

x (n I k)(N I@(k,Ind)MBT(. ..)
x VBT(...) . (28)

The basic input necessary to the calculation of
mixed-representation matrix elements of 6 are

In this way we express G,»„as the sum of two
terms

(ab I G3r,» I cd) = (direct term) —(Pauli term),

(33)

where

(direct term) = P fdk(kk i G Ikd)
h

1x (k I, , I k)(ak I G I ck),
QPD

(34)
(Paul( term) = Pfdk fdk (kk ( G (kd)'

x (k IB ik')(ak' IG I eh). (35)

In the direct term, Eq. (34), the propagation of
the intermediate particle is uninhibited by the
Pauli principle. The influence of occupied states
upon the particle propagation is completely ac-
counted for by the Pauli term, Eq. (35), and since
P is a one-body opex'ator this correction can be
calculated exactly. In conclusion we note that
such a division, achieved by (I = 1 —p, in the cal-
culation of G3„„with the oscillator propagator of
Eq. (7) makes no sense due to the vanishing of the
resulting energy denominators.
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18-
22 5 coTabcd J 8 Scu ].OSu Total

TABLE I. A detailed comparison of the contributions to some G3p/h matrix elements. In each block the numbers in the
the first line are the present values; second line, VSW's. Each t"3pih matrix element is broken down according to the
particle-hole excitation energy. The orbital notations 4, 5, and 6 of Fig. 3 are used.

Particle-hole excitation energy-

144440

155550

166660

044441

045452

046461

046661

055551

055561

066661

—0.868
-0.710

0.153
0.144

-0.306
—0.168
—0.358
—0.387

0.238
0.150
0.403
0.202
0.276
0.270
0.132
0.165
0.238
0.272

-0.036
0.007

0.111
0.126
0.147
0.140
0.219
0.241

—0.079
-0.083

0.102
0.105
0.246
0.215
0.180
0.187
0.099
0.105
0.053
0.060
0.052
0.061

0.205
0.205
0.181
0.176
0.204
0.225
0.035
0.034
0.035
0.042
0.106
0.102
0.099
0.109
0.085
0.087
0.055
0.058
0.132
0.135

0.144
0.144
0.169
0.163
0.133
0.139
0.057
0.058
0.025
0.026
0.039
0.038
0.062
0.063
0.064
0.063
0.082
0.079
0.104
0.108

0.075
0.081
0.118
0.112
0.076
0.075
0.041
0.046
0.020
0.020
0.010
0.008
0.037
0.038
0.040
0.038
0.075
0.076
0.063
0.064

0.038
0.040
0.065
0.062
0.038
0.038
0.027
0.028
0.014
0.015.

—0.001
-0,002

0.022
0.022
0.021
0.020
0.055
0.055
0.033
0.033

0.017
0.018
0.029
0.029
0.017
0.018
0.014
0.014
0.008
0.009

-0.004
-0.004

0.011
0.011
0.009
0.009
0.033
0.032
0.015
0.015

0.007
0.007
0.011
0.012
0.007
0.008
0.007
0.007
0.004
0.005

-0.003
-0.003

0.006
0.006
0.004
0.004
0.017
0.016
.0.006
0.006

0.004
0.004
0.005
0.007
0.004
0.005
0.004
0.004
0.003
0.003

—0.003
-0.003

0.003
0.004
0.001
0.002
0.011
0.012
0.003
0.004

-0.267
-0.085

0.878
0.845
0.392
0.580

—0.253
-0.280

0.449
0.375
0.794
0.554
0.696
0-.711
0.456
0.493
0.618
0.660
0.364
0.432

TABLE H.
energy.

Contributions to the T = 1 1sOd shell t"3
I&

matrix elements as functions of the particle-hole excitation3plh

TabcdJ
Particle-hole excitation energy in W~

8 10 12 14 16 18 20 22

144440
144442
144444
144452
144462
144464
144550
144562
144660
144662
145452
145453
145462
145463
1455'62
145662
146461
146462
146463
146464
146561
146562
146662
155550
156560
156561
156562
156662
166660
166662

-0.868
0.066
0.503

-0.306
0.100

—0.360
-0.383
-0.354
-0.711
-0.402
-0.044

0.670
0.019

-0.033
-0.121

0.084
0.221
0.229
0.656
0.596
0.130

-0.144
—0.230

0.153
-0.212

0.722
0.454

-O.161
—0.306

0.491

0.111
0.088
0.116
0.010

-0.008
—0.032
-0.071
-0.056
-0.070
-0.029

0.068
0.160
0,075

-0.002
-0.026

0,050
0.096
0.145
0.070
0.128
0.025

-0.009
0.005
0.147

-0.097
0.124
0.152

-0.012
0.219
0.095

0.205
0.088
0.035

-0.018
-0.001
-0.000
-0.032
—0.020

0.023
0.020
0.034
0.059
0.033
0.006

-0.033
—0.000

0.026
0.076
0.011
0.041
0.049

—0.017
0.032
0.181

-0.036
0.037
0.068

-0.013
0.204
0.059

0.144
0.062
0.012

—0.016
-0.001
—.0.000

0.013
-0.002

0.025
0.0.3.0
0.030
0.029
0.022
0.007

-0.014
-0.005

0.009
0.035
0.008
0.013
0.049

-0.014
0.026
0.169
0.021
0.016
0.044

-0.004
0.133
0.037

0.075
0.033
0.005

-0.007
-0.002
-0.001

0.025
0.004
0.015
0.003
0.025
0.015
0.014
0.005

-0.001
—0.001

6.006
0.016
0.005
0.004
0.032

-0.007
0.016
0.118
0.031
0,009
0.029
0,001
0.076
0.019

0.038
0.017
0.002

-0.001
-0.002
-0.000

0.020
0.004
0.007

-0.000
0.016
0.008
0.008
0.002
0.003
0.001
0.006
0.007
0.003
0.002
0.016

-0.002
0.008
0.065
0.023
0.005
0.018
0.003
0.038
0.009

0.017
0.008
0.001
0.000

-0.002
0.000
0.011
0.003
0.003

—0.001
0.009
0.004
0.004
0.001
0.003
0.001
0.004
0.004
0.002
0.001
0.007
0.000
0.004
0.029
0.013
0.003
0.009
0.002
0.017
0.004

0.007
0.004
0.001
0.000

-0.001
0.000
0.005
0.001
0.001

-0.000
0.004
0.002
0.002
0.000
0.002
0.001
0.003
0.002
0.001
0.001
0.003
0.000
0.002
0.011
0,006
0.001
0.004
0.001
0.007
0.002

0.003
0.001
0.000
0.000

-0.000
0.000
0.002
0.001
0.000

-0.000
0.002
0.001
0.001
0.000
0.001
0.000
0.001
0.001
0.000
0.000
0.001
0.000
0.001
0.004
0.002
0.001
0.002
0.001
0.003
0.001

0.001
0.000
0.000
0.000

-0.000
0.000
0.001
6.000
0.000
0.000
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.001
0.001
0.000
0.001
0.000
0.001
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
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TABLE III. Contributions to the T = 0 1o& shell G3pJh matrix elements as functions of the particle-hole excitation
energy.

TabcdJ 2 K~ 10 20 22

044441
044443
044445
044453
044461
044463
044551
044561
044661
044663
045452
045453
045462
045463
045562
045663
046461
046462
046463
046464
046551
046561
046562
046661
046663
055551
055561
055661
056561
056562
056661
066661
066663

-0.358
0.187

-0.033
-0.176
-0.108

0.325
-0.210
-0.418
-0.552

0.312
0.238

-0.301
0.100

-0.047
0.005
0.027
0.403
0.240
0.373
0.143

-0.460
0.195
0.400
0.276
0.326
0.132
0.238
0.305
0.215
0.281

-0.132
-0.036

0.080

-0.079
- 0.025

0.065
-0.026
-0.051

0.043
0.052
0.019

-0.028
0.057
0.102

-0.106
-0.007
-0.013
-0.053

0.027
0.246
0.099
0.103
0.004

-0.074
0.016
0.077
0.180
0.052
0.099
0.053
0.009

-0.048
0,059

-0.038
0.052
0.055

0.035
0.004
0.017

-0.004
-0.008
—0.010

0.035
0.039
0.006

-0.008
0.035

-0.032
-0.009

0.004
-0.057

0.016
0.106
0.006
0.036
0.011

-0.024
—0.028

0.010
0.099
0.015
0.085
0.055

-0.024
—0.044

0.010
0.019
0.123
0.022

0.057
0.005
0.004

-0.004
0.008

-0.010
0.016

. 0.027
0.001

-0.009
0.025

-0.007
0.000
0.001

-0.035
0.013
0.039

-0.010
0.021
0.004

-0.013
-0.047

0.009
0.062
0.009
0.064
0.082

-0.038
-0.028

0.024
0.013
0.104
0.007

0.041
0.004
0.001

-0.003
0.008

-0.004
0.011
0.018

-0.000
-0.005

0.020
-0.002

0.004-
0.000

-0.013
0.005
0.010

-0.006
0.011
0.000

-0.005
-0.044

0.011
0.037
0.005
0.040

. 0.075
-0.034
-0.019

0.028
0.003
0.063
0.003

0.027
0.003
0.000

-0.002
0.005

-0.001
0.008
0.013

-0.001
-0.003

0.014
-0.001

0.005
0.001

-0.001
-0.001
-0.001
-0.001

o.005
-0.000
-0.000
-0.034

0.010
0.022
0.004
0.021
0.055

-0.025
-0.013

0.023
-0.002

0.003
0.001

0.014
0.001
0.000

-0.001
0.002
0.000
0.005
0.008

-0.001
-0.002

0.008
-0.001

0.004
0.001
0.002

-0.003
-0.004

0.001
0.001
0.000
0.001

-0.021
0.007
0.011
0.002
0.009
0.033

-0.015
-0.009

0.015
-0.002

0.015
0.001

0.007
0.001

-0.000
-0.000

0.001
0.000
0.003
0.004

-0.001
-0.001

0.004
-0.001

0.002
0.001
O.OG2

—0.002
-0.003

0.001
0.000
0.001
0.001

-0.011
0.004
0.006
0.001
0.004
0.017

-0.007
-0.005

0.008
-0.001

0.006
0.000

0.003
0.000
0.000

-O.ooo
0.000
0.000
0.001
G.002

-0.001
-0.001

0.002
-0.000

0.001
0.001
0.001

-0.001
-0.002

0.001
0.000
0.000
0.001

-0.005
0.002
0.002
0.001
0.001
0.007

-0.003
-0.003

0.004
-0.001

0.002
0.000

0.001
0.000
0.000
0.000
0.000
0.000
0.001
0.001

-0.000
-0.000

0.001
-0.000

0.000
0.000
0.001

—0.001
-0.001

0.000
0.000
0.000
0,000

-0.002
0.001
0.001
0.000
0.000
0.003

-0.001
-0.001

0.001
-0.000

0.001
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

-0.000
-0.000

0.000
-0.000

0.000
0.000
0.000

-0.000
-0.000

0.000
0.000
0.000
0.000

-0.001
0.000
0.000
0.000
0.000
0.001

-0.000
-0.000

0.000
0.000
0,000
0.000

IV. RESULTS AND DISCUSSIONS

We begin our discussion by a direct comparison
of the results of the present calculation of G„» in
Eg. (6), using the oscillator propagator for the in-
termediate particle, with the corresponding re-
sults of VSW. ' In Table I we list the contributions
to each of the 10 matrix elements given by VSW
arising from each value of the excitation energy
of the intermediate particle-hole state. Our
complete listing of the contributions for all T = 1
and T = 0 matrix elements is given, respectively,
in Tables II and III.

Inspection of Table I reveals excellent agree-
ment between the two calculations for contribu-
tions from high excitation energy. The differ-
ences are usually less than 10 per cent for 4-6
h+ with even smaller differences for higher ener-
gies. However, the differences are seen to be

quite significant for the 2~ contribution. Indeed,
differences in the totals are almost entirely at-
tributable to this lowest energy contribution. Both
VSW and the present calculation generate the
necessary 6-matrix elements from the acid soft-
core potential by solution of Eq. (9). However,
the most significant difference we have been able
to discern between these two calculations is in
method of solution of Eq. (9).

We use the Tsai-Kuo procedure" as outlined in
Eqs. (29) —(30). This procedure has been exten-
sively investigated by Krenciglowa et al. ' and in
the language of that paper we have specifically
used a (3, 3, 16) approximation to the correct
(3, 3, ~) version of the Pauli operator, Q, appro-
priate to G„». This should treat the Pauli opera-
tor with an overall accuracy of a few per cent.
By contrast VSW use the angle-average approxi-
mation" to the (3, 6, ~) version of Q. It would
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TABLE IV. Complete breakdown values of 144440 &3p)t, Matrix element. Note that
contributions from particle states with a large l (g, h, i, j states) do not fall fast as we go
to high n.

Hole I'article
state state

Quantum number n of the particle state

nlj

Os )/

0P3/2

lj
s1/2
d3/2
dg/2
g'7/2

~9/2
' u/2

P~y2
P3/2f 5/'2

f 7/2
Pi 9/2

&~~/2

J- i3/2

P g/2

P3/2
f 5/2

&9/2

h&&/2

—0.272
0.042

-0,007
0.014
0.046

—0.303
0.047
0.120

-0.003
0.089

-0.299
0.006
0.041.
0.025

1
0.022

-0.021
-0.000
—0.007

0.007
0.040

0.006
0.019

—0.029
0.012
0.041

-0.005
0.081

—0.046
-0.005
-0.043
-0.003

0.008
0.018

2
0.002
0.001

-0.003
-0.003

0.003
0.021

-0.003
0.002
0.002
0.002
0.009

-0.004
0.048

—0.001
0.004

—0.004
—0.001

0.001
0.011

3
0.001
0.001
0.001

-0.001
0.001
0.009

-0.001
0.002
0.002

0.001
-0.002

0.026

0.001

0.006

0.001

0.001
0.004

0.001
0.001

—0.001
0.012

0.003

0.002 0.001

-0.001
0 005 0 002 0 001

0.002 0.001

appear that the matrix elements of G, necessary
to account for the low-lying contributions to G3pph,
demand an accurate account of the Pauli operator.
As expected, this sensitivity decreases rapidly
with increasing excitation energy.

The important conclusion of VSW, that G3pph con-
verges slowly with intermediate state excitation
energy and that the 2@v contribution alone is gen-
erally a poor approximation to the converged val-
ue of G„», is fully supported by our results. Ad-
ditional insight into this conclusion may be gained
from the example of the 144440 G, » matrix ele-
ment which is decomposed in Table IV into con-
tributions arising from each particle-hole state
considered separately. We call particular atten-
tion to the fact that the contributions from inter-
mediate particle states with high values of l can
be appreciable and fall off more slowly with in-
creasing excitation energy than those with lower
values of E. This behavior is consistent with VSW's
conclusion that it is the tensor force which is re-
sponsible for the slow rate of convergence. The
important contributions found to arise from par-
ticle states with l = 6, 7 will not begin to be ac-
counted for until one has reached 6k& in excita-

tion energy.
lt may be pointed out that a secondary purpose

of the above G3pyh calculation is to check our com-

I I I

-0-+--p
I- 0

/+

Pim 0
0 /

E -I; /

,d
OSI/2 ISI&2 G kiSI/2 ISI/2&, J=I,T=O

-3 - 'b ,0
Q
E -4-

0
4)

0/O +

-7- +
p ~/

I

I 3

k~~ 12points
+ 1st colculation K ~ 6 points

k~ 6 points

k&. 18 points

0 2nd colculotion K 6points

k+: 12 points

2

ki(fm )

F&G. O. Two calculations of (Os//21sg/2 iQ pgs&/2ls&/2)J=1, T= 0 matrix elements. The (Os& I21s&/~ iG iOs~/2ls&/2)
matrix element obtained by the first calculation is
—1.745; the second, —1.754; and by the Moshinsky
bracket transformation method, —1.758. k3, k4, and K
are in the sense of Eq. (24).
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puter codes. To our knowledge, the use of the
vector transformation brackets in effective inter-
action calculations is probably first done in the
present work. Thus it is necessary to make ex-
tensive checks, which we have done. In the above

G„» calculation, the matrix elements (n,n, I G I

n, n,) used in Eq. (4) were in fact calculated via
the vector transformation method. Namely we,
first calculate the mixed-representation matrix
elements (n,n, I G I k,n4) as indicated by Eqs. (16)
to (28). Then we perform the integration

d3 nyn2 I G I ~3n4 ~3 I ns

to obtain (n,n, I G In, n~). Hence the methods of
computation used in VSW and in the present G3 ]
calculation are indeed quite different. The good
agreement obtained between them, as indicated
by Table I, thus lends strong support to the reli-
ability of our calculations using the vector trans-
formation brackets.

e turn next to the calculation of the mixed-
representation matrix elements of G which are
necessary in Eq. (11) for the calculation of G~r, „.
In Fig. 9 we show the behavior of (Os, &,ls, &, l G I

k,s,&,ls, &,) J = 1, T = 0 as a function of the inter-
mediate particle momentum k,. In the sense of
Eq. (28) this matrix element was calculated as

-1.745 MeV whereas the larger set of Gauss points
gives -1.754 MeV to be compared with the value
of -1.758 MeV achieved directly by Moshinsky
transformation of the ket. This again serves as
a check of our calculations using vector trans-
formation brackets.

It is very instructive to compare the ways in
which these G-matrix elements account for in-
creasing particle excitation energy in the oscilla-
tor and plane-wave representations. In Fig. 10
we show two cases involving only s orbitals which
should be dominated by the central force in the
Reid soft-core potential. We display both G and

Gz of Eq. (29) so that the effect of the Pauli oper-
ator as a function of particle momentum may be
seen in the difference of G and G~. We note that
the large attractive elements of G for small val-
ues of the oscillator principal quantum number n
are exactly paralleled by the low momentum be-
havior of G as is the change in sign of G with in-
creasing n or k. In Figures 11(a) and 11(b) we

k{fm )

2

(o,(2 ig, I G Ik,s, (2n, —1sx),)

dkVBT ... u, ln, =1
(Os, i,ls, » I G Ikfs (8)KL),

(36)

0

J~O,T~I
I/2

where VBT(...) includes integration over k and K.
The 6 function in Eq. (24) for the vector bracket
eliminates one of the four momenta as an inde-
pendent variable. We eliminate the relative mo-
mentum k and thus for each value of A, , must inte-
grate over 4, and K. Figure S shows the result
of two completely different sets of Gauss mesh
points used for these calculations. This typical
smoothness of the matrix elements in their de-
pendence on the momenta aQows one to optim. ize
the number of mesh points needed to economize
the computation with minimal loss of accuracy.
To illustrate the accuracy of the vector bracket
transformation compared with that of the tradi-
tional Moshinsky bracket transformation we com-
pute (Os, &,1s,&, IG IOs, &,1s»,) by integration of
Eq. (36), i.e. ,

Os„,ls„, IG I os„,ls„,)
d&g &g Ing= 0

& 'ii2 'i&2IG Ikjsi(2»i&2).
The smaller set of Gauss points yields a value of

-6

-8

0

.' OSI/NISI/a
/r

W

J&I,T0
I/2 I/a~

-4 .
-6.
0

w2 0

J*O,T~ I

I/2 I/2 '" I/2 I/2

-6 . I/2 I/2 " I/2 I/2
J~l,T~O

0' t '2'3'4'5'6'7 '8 '9'IO

FIQ. 10. Some of the G matrix elements due to the
central. forces: (a) The particle state is in momentum
representation. (b) The particle state is in harmonic
oscillator representation.



l074 C. I, . KUNG, T. T. S. KUO, AND K. F. RATCI IFF l9

{a)
MeV-fm
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-2 aa

-4 aa
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2
I

J~2,T~O

4
T

MeV

m2

n radial quantum number af the particle

0, I, 2, 5)4 )5, 6(7) 8, 9)IO

Ja2 TaO
& OP IS 2 G flf5/2 ISI/2~

2
E

V
I

X

0
0)
hl

0-
-2-

F
JmS, TmO

(OP3/20d3/2 G kh9/20d~/2

J~S,T~O
(OSI/20d5/2 G kill/20d5/2

m 2

-4.
X

c
0E

hl

2
~~

4a

J~S,TmO.
OP~/201~/2 G ~hs/20dg/2

J&3,T&O
OS I/20d 5/2 I

G
I

"' ll/2 5/2

J~4,T~O
/20 S/2 IG k)lg/20d5/2

M2 W I
e

J~4,T~O
/2 S/2, G, njl&/20dS/2

FIG. J1. Some of the G matrix elements due to the tensor force, the particle state is in momentum representation (a)
and in oscillator representation t'b).

show four matrix elements in which the particle
state is characterized by a large value of the or-
bital angular momentum and should therefore be
dominated by the tensor component of the Reid
soft-core interaction. Collectively this group be-
haves very differently from those shown in Fig.
10. But again the behavior of G with increasing
0 parallels closely that with increasing n. In
making the comparisons of Figures 11(a) and 11(b)
it should be remembered that when l is large,
even n = 0 already indicates a sizeable excitation
energy. Thus the long tail with increasing n in
'Fig. 11(b) or the concentration of the strength of
G in the neighborhood of k = 3 fm ' in Fig. 11(a)
are equivalent statements of the VSW effect that
it is the dynamics of the interaction that will ulti-
mately control the rate. of convergence of the cor-
relation of valence nucleons through core polari-.
zation. In other words, if we have a nucleon-nu-

cleon potential which causes the G-matrix curves
of Fig. 11(a) to peak at a much lower k value,
then the contribution from the high energy particle
states in the second order core-polarization dia-
gram should be considerably reduced.

These matrix elements of G may then be com-
bined in the fashion of E(ls. (33)-(35) to produce

G3p». %e wish to analyze the dependence of G3ppp

on the momentum of the intermediate particle.
To achieve this we rewrite Eqs. (33)-(35) as fol-
lows:

(ab!G, „il cd) = fdk[DT(k) -TT(k)], (bk)

where

DT(k) = P(kb I G Ikd)(k I, Ik)(ak I G i ck),
h (»)

TT(k) = P Jdk (kb IG Ikd)(k IB Ik')(ak' IG Ick),
h (40)
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MIV-fm
0.4 MeV

0.2-

0.0

-0.4

Tabcd J= l44440

-OA

-0.6

FIG. 12. The contributions to some G&~~&„matrix ele-
ments as a function of the particle momentum. It shows
that the main contribution comes from moderate momen-
tum components.

0.4-
0.2-

0.0

l55550

A'i~-

and 8 is defined in Eg. (32). Clearly DT(k) is just
the integrand of the direct term in, Eq. (34). Since
8 is not diagonal in plane-wave representation,
the Pauli term in Eq. (35) is dependent in a sym-
metrical way upon a pair of wave numbers one of
which must be integrated in order to express the
Pauli term in terms of a PT(k) integrand which
may be combined with DT(k). In Tables V and VI

-o.z l
-0.4-

l66660

4 I S 4

2 4 6 8 IO l2 l4 l6 'h~
Particle-hole excitation energy

FIG. 13. The contribution to some Ggyfg matrix ele-
ments as a function of particl. e-hole excitation energy.

TABLE VII. The particle-hole angular momentum breakdown. In each block the first
number is for G3~», and the second, G3„». Each G3P» breakdown value is actually the sum
of contributions from all particle states with various radial quantum numbers n = 0, 1, 2. . . ,
and each 63 [g breakdown value is the sum of the contributions from all the particle states3plh
with different momenta.

Hole states
TabcdJ Particle states

Osf/2

155550

Os)/2

+3/2

Os &/2

4 &/2

sf/2
0.026
0.012

& i/2
0.003
0,001

-0.047
—0.027

si/2
-0.161
-0.065

0.108
0.057

-0,007
0.003

s 1/2
0.065
0.028
P ~/2-0.023

-0.009
0.006
0.005

Ct3/2
-0.291
-0.134
~3/2
0.025
0.013

-0.000
—0.001

Cf 3/2
0.475
0.293
~ 3/2
0.045
0.029
0.-108

0.057

d3/2
-0.032
-0.021

&3/2
0.124
0.059
0.054
0.027

4 S/2-0.038
-0.016
~S/2
-0.327
-0.165
-0.346
-0.176

fs/2
0.300
0.201

"s/2
0.044
0.047

~s/2
0.068
0.035

-0.012
—0.009

gs/2
—0.017
-0.011

0.061
0.032
0.001
0.003

g 7/2
0.068
0.048

-0.267
-0.122

0.200
0.135

S/2
0.026
0.019
kg/2
0.171
0.128
0.051
0.039

he/2
0.098
0.073

~ i1/2
0.122
0.099
hing/

—0.017
-0.012

0.066
0.049

~ g3/2
0.264
0.221
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we list the value of DT'(k) —PT(k) for 12 Gauss
mesh points. These tables summarize the con-
vergence behavior of the core-polarization dia-
gram upon the excitation of the particle in plane-
wave propagation in complete analogy to that of
Tables III and IV for harmonic oscillator propaga-
tion. As an example we consider in Figs. 12 and
13 the behavior of three T = 1 matrix elements
which exhibit slow convergence in both plane-wave
(Fig.'12) and oscillator (Fig. 13) propagation. It
is seen that the behavior shared by both 144440
and 166660 in the first 6k& excitation is mirrored
in their strong oscillation in the first 2 fm ' of
momentum space. By contrast the monotonic be-
havior of 155550 in oscillator space is reflected
in a smoother behavior in k space with a concen-
tration of strength in the neighborhood of 3 fm '.
Despite these examples of similar behavior in the
two representations and many others that can be
extracted from Tables II, III, V and VI, it should
be remembered that the oscillator wave functions
are quite spread out in momentum space and thus
sample the available excitation energy of the par-
ticle in very different ways. We may point to
cases like 044445, 046464, and 055661 where the
apparent rapid convergence in oscillator repre-
sentation is seen to reflect strong cancellation
when looked at in momentum representation.

A more detailed comparison of the three ma-
trix elements compared in Figures 12 and 13 is
given in Table VII, where the contribution to each
of these is broken down according to the hole and
angular momentum of the particle present in the
inter mediate particle-hole excitation. In each
case the upper number refers to G3ppg and repre-
sents therefore a sum over the principal quantum
number n of the particle state. The lower num-
ber refers to contributions to G3ppb and therefore
represents an integration over k of the particle
state-fixing the value of l and j of this state.
Arranged in this way the excellent correlations
of the columns of Table VII in sign and relative
magnitudes merely reflects the dynamical corre-
lations of the Reid soft-core potential which are
independent of the choice of intermediate state
propagator. The comparison of different rows of
Table VII reveals a general suppression of the
contributions to G3ppp relative to those to G3pyg and
this is principally reflecting the difference in the
propagators in the two cases.

We further note a general suppression of the
contributions in Table VII when the intermediate
state has l and j quantum numbers identical with
those of a hole state. These are the only angular
momentum channels where the Pauli term, Eq.
(35), will make a contribution to Ger». In Table
VIII we list separately the "direct term" of Eq.

Tabcd J Hole state Particle states

144440

155550

166660

Os~/2

3/2

Os(/2

Os

si/2
-0.571

0.012
0.026

-0.638
-0.065
-0.151

—0.317
0.028
0.065

&S/2

-0.194
0.001
0.003

-1.068
—0.027
-0.047

/

0.409
0.057
0.108

-0.344
0.003

-0.-007

—0.165
-0.009
-0.023
-0.147

0.005
0.006

&3/2

-0.980
0.013
0.025-

-0.159
—0.001

0.000

-0.933
0.029
0.045
0.409
0.057
0.108

-1.435
0.059
0.124

-0.091
0.027
0.054

(34) and the "direct-Pauli term" of Eq. (33) as
the first two rows of data in Table VIII. The last
row repeats the contribution to G„» of Table VII.
We see that the direct term is very large and that
the cancellation between direct and Pauli terms is
almost complete as reflected in the smallness of
the second row of numbers. (Note that the num-
bers in the last row are also quite small, and
hence similar cancellation also takes place for
G„,b. ) Application of the Tsai-Kuo procedure in
Eq. (31) allows exact treatment of the one-body
Pauli operator and Table VIII shows that exact
treatment is important in this case.

We turn next to a summary of all the various
calculations of the sd-shell matrix elements of
the effective interaction which are listed in
Tables IX and X for T = 1 and T = 0, respectively.
In order, we show in the first three columns the
calculations of G„» of Eq. (6) in which the inter-
mediate particle sum is truncated by retaining

TABLE VIII. Cancellation of the direct and Pauli terms
[see Eq. (33)] when the particle is in s or P states. In
each block the numbers shown are (1) direct terms of
G3 &, , (2) net values of G3p», (3) net values of G3p».r'
Note that the net values (for either G3pfp or G3pf),) are
very small compared with the direct terms, so we say
that the direct term and Pauli term are largely cancelled
when particle is in s orp state.
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TABLE IX. The T = 1 three-particle —one-hole core-polarization matrix elements for the
1s0d shell.

Tabcd J
2 S(d

Kuo

3
3plh

2 Acv

present
A11

VS%
A11

present Q
3p1h

6 7

Compound spectra
Pig, Fig,
V(c) 7(b)

144440
144442
144444
144452
144462
144464
144550
144562
144660
144662
146452
145453
145462
145463
145562
145662
146461
146462
146463
146464
146561
146562
146662
155550
155660
156561
156562
156662
166660
166662

-0.731
0.061
0.402

-0.235
0.055

-0.294
-0.242
-0.243
-0.572
-0.249
-0.034

0.462
0.015

-0.025
-0.069

0.043
0.209
0.210
0.537
0.413
0.071

-0.091
-0.197

0.146
-0.135

0.546
0.334

-0.119
-0.312

0.414

-0.710
0.054
0.422

-0.210
0.065

-0.283
-0.225
-0.269
-0.597
—0.369
-0.040

0.523
0.060

-0.013
-0.031

0.127
0.206
0.216
0.513
0.604
0.108

-0.106
—0.191

0.144
-0.121

0.604
0.422

-0.099
-0.168

0.429

-0.868
0.066
0.503

-0.306
0,100

-0.360
-0.383
-0.354
-0.711
—0.402
-0.044

0.670
0.019

-0.033
-0.121

0.084
0.221
0.229
0.656
0.596
0.130

-0.144
-0.230

0.153
-0.212

0.722
-0.454
—.0.161
-0.306

0.491

-0.085
0.349
0.600

-0.241
0.056

—0.313
-0.249
-0.327
-0.583
—0.365

0.154
0.798
0.222
0.010

-0.100
0.177
0.337
0.505
0.611
0.806
0.293

-0.158
-0.098

0,845
-0.162

0.811
0.757

-0.115
0.580
0.670

-0.267
0.367
0.675

-0.336
0.082

-0.394
-G.408
-0.420
-0.707
—0.399

0.143
0.948
0.177

-0.014
-0.187

0.131
0.372
0.514
0.756
0.787
0.311

-0.193
—0.135

0.878
-0.247

0.918
0.780

-0.181
0.392
0.717

-0.392
0.301
0.634

-0.324
0.085

-0.386
-0.381
-0.39V

—0.721
-0.408

0.103
0.874
0.136

-0.01V
-0.162

0.120
0.333
0.437
0.735
0.735
0.259

-0.176
-0.168

0.668
-0.219

0.873
0.692

-0.170
0.171
0.662

-0.091
0.247
0.450

-0.203
Q.104

-0.260
-0.207
—0.278
—0.388
-0.258

0.105
0.647
0.123
0.002

-0.095
0.094
0.143
0.281
0.491
0.619
0.219

—0.156
-0.09V

0.557
-0.127

0.613
0.558

-0.110
0.263
0.439

0.074
0.259
0.364

-0.161
0.028

—0.186
-0.203
-0.211
—0.365
-0.189

0.136
0.509
0.120
G.QQ6

-0.116
0.055
0.221
0.330
0.388
0.4G8
0.181

-0.102
-0.046

0.575
-0.111

0.48V
0.427

-0.094
0.296
0.390

only the 25m excitation. These results are, re-
spectively, those of Kuo, ' VS%, ' and the present
calculation. The converged values of the oscilla-
tor sum for G3yjh of VS% and the present calcula-
tion are displayed in columns 4 and 5 of Tables
IX and X. In columns 6 and 7 we present the re-
sults of the compound spectra treatment of the
intermediate particle state as was discussed in
Sec. II and illustrated in Fig. 7. Finally in column
8 we tabulate the results for Gsr„„of Eq. (ll) in
which all intermediate particle states are treated
in plane-wave propagation.

To be specific concerning the compound spectra
calculations, the results of column 7 in Tables
IX and X are computed in the following manner:
We compute G„,„according to Eq. (4) but the sum
over the intermediate particle states is restricted
to the three orbitals of the 1s-Od shell. To this
partial sum for G„»we add G„» computed ac-

cording to Eqs. (88)-(85) but with the single par-
ticle projection operator p in Eq. (82) now pro-
jecting onto the six orbitals of the Os, Op and 1s-
Od shells. In this way the intermediate plane-wave
sum for the highly excited states in G„,„is prop-
erly orthogonalized to both the core states as well
as the low-lying valence states we have chosen to
treat in oscillator representation. The results of
column 6 in Tables IX and X are computed in like
manner except that the four orbitals of the 1p-Of
shell are now also included in the partial sum for:
G, ,„and therefore in the definition of P used in
the computation of G3~» which is then added to

3ylh'
The overall effect of the core-polarization dia-

gram can be most easily summarized by look-
ing at the shifts in the centroids of various TJ
groups of levels due to the inclusion of core polar-
ization. For example, some shifts in centroid
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TABLE X. The 7'. = 0 three-particle-one-hole-core-polarization matrix elements for the
1sOd shell.

Tabcd J
2 A
Kuo

3

3plh
25 co

present
All

VSW
All

present G

6 7
Compound spectra

Fig. Fig.
7(c) 7(b)

044441
044443
044445
044453
044461
044463
044551
044561
044661
044663
045452
045453
045462
045463
045562
045663
046461
046462
046463
046464
046551
046561
046562
046661
046663
055551
055561
055661
056561
056562
056661
066661
066663

-0.251
0.092

-0.087
-O.141
—0.058

0.235
-0.146
—0.274
-0.496

0.206
0.102

-0.267
0.088

—0.042
0.124.

-0.049
0.207
0.056
0.264
0.210

-0.295
0.101
0.349
0.245
0.247
0.166
0.278
0.166
0.171
0.235

—0.115
—0.036

0.052

—0.387
0.111

-0.108
—0.194
—0.021

0.297
-0.208
—0.384
-0.535

0.242
0.150

—0.342
, 0.059

—0.006
0.095

-0.009
0.202
0.151
0.294
0.165

—0.349
0.121
0.358
0.270

- 0.325
0.165
0.272
0.282
0.105
0.266

—0.074
0.007
0.074

-0.358
0.187

-0.033
—0.176
-0.108

0.325
-0.210
-0.418
-0.552

0.312
0.238

-0.301
0.100

—0.047
0.005
0.027
0.403
0.240
0.373
0.143

-0.460
0.195
0.400
0.276
0.326
0.132
0.238
0.305
0.215
0.281

-0.132
-0.036

0.080

-0.280
0.146

-0.026
-0.236
—0.039

0.330
-0.077
—0.252
-0.553

0.276
0.375

-0.502
0.064

—0.016
—0.061

0.044
0.554
0.222
0.473
0.189

-0.450
-0.068

0.498
0.711
0.420
0.493
0.660
0.149

-0.084
0.452

-0.090
0.432
0.173

-0.253
0.231
0.053

—0.217
—0.143

0.344
-0.079
—0.287
-0.578

0.340
0.449

-0.452
0.102

-0.050
—0.147

0.080
0.794
0.331
0.550
0.164

-0.573
0.020
0.531
0.696
0.415
0.456
0.618
0.16,7
0.045
0.451

-0.141
0.364
0.170

-0.256
0.228
0.032

-0.204
—0.137

0.344
-0.114
-0.330
-0.572

0.337
0.393

-0.398
0.100

—0.058
-0.104

0.062
0.683
0.304
0.505
0.155

-0.545
0.066
0.503
0.563
0.391
0.357

. 0.521
0.205
0.098
0.421

-0.142
0.236
0.137

-0.132
0.169
0.060

—0.142
-0.072

0.245
-0.028
-0.179
—0.413

0.210
0.308

—0.356.
0.085

—0.017
-0.083

0.056
0.499
0.243
0.334
0.077

-0.366
0.010
0.341
0.461
0.279
0.299
0.353
0.124

—0.005
0.342

-0.115
0.210
0.141

-0.046
0.123
0.029

-0.095
-0.102

0.163
0.002

-0.089
-0.269

0.148
0.241

-0.205
0.057

-0.023
-0.119

0.032
0.428
0.166
0.287
0.091

-0.293
—0.046

0.277
0.372
0.201
0.277
0:.383
0..050

-0.001
0.248

—0.039
0.257
0.076

energies (in MeV) are as'follows: (TJ=01; 0.071,
O. 28l, O. 224, 0.174, 0.183), (TJ = 03; 0.085, O. l2'5,
0.118, 0.072, 0.070), (TJ = 10; -0 340, 0 334
O. 149, 0.243, 0.315), (TJ = l2; 0.239, 0.50'4,
O. 437, O. 328, 0.308). In each case the five num-
bers refer to (present 28&v, present G»», Fig.
7(c) compound spectra, Fig. 7(b) compound spec-
tra, G,r„„), respectively. Thus the converged
value of the core polarization is seen to generally
give a repulsive shift to the centroids relative to
that of the 2Aco calculation, However, with the
notable exception of the TJ=10 case, it is found
that this shift is reduced as we progressively

make the transition from oscillator to plane-wave
propagation for the intermediate particle. In
fact the TJ = 10 case is the only case in which the
centroid of a JT group of levels using G3pph does
not lie well within 4 MeV of the centroid using
the pure 2Aco approximation for G3pfh It is in this
sense that we find the VSW effect to be somewhat
weakened, but none the less important, by the use
of plane-wave propagation.

We conclude by preseriting in Figs. 14 and 15
the obligatory spectra for "Q and "F using each
of the present calculations of core polarization in
combination with the G-matrix elements for the
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FIG. 14. The spectra of '8O.
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FIG. 15. The spectra of F.

valence states to produce effective interaction
matrix elements. We note merely the relative
stability of the level structure against changes in
the method of calculation of the core polarization.
Again the TJ = 10 levels prove exceptional. Cal-
culations with 2SId 63@)„alone yield results in con-
siderably better agreement with experiments.
The inclusion of high energy particle excitations
significantly reduce the overall effect of the sec-
ond-order core-polarization diagram, as was
found by VSW and the present work. How to amend
this situation is clearly of interest and importance.
There is room for the influence of higher order
core-polarization processes such as exchanges of
RPA phonons between valence nucleons. There is

the possibility that a different nucleon-nucleon po-
tential model, such as the Paris potential" and
the Bonn potential, "may suppress the effect of
these high energy particle excitations. We feel
that there ought to be some mechanism which would
restore the &ouch needed core-polarization contri-
butions to the effective nucleon-nucleon interac-
tion in nuclei.
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