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We carry out an extended study of the Vary-Sauer-Wong effect on the second-order core-polarization
diagrams Gj,;, and G3Tp1h in the effective interaction between two valence nucleons. As in Vary-Sauer-Wong,
we first calculate G;,;, using a harmonic oscillator propagator for the intermediate particle states p,
including particle-hole excitations with energies up to 227iw. Results are in close agreement with those of
Vary-Sauer-Wong. We then calculate GJ,;;, where a free particle propagator for p is used. This is obtained
by including the — U, the oscillator one-body potential, insertions of all orders to p of Gj,;,. Although the
resulting matrix elements are generally smaller in magnitude than those of Vary-Sauer-Wong, the qualitative
feature of the Vary-Sauer-Wong effect is clearly maintained. Namely there are strong cancellations between
the contributions from the low and high energy p states. This makes the net effect from the core
polarization diagrams significantly weaker than from G, calculated with 2% excitations alone. We also
study some intermediate choices for the propagator of p, where the free particle propagator is used only for
high energy valence states. The Brueckner reaction matrix elements in a mixed representation where one
particle is in a harmonic oscillator state and the other in a plane wave state are needed in our calculations.
By using the vector transformation brackets of Wong and Clement and of Balian and Brezin and the Tsai-
Kuo treatment of the Pauli exclusion operator, we have developed a technique for accurately calculating

these matrix elements.

[NUCLEAR STRUCTURE Contributions to effective interaction for 4 =18 nuclei
calculated from converged values of lowest order core polarization diagrams as
function of intermediate state propagator using new momentum space techniques.

I. INTRODUCTION

The core-polarization diagram Gg;,, as shown in
Fig. 1 has played a very important role in micro-
scopic effective interaction theory, as pointed out
some years ago by Bertsch! and by Kuo and
Brown.! A primary function of this diagram is to
provide® the much needed long range quadrupole-
quadrupole component, the P, force, in the empir-
ical effective interaction between valence nucleons.
Since then, there have been many studies of the
various aspects of this diagram."5 The Gy, dia-
gram is second order in G, the Brueckner reac-
tion matrix. How important are the core-polari-
zation diagrams (e.g., in Fig. 2) with higher or-
ders in G? Inthe extensive calculations of Bar-
rett and Kirson,® it was found that the core-po-
larization diagrams third order in G were of a
magnitude comparable to G;,,. However, the in-
clusion of these higher order processes was
found to result in poorer agreement with the em-
pirical spectra of A=18 nuclei than had been
achieved by Kuo-Brown. This raised a basic
question about the convergence behavior of expand-
ing the core-polarization process as a power
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series in'G, and it has received extensive investi-
gation,”r%?

The issue of convergence of the effective interac-
tion expansion in powers of G has been reopened
in a fundamental way by the investigations of Vary,
Sauer, and Wong.? Early calculations' %% of Gy,
argued that the summation of the intermediate
particle line p could be restricted by the energy
condition €, —¢, = 27w where the ¢’s are single par-
ticle energies of the particle p and hole h of Ggy,
(see Fig. 1) and 7Zw is the harmonic oscillator
energy spacing. We shall denote the contribution
to Gy, from terms with e, —e, =NAw as Ggyu(N).
Vary, Sauer, and Wong challenged the argument
that Gg,y, could be adequately approximated by
G3pin(2). They performed the first converged cal-
culation of Gy, by summing Ggp,(N) through N
=22 for A=18 nuclei. They found a rather slow
rate of convergence and could trace this to the
dynamical effects of the tensor component of the
Reid soft-core interaction. The net result was
that the sum of G;,,(N) for N >4 frequently has
opposite sign from that of G,,,,(2) and therefore
the resulting G,,;, is considerably reduced in
strength from the original Gg,x(2) estimate. No
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FIG. 1. The Gy, core-polarization diagram.

longer can the converged value of Gy, be

claimed to provide all the long range quadrupole-
quadrupole components indicated by the empirical
effective interaction between valence nucleons.
There is the further implication that the noncon-
verged values of diagrams higher than second or-
der in G cannot be regarded as reliable evidence
on the question of the convergence of the effective
interaction in powers of the reaction matrix. Vary,
Sauer, and Wong teach us that henceforth calcula-
tions of the effective interaction must guarantee
adequate treatment of the dynamics of the nucleon-
nucleon interaction.

The objective of the present work is to carry out
an independent and extended investigation of the
Vary-Sauer-Wong (VSW) effect. Our primary in-
terest is to investigate the dependence of the con-
verged value of Gg,yp upon the treatment of the in-
termediate particle state. To this end we present
the results of four independent calculations of
G3pin Which are discussed in Sec. II. In parallel
with VSW we first treat the intermediate particle
state and propagator in harmonic oscillator rep-
resentation, our main difference being in the
treatment of the Pauli operator using the Tsai-
Kuo'® transformation rather than an angle-aver-
age approximation. At the other extreme we
treat the intermediate particle state and propaga-
tor in plane wave representation and introduce
techniques based on vector bracket transforma-
tions'*!® that appear useful for the eventual calcu-
lation of higher order diagrams. These techniques
are discussed in Sec. III. Finally we merge these
approaches in two calculations in which low lying
states are treated in oscillator representation
whereas high lying intermediate particle states

>
>

~ FIG. 2. Some core-polarization diagrams third order
in G. ~

are treated in plane wave representation appro-
priately orthogonalized to the low lying states.
Our results are presented and analyzed in Sec. IV.

II. FORMULATION

When we include highly excited single particle
states p in the calculation of the core-polarization
diagram Gy, the choice of representation for p
and the self-energy insertions in the particle line
become of particular interest. The many-body
Hamiltonian is usually written as

H=H,+H,
Hy=T+U, (1)
H=V-U,

where T and V denote, respectively, the kinetic
and potential energy of the many-body system un-
der consideration. The auxiliary one-body poten-
tial U is introduced to yield a suitable unperturbed
Hamiltonian H,, the total Hamiltonian H being un-
altered as a —U term is then included in the inter-
action Hamiltonian H,;. We repeat the usual obser-
vation that if a complete evaluation of the series
expansion were possible, the final answer would
be found to be independent of our choice of U.

In treating low-lying nuclear states, the success
of the nuclear shell model indicates that the choice

of U as a harmonic oscillator potential
A

U=Z§mw27,2 +C, _ (2)
i=1 .
seems to be appropriate. This yields harmonic
oscillator single particle states given by the solu-

tion of

Hypy=¢€; ¢4 (3)

with e; = (2n; +1; + 3w + C,. As it will be needed
later for discussion of our results, we give a typi-
cal spectrum of this H, in Fig. 3. With this choice,
the G,y diagram of Fig. 1 may be written® as

E; (MeV)
l —
23 =———= 2s 1d Og Intermediate
- particle states
9 —_—— Ip Of
v 6=0d;,,
Valence -
-5 = Is0d states _’[ 5=1s)2
4=0dg,,

-19 —=— Op
]—> Hole states
-33 — Os

FIG. 3. The harmonic oscillator states and energies.
Note that we have chosen the constant term C; of Eq. (2)
as — 54 MeV so that the energy of the valence states is
—5MeV. We use hw=14 MeV.
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with
Wy =€, t€; t€, —€,,
wy =€c +€h ’
W) =¢€,t€;.

The energy € for each state is given in Fig. 3, and
the summation of the particle state p is over all
the harmonic oscillator states except Os and 0p.
The formula given above is only one of the four
terms contained in Gy, the other three being the
diagrams obtained by exchanging ab, cd, and both
ab and cd of the diagram shown in Fig, 1. In
actual calculations, we of course include all the
four terms. For the remainder of our discussion
we will suppress all the factors in Eq. (4) except
the last three matrix elements, remembering that
these suppressed factors remain unchanged
throughout the discussion.

We may remove the restriction over the summa-
tion p in Eq. (4) by introducing the one-particle
projection operator ¢ defined by

gln)y=1Iny, ifn>ng
=0, ifnsng, (5)

where ny represents the “Fermi” energy level,
namely the 0p,,, orbit. In other words, § projects
onto one particle oscillator states in the 1s0d shell
and above. We can then rewrite Eq. (4), in abbre-
viated form, as

(ab I G3pﬂ|| Cd)
q
= hblGlnd\<n
§( \wy -H,

n'>(an’ IGlchy. (6)

The operator §/w, —H, is diagonal in the oscillator ‘

representation and therefore only terms with n=n'
would contribute in the evaluation of Eq. (6). With
the particle summation unrestricted, we are then
free to change the representation of the particle
summation as we please. Thus in plane-wave rep-
resentation of the intermediate state we would

¥)

hav
X{ak'|Glch). &)

(ableGmhl cay=far [ dk'zh:(hblled)<k ‘ q

wy —H,
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J2dpda

(2Jy + 1)(2J, +1)(2T + 1)(2T, + 15, J, G,»

]cde

0=

2
Tl
3T

1
wo —H,

Wl =

n= Dl Ny

(I, Ty1G(w,)| delTQ@ l

?)

Xapd, Tyl G(wy) | chd,Ty) : (4)

{

The operator §/(w, —H,) is no longer diagonal in
the plane-wave representation of Eq. (7).

The question concerning the choice of the single
particle spectrum in the calculation of Gy, is
rather similar tc that in the calculation of the
bare Brueckner reaction matrix.’ Because of the
strong short range repulsions contained in the
free nucleon-nucleon interaction V, it is necessary
to make a partial summation of the V interactions
between two nucleons to all orders. This leads to
the reaction matrix interaction, to be denoted by a
wavy line vertex. When using an oscillator single
particle spectrum, the resulting reaction matrix
is given as

Q

w=-H,

Glw)=V+V G(w), (8)
where w is the energy variable and @ is a two par-
ticle projection operator insuring that at least one
of the two intermediate particle lines must be out-
side the chosen model space [see Fig. 4(a)]. Our
choice of the model space will be discussed later.
It may be noted that @ and H, commute. Detailed
calculations of G(w) defined according to Eq. (8)
have been carried out by Barrett, Hewitt, and
McCarthy. !

As indicated by Eq. (1), we add a one-body poten-
tial U to T to form a unperturbed Hamiltonian H,.
Thus we must subtract U from V to form the in-
teraction Hamiltonian Hy=V - U, to insure that
the total Hamiltonian H be unaltered. The reaction
matrix of Eq. (8) corresponds to the use of a Ham-

F-x

(a) (b)

FIG. 4. Two-body ladder diagrams for the Brueckner
reaction matrices G and GT. Each railed line represents
a single particle state which lies outside the chosen mo-
del space. The V interactions are represented by dotted
lines (....) and the — U insertions by crosses (..... x).
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iltonian H =H, +V instead of H, +H;. In terms of
diagrams, this G(w) includes diagrams like Fig.
4(a). But it does not include the —U insertions in
diagrams such as the diagram of Fig. 4(b). One
should have these -U insertion diagrams, if the
interaction Hamiltonian Hy =V - U is used. This
point has been discussed by several authors.!!"1%?
The inclusion of these -U insertions to all orders
leads to a reaction matrix defined by

CT (W) =V +VQ ——e

w-QTQ

where we note that @ and 7' do not commute. A
detailed investigation of GT(w) has been carried
out by Krenciglowa, Kung, Kuo, and Osnes.? In
the above, w is the energy variable. For the re-
mainder of this paper we shall always understand
by G that of Eq. (9) rather than that of Eq. (8).

The same argument about the —-U insertions may
be applied to the calculation of the core-polariza-
tion diagram Gg,y,. This together with the consid-
eration of being consistent with the calculation of
GT(w) seems to strongly indicate that we should
include the =U insertions in the calculation of
Ggyne To investigate this effect we then add -U
insertions to all orders to the particle line p of the
Gy diagram of Fig. 1, as illustrated by Fig. 5.
These insertions lead to a geometric series of the

| form

QG (w), (9)

4, q
wy —H, v wy —H,

g q q
+ ——ee. 10
Qv'o‘HoU‘-"o"HoU (10)

Together with Gy, this series can be readily
summed up and we obtain

(ab | Gg‘nlh , Cd)

— [ * / A_____.l___ 4
= [ar [ ar zh:\hblled><quwo _(?qulk>
x{ak'|Glchy , (11)

where we note that the connection between this
equation and Eq. (7) for Gg,, is very similar to
that between GT(w) of Eq. (9) and G(w) of Eq. (8).

a b
T _ |p
c d

FIG. 5. Inclusion of the — U insertions in the core po-
larization diagram G;,fm. The first term in the series is

G3n1h~

XXX
+

We have used an abbreviated notation in Eq. (11).
As the vertex -U is inserted to the particle line
p only, the operator w, —47¢ in fact means

Wy =9T§ ~wy —Hy - §tg =w; - 3tq (12)

where H; operates on the intermediate states ex-
cluding p and the one-body kinetic energy operator
¢ operates on p alone. For example, the Gj,, di-
agram of Fig. 5 has wj=(e,+¢,) = (€, +€¢; —€,). As
was true in the transition from Eq. (8) to Eq. (9),
the inclusion of =U in H, to all orders has the ef-
fect of removing all dependence of the single par-
ticle propagator on our choice of U,

One may ask why we do not include the -U in-
sertions to the hole line % in G4,y,. This is based
on physical considerations. As is well known, !?
the Brueckner-Hartree-Fock (BHF) self-consis-
tent single particle wave functions for the hole
states (0sy,;, Op3,, and 0p,,,) are well represented
by harmonic oscillator wave functions. Thus the
-U insertions to the hole line in G4, will be can-
celed, essentially, by the corresponding BHF
self-energy insertions, as illustrated in Fig. 6,

In fact, this type of cancellation may be reason-
ably expected for low-lying particle states such as
those in the Od-1s and even the 0f-1p shell.

The wave functions of particle states at higher
excitation energies should not be expected to re-
semble those of the harmonic oscillator. In fact
for very high excitation energy they should be-
come well represented by free particle states.
However, the exact choice of representation should
not be crucial in the calculation of the converged
value of Gy, since the formalism merely in-
structs one to perform a complete intermediate
particle sum subject only to the condition that
these particle states be properly orthogonalized
to the occupied low-lying states. This is ensured
by exact treatment of the one-body projection op-
erator ¢ in Eq. (11). What is essential is that our
inclusion of the —U insertions from H, in the in-
termediate particle line, in parallel with the con-
ventional treatment of GT, has transformed the
particle propagator into a form which is more
easily handled in plane wave representation.

Physical considerations of the nature of the low-
lying states suggests that one investigate treat-
ment of the intermediate particle states as a com-
pound spectrum. This idea is illustrated in Fig.
7. In Fig. 7(a) the entire intermediate particle

FIG. 6. Cancellation of hole-line — U insertions.
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FIG. 7. Three choices of compound spectrum. The
discrete states are those of a harmonic oscillator while
the continuum states are plane waves made orthogonal to
the former. The projectors for these two sets of states
are denoted by p and §, respectively.

sum is performed in plane wave representation
properly orthogonalized to the occupied Os and 0p
orbitals. In Figs. 7(b) and 7(c) the intermediate
particle sum is broken into two components, The
first one or two excited major shells are treated
in harmonic oscillator representation with a 1/w,
—H, propagator. The balance of the particle sum
is then treated in plane wave representation as in
Eq. (11) but with ¢ orthogonalizing these plane
waves to all states, both occupied and unoccupied,
which have been treated in oscillator representa-
tion. In terms of the language introduced above,
this compound spectrum approach corresponds to
the exclusion of -U insertions from low-lying
states where Brueckner-Hartree-Fock considera-
tions suggest cancellation of such insertions with
self-energy bubbles, but inclusion of -U inser-
tions to all orders at energies above which BHF
considerations should no longer be applicable.
The results of all three choices of Fig. 7 in the
calculation of G:;Tmh will be reported in Sec. IV.

In summary then we present four separate con-
verged calculations of the core-polarization dia-
gram which differ from each other solely in the
treatment of the propagator of the intermediate
particle state. These range from the extreme of
Eq. (6) in which all intermediate particle states
are in oscillator representation to the extreme of
Eq. (11) in which all are in plane-wave representa-
tion. However, in each case the pair of reaction
matrices used in the core-polarization calcula-
tion are those of GT(w) of Eq. (9) in which the
plane-wave propagator is used for the intermedi-
ate particle states. From a strictly formal point
of view, we observe that it is in the calculation
of Gg,yn, using Fig. 7(a) to define 7 in Eq. (11),
that the intermediate particle propagators of GT(w)
and those of the core-polarization diagrams are
treated in identical manner. However, by using
the same G”(w) in all four cases, our results
focus clearly on the effect of choice of the single
particle propagator on the converged value of the
core~polarization diagram.

III. METHOD OF CALCULATION

The reaction matrix elements used in the evalu-
ation of G, of Eq. (11) are of the form (n,n,Glksn,)
where n,, n,, and n, are oscillator states and
k; is a plane-wave state with &-function
normalization. Both bra and ket are anﬁsymmet«
erized as indicated by our use of angular brackets.
Since the use of such a “mixed representation” of
plane wave and harmonic oscillator is somewhat
unusual, we briefly abandon our condensed nota-
tion to express the familiar antisymmeterized,
coupled, and normalized oscillator kets as a line-
ar combination of uncoupled, product kets (de-
noted by rounded brackets) of the mixed represen-
tation:

|
1 1 .
Inglsn,d LM)= 7= T 2 C,‘,%‘;},fw’iifdkkP"S,s(k)[ | kylgman,lm,) = |ndmklm,)], 13)
3
T

where P, ; (k) is the radial wave function of the ° 1 o f 2\/2, :
oscillators' in momentum space representation ;R"a’s(y) v ) ak T J ,3(k1f)kP"3,3(k) : (15)

> _1 2. Working backwards we arrive at the required

(Klnglgmy) kP"3’3(k)Y‘3'"3(k)’ (14) matrix element (n,n,|G |kmn,) by transformation of

which is related to the usual oscillator radial
wave function R, ; (v) in coordinate. space repre-
sentation by

the ket from pure plane wave representation

(nyn, |G | kgny) =[ dk(nyn, | Gl kok YR 0y .  (16)
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The coupling scheme actually used is of course
that appropriate to a discussion of shell model
orbitals

(nyn, |G 1 k)
—~mlidys Molafay JT Gl kglydgy Rolyjy, JTY . (17)

The calculation of these matrix elements in turn

iy, mlgy; ITI=3 O A= (D07
164715 Mabalzs ~ A T2 +0,)

sd

~N
>

A

where (WINLX|n,l,n,l,\) is the Moshinsky bracket
subject to angular momentum and energy condi-
tions

[+L=%=1+1,,

(2n+1) +(2N +L) = (2n, +1,) +(2n, +1,) . (20)

|
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requires transformation into the two-body rela-
tive-center of mass (RCM) coordinate system.
The transformation of the oscillator bra into RCM
coordinates,

iy, nylofy; IT|—mis(§)NL; IT I, (18)

is accomplished by the well known Moshinsky
transformation®

[(2, +1)(27, +1)(2x +1)(2S +1)]/2

l
X¢3 35S ((WINLXIndn,l 2y (21 +1)(29+1)F/2W(ILS; JI)(nIS(S)NL; IT |, 19)
i J

—
The transformation of the plane-wave ket into
RCM coordinates

IRglgis, Ryl JTY—~RIS(Y)KL; J T) (21) »

is accomplished in parallel fashion by the less
known vector bracket transformation415

\kgliss Bl dui T T)= 3 Zfdkdel——(-:/—;_)—s-ﬂ[(st+1)(2j4+1)(2x +1)(2S +1)J/2

u ILS
I 2, A

X$3 35S H(RIKLX | kglye I )[(29+1)(21 +1) [/ 2W(ILSX; JI) RIS (S)KL; J T),

Jsdsd

where (RIKLX|k,lk,I,)\) is the vector bracket sub-

ject to angular momentum and energy conditions
T+0=X=1,+1,,
S = A (kg 4h,7) (@3)

The vector bracket transformation has been ex-
tensively discussed by Wong and Clement.!®* For
the purpose of numerical computation we find the
formulation of the vector bracket given by Balian
and Brezin' to be more convenient. We therefore
use

(RIKLA kgl kL) = 4n%8(w)6(1 = x2)A (x),  (24)

where

(22)
r
w=k+3K? ~ %(1332 +R72),
x= (kb - k2 - 1K?)/RK ,
AW =g X @ x v RR
X [Ya(ky) x Y’ (BT, . (25)

We note that x is just the cosine of the angle be-
tween k and K and therefore the step function in
Eq. (24) merely restricts x to its range of physi-
cal significance.

Since A (x) is a scalar quantity, it can be calcu-
lated in any convenient coordinate system. The
coordinate system we actually use is shown in
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FIG. 8. Coordinate system used for evaluating vector
transformation brackets.

Fig. 8. The z axis is chosen to be in the direction

of k, and the ¢ = 0 plane is chosen to be the plane
spanned by k, and k,. The y axis is directed into
the paper. In this way, A (x) becomes

apw=0" Z( 1)*CIEL, ClifY (., 0)

X Y3(8,0)Y33(0,0)Ya(y,0), )

where

(k2 +7? -K2/4]
T

[k +K/4 ~k2]
X ’

[+ -4k 2]
L 2Rk, :

We have found the vector transformation brackets
depend on 2 and K quite smoothly thus being suit-
able for numerical integration techniques using
momentum space Gaussian mesh points. (This
numerical method was described in some detail
in Ref. 9).

If we denote by MBT(...) and by VBT(...) the
factors of the Moshinsky bracket transformation
and of the vector bracket transformation of Eq.
(19) and Eq. (22), respectively, then the trans-
formation from the basic G-matrix elements to
those needed in the calculation of GJ,, in Eq. (11)
can be realized in the following sequence of steps

(nny |Gl Rgny)
= f dk (n,n, | Gl gk )by in,)
=) f dk,MBT(...)VBT(...)
X{nINL| GIR'U'K'L" Yk, ny)
=Z fdk4fdkde(leL IGIR'I'K'L")
X {n| k)N |K){k, |n,)MBT(...)
x VBT(...). (28)

a=cos™ ,

B =cos 27)

y=cos”

The basic input necessary to the calculation of
mixed-representation matrix elements of G are

those of RCM momentum space representation.
These in turn are calculated by the Tsai-Kuo
method’s® in which G is written exactly as the sum
of two terms, G, which is free of the two-body
Pauli operator @, and AG in which we have re-
placed @ by its complement P. If we set e=w

~ T then the G of Eq. (9) may be written as

Glw)=V+VQ QGW)=G,-AG,  (29)

1
w=-QTQ
where

CH0)= V+V2G, ),

. (30

AGGIP PG

P[i/e +(1/e)GF(1/e)1P

The single particle propagator of Eq. (11) in the
calculation of GJ;, can be handled by the Tsai~-
Kuo method in complete analogy to the above divi-
sion of G. Denoting the single particle projection
operators of Eq. (11) and Fig. (7) by p+§=1 we
have

(k12— wmk’) (kl=—— 1K) - ®IBIE'),

(31)
where

1 1
B i/, DB w1 °

wp—t
In this way we express Gmn as the sum of two
terms

(32)

(ab|GL,,1cd) = (direct term) — (Pauli term),

(33)
where
(direct term)= 2 f dk(hb |G lkd)
Rk
><<k| ——71kXak|Glchy,
(34)

(Pauli term) = 3 [ ak f dr! (hb |G | kd)
h

x{k\BIk"Yak' |Gich)y. (35)

In the direct term, Eq. (34), the propagation of
the intermediate particle is uninhibited by the
Pauli principle. The influence of occupied states
upon the particle propagation is completely ac-
counted for by the Pauli term, Eq. (35), and since
P is a one-body operator this correction can be
calculated exactly. In conclusion we note that
such a division, achieved by §=1 ~p, in the cal-
culation of G, with the oscillator propagator of
Eq. (7) makes no sense due to the vanishing of the
resulting energy denominators.
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TABLE I. A detailed comparison of the contributions to some G;,;;, matrix elements. In each block the numbers in the
the first line are the present values; second line, VSW’s. Each Gj,);, matrix element is broken down according to the
particle-hole excitation energy. The orbital notations 4, 5, and 6 of Fig. 3 are used.

Particle—hole excitation energy

18—

TabcdJ 27w 47w 67w 8hkw 107w 127w 147w 167w 227w Total
—0.868 0.111 0.205 0.144 0.075 0.038 0.017 0.007 0.004 —0.267

144440 -0.710 0.126 0.205 0.144 0.081 0.040 0.018 0.007 0.004 -0.085
0.153 0.147 0.181 0.169 0.118 0.065 0.029 0,011 0.005 0.878

155550 0.144 0.140 0.176 0.163 0,112 0.062 0.029 0.012 0.007 0.845
-0.306 0.219 0.204 0.133 0.076 0.038 0.017 0.007 0.004 0.392

166660 —-0.168 0.241 0.225 0.139 0.075 0.038 0.018 0.008 0.005 0.580
-0.358 —0.079 0.035 0.057 0.041 0.027 0.014 0.007 0.004 —0.253

044441 -0.387 —0.083 0.034 0.058 0.046 0.028 0.014 0.007 0.004 -0.280
0.238 0.102 0.035 0.025 0.020 0.014 0.008 0.004 0.003 0.449

045452 0.150 0.105 0.042 0.026 0.020 0.015, 0.009 0.005 0.003 0.375
0.403 0.246 0.106 0.039 0.010 -0.001 -0.004 -0.003 —-0.003 0.794

046461 0.202 0.215 0.102 0.038 0.008 —-0.002 —-0.004 —-0.003 -0.003 0.554
0.276 0.180 0.099 0.062 0.037 0.022 0.011 0.006 0.003 0.696

046661 0.270 0.187 0.109 0.063 0.038 0.022 0.011 0.006 0.004 0.711
0.132 0.099 0.085 0.064 0,040 0.021 0.009 0.004 0.001 0.456

055551 0.165 0.105 0.087 0.063 0.038 0.020 0.009 0.004 0.002 0.493
0.238 0.053 0.055 0.082 0.075 0,055 0.033 0.017 0.011 0.618

055561 0.272 0.060 0.058 0.079 0.076 0.055 0.032 0.016 0.012 0.660
—0.036 0.052 0.132 0.104 0.063 0.033 0.015 0.006 0.003 0.364

066661 0.007 0.061 0.135 0.108 0.064 0.033 0.015 0.006 0.004 0.432

TABLE 0. Contributions to the T'=1 150d shell G3plh matrix elements as functions of the particle-hole excitation
energy.

Particle—hole excitation energy in Zw
Tabedd 2 4 6 8 10 12 14 16 18 20 22

144440 -0.868 0.111 0.205 0.144 0.075 0.038 0.017 0.007 0.003 0.001  0.000
144442 0.066 0.088 0.088 0.062 0.033 0.017 0.008 0.004 0,001 0.000  0.000
144444 0.503 0.116 0.035 0.012 0.005 0.002 0.001 0.001 0.000 0.000  0.000
144452 -0.306 0.010 -0.018 -0.016 -0.007 -0.001 0.000 0.000 0.000 0.000  0.000
144462 0.100 —-0.008 —0.001 —0.001 -0.002 -0,002 -0.002 —0.001 -0.000 —0.000 0.000
144464 -0.360 -0.032 —0.,000 -0.000 -0.001  —-0.000 0.000 0.000 0.000 0.000  0.000
144550 -0.383 -0.071 —-0.032 0.013 0.025 0.020 0.011 0.005 0.002 0.001  0.000

144562 -0.354 -0.056 —0,020 —0.002 0.004 0.004 0.003 0.001 0.001 0.000 0.000
144660 -0.711  —-0.070 0.023 0.025 0.015 0.007 0.003 0.001 0.000 0.000  0.000
144662 -0.402 -0.029 0.020 0.010 0.003 —0.000 —0.001 —0.000 —0.000 0.000 0.000
145452 —0.044 0.068 0.034 0.030 0.025 0.016 0.009 0.004 0.002 0.001  0.000
145453 0.670 0.160 0.059 0.029 0.015 0.008 0.004 0.002 0.001 0.000 0.000
145462 0.019 0.075 0.033 0.022 0.014 0.008 0.004 0.002 0.001 0.000  0.000
145463 -0.033 —-0.002 0.006 0.007 0.005 0.002 0.001 0.000 0,000 0.000  0.000
145562 -0.121 -0.026 -0.033 —0.014 -0.001 0.003 0.003 0.002 0.001 0.000 0.000
145662 0.084 0.050 —0.000 —0.005 —0.001 0.001 0.001 0.001 0.000 0.000 0.000
146461 0.221 0.096 0.026 0.009 0.006 0.006 0.004 0.003 0.001 0.000  0.000
146462 0.229 0.145 0.076 0.035 0.016 0.007 0.004 0.002 0.001 0.000  0.000
146463 0.656 0.070 0.011 0.008 0.005 0.003 0.002 0.001 0.000 0.000  0.000
146464 0.596 0.128 0.041 0.013 0.004 0.002 0.001 0.001 0.000 0.000  0.000
146561 0.130 0.025 0.049 0.049 0.032 0.016 0.007 0.003 0.001 0.000 0.000
146562 -0.144 -0.009 -0.017 —0.014 -0.007 —0.002 0.000 0,000 0.000 0.000  0.000
146662 —0.230 0.005 0.032 0.026 0.016 0.008 0.004 0.002 0.001 0.000  0.000
155550 0.153 0.147 0.181 0.169 0.118 0.065 0.029 0.011 0.004 0.001  0.000
156560 -0.212 -0.,097 —0.036 0.021 0.031 0.023 0.013 0.006 0.002 0.001  0.000
156561 0.722 0.124 0.037 0,016 0.009 0.005 0.003 0.001 0.001 0.000  0.000
156562 0.454 0.152" 0.068 0.044 0.029 0.018 0.009 0.004 0.002 0.001  0.000
156662 -0.161 -0.012 -0.013 —0.004 0.001 0,003 0.002 0.001 0.001 0.000  0.000
166660 —0.306 0.219 0.204 0.133 0.076 0.038 0.017 0,007 0.003 0.001  0.009

166662 0.491 0.095 0.059 0.037 0.019 0.009 0.004 0.002 0.001 0.000 0.000
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TABLE II. Contributions to the T =0 1s0d shell G;,;, matrix elements as functions of the particle-hole excitation

energy.

Tabedd 2kw 4 6 8 10 12 14 16 18 20 22

044441 -0.358 -0.079 0.035 0.057 0.041 0.027 0.014 0.007 0.003 0.001 0.000
044443 0.187 . 0.025 0.004 0.005 0.004 0.003 0.001 0.001 0.000 0.000 0.000
044445 -0.033 0.065 0.017 0.004 0.001 0.000 0.000 —0.000 0.000 0.000 0.000
044453 ~-0.176 -0,026 —0.004 -0.004 -0.003 -0,002 -0.001 -0.000 -0.000 0.000 0.000
044461 -0.,108 -—0.051 —0.008 0.008 0.008 0.005 0.002 0.001 0.000 0.000 0.000
044463 0.325 0.043 -0.010 -0.010 -0.004 -0.001 0.000 0.000 0.000 0.000 0.000
044551 -0.210 0.052 0.035 0.016 0.011 0.008 0.005 0.003 0.001 0.001 0.000
044561 -0.418 0.019 0.039 0.027 0.018 0.013 0.008 0.004 0.002 0.001 0,000
044661 -0.552 —0.028 0.006 0.001 -0.000 . -0.001 -0,001 -0.001 -0.001 -0.000 —0,000
044663 0.312 0.057 -0.008 -0.009 -0.005 -0.003 -0.002 -0.001 -0.,001 -0.000 ~0.000
045452 0.238 0.102 0.035 0.025 0.020 0.014 0.008 0.004 0.002 0.001 0.000
045453 -0.301 —0.106 —0.032 —0.007 -0.002 -—0.001 -0,001 —0.001 —0.000 —0.000 —0,000
045462 0.100 -0.007 -0.009 0.000 0.004 0.005 0.004 0.002 0.001 0.000 0.000
045463 -0.047 -0.013 0.004 0.001 0.000 0.001 0.001 0.001 0.001 0.000 0.000
045562 0.005 -0.053 -—0.057 -0.035 -0.013 -—0.001 0,002 0.002 0.001 0.001 0.000
045663 0.027 0,027 0.016 0,013 0.005 -0.001 -0.003 -0.002 -0.001 -0.001 -0.000
046461 0.403 0.246 0.106 0.039 0.010 -0.001 -0.004 -0.,003 -—0.002 —0.001 —0.000
046462 0.240 0.099 0.006 -0.010 -0.006 -0.001 0.001 0.001 0.001 0.000 0.000
046463 0.373 0.103 0.036 0.021 0.011 0.005 0.001 0.000 0.000 0.000 0.000
046464 0.143 0.004 0.011 0.004 0.000 -0.000 0.000 0.001 0.000 0.000 0.000
046551 -0.460 —0.074 -0.024 -0.,013 -0.,005 —0.000 0.001 0.001 0.001 0.000 0.000
046561 0.195 0,016 —0.028 —0.047 -0.044 -0.03¢ -0.021 —=0.011 -0.005 —0.002 —0.001
046562 0.400 0,077 0,010 0.009 0.011 0.010 0.007 0.004 0.002 0.001 0.000
046661 0.276 0.180 0.099 0.062 0.037 0.022 0,011 0.006 0.002 0,001 0.000
046663 0.326 0.052 0.015 0,009 0.005 0.004 0.002 0.001 0.001 0.000 0.000
055551 0.132 0.099 0,085 0.064 0.040 0.021 0.009 0.004 0.001 0.000 0.000
055561 0.238 0,053 0.055 0.082 0.075 0.055 0.033 0.017 0.007 0.003 0.001
055661 0.305 0.009 -0.024 -0.038 . -0.034 -0.025 -0.015 -0.007 -0.003 -0.001 —0.000
056561 0.215 —0,048 —-0.044 -0.028 -0.019 -0.013 -0.009 -0.005 -0,003 -0.001 —0.000
056562 0.281 0,059 0.010 0.024 0.028 0.023 0.015 0.008 0.004 0,001 0.000
056661 —0,132 ~—0.038 0.019 0.013 0.003 ~0.002 -0.002 -0.001 -0.001 —0.000 0.000
066661 —0.036 0.052 0.123 0.104 0.063 0.003 0.015 0.006 0.002 0.001 0.000
066663 0.080 0.055 0.022 0.007 0.003 0.001 0.001 0.000 0.000 0.000 0.000

IV. RESULTS AND DISCUSSIONS

We begin our discussion by a direct comparison
of the results of the present calculation of G, in
Eq. (6), using the oscillator propagator for the in-
termediate particle, with the corresponding re-
sults of VSW.® In Table I we list the contributions
to each of the 10 matrix elements given by VSW
arising from each value of the excitation energy

of the intermediate particle-hole state. Our

complete listing of the contributions for all T=1
and 7 = 0 matrix elements is given, respectively,
in Tables II and IIL
Inspection of Table I reveals excellent agree-
ment between the two calculations for contribu-
tions from high excitation energy. The differ-
ences are usually less than 10 per cent for 4-6
7iw with even smaller differences for higher ener-
gies. However, the differences are seen to be

quite significant for the 27w contribution. Indeed,
differences in the totals are almost entirely at-

tributable to this lowest energy contribution. Both
VSW and the present calculation generate the
necessary G-matrix elements from the Reid soft-

core potential by solution of Eq. (9). However,

the most significant difference we have been able

to discern between these two calculations is in
method of solution of Eq. (9).

We use the Tsai-Kuo procedure'® as outlined in

Egs. (29) - (30). This procedure has been exten-
sively investigated by Krenciglowa et al.® and in

the language of that paper we have specifically

used a (3, 3,15) approximation to the correct
(3, 3, ©) version of the Pauli operator, @, appro-
priate to G,;,;. This should treat the Pauli opera-

tor with an overall accuracy of a few per cent.

By contrast VSW use the angle-average approxi-

mation'! to the (3,6, x) version of Q. It would
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TABLE IV. Complete breakdown values of 144440 G3,;, matrix element. Note that
contributions from particle states with a largel (g, k, i, j states) do not fall fast as we go

to highz.
Hole Particle Quantum number z of the particle state
state state
nlj 1j 0 1 2 3 4 5 6 7
Si/2 0.022  0.002  0.001  0.001
dgyg  —0.272 -0.021  0.001  0.001
0s ds/o -0.042  -0.000 —0.003 0.001
V2 gya  —0.007 —0.007 —0.003 —0.001
89/ 0,014 0.007 0.003 0.001 0.001
i44/2 0.046 0.040 0.021 0.009 0.004 0.002 0.001
P/2 0.006 —0.003 —0.001 ‘
bs3/2 0.019 0.002 0.002 0.001
fs/2  —0.303 —0.029  0.002  0.002  0.001
sy fuse 0.047  0.012  0.002
kg o 0.120 0.041 0.009 0.001
Ry o -0.003 -0.005 -0,004 -0.002 —0.001 -0.001
J13/2 0.089 0.081 0.048 0.026 0.012 0.005 0.002 0.001
P12 -0.046  —0.001
P32 -0.005  0.004  0.001
Wy fs/2 —0.299 -0.043 —0.004
fa/e 0.006 —0.003 -0.001
P 0.041.  0.008  0.001
Ry1/ 9 0.025 0.018 0.011 0.006 0.003 0.002 0.001
appear that the matrix elements of G, necessary tion energy.
to account for the low-lying contributions to G,,,, It may be pointed out that a secondary purpose
demand an accurate account of the Pauli operator. of the above G, calculation is to check our com-

As expected, this sensitivity decreases rapidly
with increasing excitation energy.
The important conclusion of VSW, that G,;, con-

verges slowly with intermediate state excitation A ) ) 0/,,—0'—+“o~\\ ]
energy and that the 27w contribution alone is gen- i ]
erally a poor approximation to the converged val- _ OE /"’

ue of G,,,, is fully supported by our results. Ad- ER s ]
ditional insight into this conclusion may be gained § 2 i /’ <05,,515,, 6],z lsva,,J:,;:()'
from the example of the 144440 G,,,, matrix ele- FR R pd vppoms |
ment which is decomposed in Table IV into con- A N ra * 1o cauation K - @ poins
tributions arising from each particle-hole state =57 °\ o .g 18 points 1
considered separately. We call particular atten- 2o yd 0 fnd catesotion K- opame 1
tion to the fact that the contributions from inter- TN * :

mediate particle states with high values of I can ; % 5

be appreciable and fall off more slowly with in- / k, (fm™)

creasing excitation energy than those with lower

values of . This behavior is consistent with VSW’s

conclusion that it is the tensor force which is re- FIG. 9. Two calculations of 0sy 515/, IG lsy /515y /5)
sponsible for the slow rate of convergence. The J=1, T=0 matrix elements. The 0s, /2151/ 21G 10 /5181 /3)
- N X matrix element obtained by the first calculation is
important contributions found to arise from par- —1.745; the second, —1.754; and by the Moshinsky

ticle states with 7= 6, 7 will not begin to be ac- bracket transformation method, —1.758. k,, k,, and K

counted for until one has reached 67w in excita- are in the sense of Eq. (24).
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puter codes. To our knowledge, the use of the
vector transformation brackets in effective inter-
action calculations is probably first done in the
present work. Thus it is necessary to make ex-
tensive checks, which we have done. In the above
G,y calculation, the matrix elements (nyn, |G|
nyn,) used in Eq. (4) were in fact calculated via
the vector transformation method. Namely we
first calculate the mixed-representation matrix
elements (n,n, |G |k,n,) as indicated by Egs. (16)
to (28). Then we perform the integration

[k ynm, 161 )iy 1ng

to obtain (n,n, |G Ingm,). Hence the methods of
computation used in VSW and in the present G,
calculation are indeed quite different. The good
agreement obtained between them, as indicated
by Table I, thus lends strong support to the reli-
ability of our calculations using the vector trans-
formation brackets.

We turn next to the calculation of the mixed-
representation matrix elements of G which are
necessary in Eq. (11) for the calculation of Gine
In Fig. 9 we show the behavior of (0s,,,1s,,,IG|
kiS1/518,,,0 J=1, T =0 as a function of the inter-
mediate particle momentum k,. In the sense of
Eq. (28) this matrix element was calculated as

0s,,,18,,,1G RS, ), = 1s,,,)
= [ar,VBT(..)k, 1m)= 1)
(0s,,,1s,,,1G | Els (9)KL),
(36)

where VBT(...) includes integration over % and K.
The 6 function in Eq. (24) for the vector bracket
eliminates one of the four momenta as an inde-
pendent variable. We eliminate the relative mo-
mentum % and thus for each value of 2, must inte-
grate over &, and K. Figure 9 shows the result
of two completely different sets of Gauss mesh
points used for these calculations. This typical
smoothness of the matrix elements in their de-
pendence on the momenta allows one to optimize
the number of mesh points needed to economize
the computation with minimal loss of accuracy.
To illustrate the accuracy of the vector bracket
transformation compared with that of the tradi-
tional Moshinsky bracket transformation we com-
pute (0s,,,1s,,,1G10s,,,1s,,,) by integration of
Eq. (36), i.e., ‘

0s,;,1s,/,1G10s,,,1s,,,)
=fdk1<k1 l’}’llz 0)
(0s,/518,,,1G ks, 515, . (37)

The smaller set of Gauss points yields a value of

~1.745 MeV whereas the larger set of Gauss points
gives —-1.754 MeV to be compared with the value

of -1.758 MeV achieved directly by Moshinsky
transformation of the ket. This again serves as

a check of our calculations using vector trans-
formation brackets.

It is very instructive to compare the ways in
which these G-matrix elements account for in-
creasing particle excitation energy in the oscilla-
tor and plane-wave representations. In Fig. 10
we show two cases involving only s orbitals which
should be dominated by the central force in the
Reid soft-core potential. We display both G and
G of Eq. (29) so that the effect of the Pauli oper-
ator as a function of particle momentum may be
seen in the difference of G and G,. We note that
the large attractive elements of G for small val-
ues of the oscillator principal quantum number #»
are exactly paralleled by the low momentum be-
havior of G as is the change in sign of G with in-
creasing n or k. In Figures 11(a) and 11(b) we

//GF

4
79 J=0,T=
/5208185 |6KS 518, 0>

TrT T

7/ =
,/'<°5|/z'3|/z|G|“s|/z'5|/z"‘ 1.7=0

T

Matrix Element (MeV)
(o]

<0S,218/2 ‘G |"5|/2'5|/2>

YTTTTrTTYTYTYTT

.
J=0,T={
4

J=1,T=0
<‘-”5‘|/2'5|/2|‘5| nS/218,,2>

(b)
0'1"2"3"475 678 910
n

T S S W S W |

™ r—rTr—r-Tr-

FIG. 10. Some of the G matrix elements due to the
central forces: (a) The particle state is in momentum
representation. (b) The particle state is in harmonic
oscillator representation.
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FIG. 11. Some of the G matrix elements due to the tensor force, the particle state is in momentum representation (a)

and in oscillator representation (b).

show four matrix elements in which the particle
state is characterized by a large value of the or-
bital angular momentum and should therefore be
dominated by the tensor component of the Reid
soft-core interaction. Collectively this group be-
haves very differently from those shown in Fig.
10. But again the behavior of G with increasing

k parallels closely that with increasing ». In
making the comparisons of Figures 11(a) and 11(b)
it should be remembered that when [ is large,
even n= 0 already indicates a sizeable excitation
energy. Thus the long tail with increasing # in
Fig. 11(b) or the concentration of the strength of
G in the neighborhood of 2= 3 fm™ in Fig. 11(a)
are equivalent statements of the VSW effect that

it is the dynamics of the interaction that will ulti-
mately control the rate of convergence of the cor-
relation of valence nucleons through core polari-
zation. In other words, if we have a nucleon-nu-

cleon potential which causes the G-matrix curves
of Fig. 11(a) to peak at a much lower % value,

then the contribution from the high energy particle
states in the second order core-polarization dia-
gram should be considerably reduced.

These matrix elements of G may then be com-
bined in the fashion of Egs. (33)-(35) to produce
G4 We wish to analyze the dependence of GJ;,
on the momentum of the intermediate particle.
To achieve this we rewrite Egqs. (33)—(35) as fol-
lows:

(b 1Lyl cd) = [ ar[DT() - PT(R)], (38)
where
DT () = Z(thled)(kl —|E)akIGleh)
(39)
NOEDD fdk’(hb |G |kd)(E 1B | B")ak' |G I ch),
h (40)
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FIG. 12, The contributions to some GI, matrix ele-
ments as a function of the particle momentum. It shows
that the main contribution comes from moderate momen-
tum components.

and B is defined in Eq. (32). Clearly DT(k) is just
the integrand of the direct term in Eq. (34). Since
B is not diagonal in plane-wave representation,
the Pauli term in Eq. (35) is dependent in a sym-
metrical way upon a pair of wave numbers one of
which must be integrated in order to express the
Pauli term in terms of a PT(R) integrand which
may be combined with DT (k). In Tables V and VI
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FIG. 13. The contribution to some GL,; matrix ele-~

3y

ments as a function of particle-hole excitation energy.

TABLE VII. The particle-hole angular momentum breakdown. In each block the first
number is for G,,;, and the second, G3pfh. Each Gy, breakdown value is actually the sum
of contributions from all particle states with various radial quantum numbersz=0, 1, 2...,
and each G, p'fh breakdown value is the sum of the contributions from all the particle states

with different momenta.

Hole states

Tabedd Particle states
144440 S1/9 dgfg - ds/y &1/ 2 89/ 2 i11/2
0s 0.026 —0.291 ~0.038 —~0.017 0.026 0.122
12 0.012  —0.134 —~0.016 —-0.011 0.019 0.099
270 P32 Is/2 S/ 2 Ryt o hyif 2 J13/2
o 0.003 0.025 —0.327 0.061 0.171 ~0.017 0.264
32 0.001 0.013 -0.165 0.032 0.128 -0.012 0.221
® ~0.047 -0.000 -0.346 0.001 0.051 0.066
/2 —0.027 —0.001 —0.176 0.003 0.039 0.049
155550 S1/2 dy/,
0 -0.151 0.475
/2 —0.065 0.293
P1/2 P32 Sst2
® 0.108 0.045 - 0.300
32 0.057 0.029 0.201
o —0.007 0.108
V2 0.003 0.057
- 166660 Si/2 dy/s ds/g 81/2
0 0.065  —0.032 0.044 0.068
/2 0.028  —0.021 0.047 0.048
bi/2 P32 Ts/2 fi/2 hosa
® ~0.023 0.124 0.068 —0.267 0.098
52 —~0.009 0.059 0.035 —-0.122 0.073
o 0.006 0.054 —-0.012 0.200
Y2 0.005 0.027  —0.009 0.135
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we list the value of DT(2) — PT (%) for 12 Gauss
mesh points. These tables summarize the con-
vergence behavior of the core-polarization dia-
gram upon the excitation of the particle in plane-
wave propagation in complete analogy to that of
Tables IIT and IV for harmonic oscillator propaga-
tion. As an example we consider in Figs. 12 and
13 the behavior of three 7'= 1 matrix elements
which exhibit slow convergence in both plane-wave
(Fig.  12) and oscillator (Fig. 13) propagation. It
is seen that the behavior shared by both 144440
and 166660 in the first 67w excitation is mirrored
in their strong oscillation in the first 2 fm™ of
momentum space. By contrast the monotonic be-
havior of 155550 in oscillator space is reflected
in a smoother behavior in 2 space with a concen-
tration of strength in the neighborhood of 3 fm™,
Despite these examples of similar behavior in the
two representations and many others that can be
extracted from Tables II, III, V and VI, it should
be remembered that the oscillator wave functions
are quite spread out in momentum space and thus
sample the available excitation energy of the par-
ticle in very different ways. We may point to
cases like 044445, 046464, and 055661 where the
apparent rapid convergence in oscillator repre-
sentation is seen to reflect strong cancellation
when looked at in momentum representation.

A more detailed comparison of the three ma-
trix elements compared in Figures 12 and 13 is
given in Table VII, where the contribution to each
of these is broken down according to the hole and
angular momentum of the particle present in the
intermediate particle-hole excitation. In each
case the upper number refers to G,,,, and repre-
sents therefore a sum over the principal quantum
number 7z of the particle state. The lower num-
ber refers to contributions to GJ;, and therefore
represents an integration over % of the particle
state fixing the value of I and j of this state.

- Arranged in this way the excellent correlations

of the columns of Table VII in sign and relative
magnitudes merely reflects the dynamical corre-
lations of the Reid soft-core potential which are
independent of the choice of intermediate state
propagator. The comparison of different rows of
Table VII reveals a general suppression of the
contributions to G, relative to those to G,,;, and
this is principally reflecting the difference in the
propagators in the two cases.

We further note a general suppression of the
contributions in Table VII when the intermediate
state has / and j quantum numbers identical with
those of a hole state. These are the only angular
momentum channels where the Pauli term, Eq.
(35), will make a contribution to GZ,,. In Table
VIII we list separately the “direct term” of Eq.

TABLE VII. Cancellation of the direct and Pauli terms
[see Eq. (33)] when the particle is in s or p states. In
each block the numbers shown are (1) direct terms of
G3pfh’ (2) net values of G;ﬁh, (3) net values of Gy
Note that the net values (for either G sy or Giy) are
very small compared with the direct terms, so we say
that the direct term and Pauli term are largely cancelled
when particle is in s orp state.

TabcdJ  Hole state Particle states
S1/2 by/2 b3/2
-0.571
0s4/4 0.012
0.026

-0.194  —0.980
144440 03/ s 0.001  0.013
0.003  0.025
-1.068  —0.159
®y/2 -0.027  —0.001
-0.047  0.000
—-0.638
0sy/9 —0.065
-0.151
0.409 —0.933
155550 03/, 0.057  0.029
: 0.108  0.045
-0.344  0.409
®1/2 0.003  0.057
—0.007  0.108
-0.317
0sy/9 0.028
0.065
-0.165 —1.435
166660 03y -0.009  0.059
' -0.023  0.124
—0.147 -0.091
/2 0.005 0.027
0.006  0.054

(34) and the “direct-Pauli term” of Eq. (33) as
the first two rows of data in Table VIII. The last
row repeats the contribution to G,,;, of Table VIL
We see that the direct term is very large and that
the cancellation between direct and Pauli terms is
almost complete as reflected in the smallness of
the second row of numbers. (Note that the num-
bers in the last row are also quite small, and
hence similar cancellation also takes place for
Ggpine) Application of the Tsai-Kuo procedure in
Eq. (31) allows exact treatment of the one-body
Pauli operator and Table VIII shows that exact
treatment is important in this case.

We turn next to a summary of all the various
calculations of the sd-shell matrix elements of
the effective interaction which are listed in
Tables IX and X for T=1 and T = 0, respectively.
In order, we show in the first three columns the
calculations of G, of Eq. (6) in which the inter-
mediate particle sum is truncated by retaining
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TABLE IX. The T = 1 three-particle—one-hole core-polarization rhatrix elements for the

1s0d shell,
1 2 3 4 5 6 7 8
Gy Compound spectra
2w 2w 2 Iiw All All Fig. Fig.

Tabedd Kuo VSW present VSW present T(c) 7() G 35};

144440 -0.731 -0.710 —-0.868 —0.085 —-0.267 —-0.392 -0.091 0.074
144442 0.061 0.054 0.066 0.349 0.367 0.301 0.247 0.259
144444 0.402 0.422 0.503 0.600 0.675 0.634 0.450 0.364
144452 -0.235 -0.210 -0.306 -0.241 -0.336 -0.324 -0.203 -0.161
144462 0.055 0.065 0.100 0.056 0.082 0.085 0.104 0.028
144464 —-0.294 —0.283 -0.360 -0.313 —-0.39%4 -0.386 -0.260 -0.186
144550 —-0.242 —-0.225 —-0.383 —-0.249 —0.408 -0.381 -0.207 -0,203
144562 —0.243 -0.269 -0.354 -0.327 -0.420 -0.397 -0.278 -0.211
144660 —-0.5672 —-0.597 -0.711 -0.583 -0.707 -0.721 —~0.388 -0.365
144662 —-0.249 —0.369 —0.402 -0.365 —-0.399 ~0.408 ~0.258 —0.189
145452 -0.034 -0.,040 —0.044 0.154 0.143 0.103 0.105 0.135
145453 0462 0.523 0.670 0.798 0.948 0.874 0.647 0.509
145462 0.015 0.060 0.019 0.222 0.177 0.136 0.123 0.120
145463 -0.025 -0.013 -0.033 0.010 -0.014 = -0.017 0.002 0,006
145562 -0.059 -0.031 -0.121 —0.100 -0.187 -0.162 -0.095 —0.116
145662 0.043 0.127 0.084 0.177 0.131 0.120 0,094 0.055
146461 0.209 0.205 0.221 0.337 0.372 0.333 0.143 0.221
146462 0.210 0.216 0.229 0.505 0.514 0.437 0.281 0.330
146463 0.537 0.513 0.656 0.611 0.756 0.735 0.491 0.388
146464 0.413 0.604 0.596 0.806 0.787 0.735 0.519 0.408
146561 0.071 0.108 0.130 0.293 0.311 0.259 0.219 0.181
146562 -0.091 —0.106 —-0.144 -0.158 —0.193 -0.176 —-0.156 -0.102
146662 -0.197 -0.191 -0.230 -0.098 -0.135 -0.168 —-0.097 -0.046
155550 0.146 0.144 0.153 0.845 0.878 0.668 0.557 0.575
155660 —0.135 -0.121 -0.212 -0.162 —-0.247 -0.219 -0.127 -0.111
156561 0.546 0.604 0.722 0.811 0.918 0.873 0.613 0.487
156562 0.334 0.422 -0.454 0.757 0.780 0.692 0.558 0.427
156662 -0.119 —-0.099 -0.161 -0.115 -0.181 -0.170 -0.110 -0.094
166660 -0.312 —0.168 -0.306 0.580 0.392 0.171 0.263 0.296
166662 0.414 0.429 0.491 0.670 0.717 0.652 0.439 0,390

only the 27w excitation. These results are, re-
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cording to Egs. (33)—(35) but with the single par-

spectively, those of Kuo,® VSW,® and the present
calculation. The converged values of the oscilla-
tor sum for G,,,, of VSW and the present calcula-
tion are displayed in columns 4 and 5 of Tables
IX and X. In columns 6 and 7 we present the re~
sults of the compound spectra treatment of the
intermediate particle state as was discussed in
Sec. II and illustrated in Fig. 7. Finally in column
8 we tabulate the results for G, of Eq. (11) in
which all intermediate particle states are treated
in plane-wave propagation.

To be specific concerning the compound spectra
calculations, the results of column 7 in Tables
IX and X are computed in the following manner:
We compute G, according to Eq. (4) but the sum
over the intermediate particle states is restricted
to the three orbitals of the 1s-0d shell. To this
partial sum for G, ,, we add G, computed ac-

ticle projection operator p in Eq. (32) now pro-
jecting onto the six orbitals of the 0s, 0p and 1s-
0d shells. In this way the intermediate plane-wave
sum for the highly excited states in GJ;, is prop-
erly orthogonalized to both the core states as well
as the low-lying valence states we have chosen to
treat in oscillator representation. The results of
column 6 in Tables IX and X are computed in like
manner except that the four orbitals of the 1p-0f
shell are now also included in the partial sum for
Ggp1n and therefore in the definition of § used in
the computation of GL,, which is then added to
G3D1h'

The overall effect of the core-polarization dia-
gram can be most easily summarized by look-

ing at the shifts in the centroids of various 7T'J
groups of levels due to the inclusion of core polar-
ization. For example, some shifts in centroid
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TABLE X. The T = 0 three-particle—one-hole-core-polarization matrix elements for the

1s0d shell.
1 2 3 4 5 6 7 8
N Gipin Compound spectra
27w 2fw 2k w All Al Fig. Fig.

Tabedd Kuo VSW present VSW present 7(c) 7(b) G3pTlh

044441  -0.251  -0.387 —0.358 —0.280 —-0.253 -0.256 —-0.132  -0.046
044443 0.092 0.111 0.187 0.146 0.231 0.228 0.169 0.123
044445  —0,087 —0.108 —0.033 —0.026 0.053 0.032 0.060 0.029
044453 —0.141  —0.194 -0.176 —0.236 -0.217 —-0.204 -0.142 -0.095
044461 —0.058 -0.021 —0.108 —0.039 -0.143 -0.137 -0.072 -0,102
044463 0.235 0.297 0.325 0.330 0.344 0.344 0.245 0.163
044551 —0.146 —-0.208 —0.210 —0.077 -0.079 -0.114 -0.028 0.002
044561 -0.274 -0.384 —0.418 -0.252 -0.287 —-0.330 -0.179 —0.089
044661 -0.496 —0.535 —0.552 —0.553 -0.578 -0.572 -0.413 —0.269
044663 0.206 0.242 0.312 0.276 0.340 0.337 0.210 0.148
045452 0.102 0,150 0.238 0.375 0.449 0.393 0.308 0.241
045453 -0.267 —0.342 -0.301 -0.502 = -0.452 -0.398 —0.356 -0.205
045462 0.088 .0.059 0.100 0.064 0.102 0.100 0.085 0.057
045463 ~0.042 -0.006 —0.047 -0.016 -0.050 —0.058 -0.017 -0.023
045562 0.124 0.095 0.005 —0.061 —0.147 -0.104 -0.083 —=0.119
045663 ~0.049 —0.009 0.027 0.044 0.080 0.062 0.056 0.032
046461 0.207 0.202 0.403 0.554 0.79%4 0.683 0.499 0.428
046462 0.056 0.151 0.240 0.222 0.331 0.304  0.243 0.166
046463 0.264 0.294 0.373 0.473 0.550 0.505 0.334 0.287
046464 0.210 0.165 0.143 0.189 0.164 0.155 0.077 0.091
046551 —0.295 -0.349 -0.460 -0.450 -0.573 -0.545 -0.366 -0.293
046561 0.101 0.121 0.195 ~0.068 0.020 0.066 0.010 —0.046
046562 0.349 0.358 0.400 0.498 0.531 0.503 0.341 0.277
046661 0.245 0.270 0.276 0.711 0.696 0.563 0.461 0.372
046663 0.247 . 0.325 0.326 0.420 0.415 0.391 0.279 0.201
055551 0.166 0.165 0.132 0.493 0.456 0.357 0.299 0.277
055561 0.278 0.272 0.238 0.660 0.618 0.521 0.353 0.383
055661 0.166 0.282 0.305 0.149 0.167 0.205 0.124 0.050
056561 0.171 0.105 0.215 —0.084 0.045 0.098  —0.005 -0.001
056562 0.235 0.266 0.281 0.452 0.451 0.421 0.342 0.248
056661 -0.115 . —-0.074 —-0.132 —0.090 -0.141 -0.142 -0.115 —0.039
066661 -0.036 0.007 ~0.036 0432 0.364 0.236 0.210 0.257
066663 0.052 0.074 0.080 0.173 0.170 0.137 0.141 0.076

energies (in MeV) are as follows: (TJ=01; 0.071,
0.281, 0.224, 0.174, 0.183), (7J=03; 0.085, 0.125,
0.118, 0.072, 0.070), (7J =10; -0.340, 0.334,
0.149, 0.243, 0.315), (7J =12; 0.239, 0.504,
0.437, 0.326, 0.308). In each case the five num-
bers refer to (present 27w, present G,,,, Fig.
7(c) compound spectra, Fig. 7(b) compound spec-
tra, GI,,), respectively. Thus the converged
value of the core polarization is seen to generally
give a repulsive shift to-the centroids relative to
that of the 27w calculation, However, with the
notable exception of the T7J =10 case, it is found
that this shift is reduced as we progressively

make the transition from oscillator to plane-wave
propagation for the intermediate particle. In

fact the TJ = 10 case is the only case in which the
centroid of a JT group of levels using GZ,, does
not lie well within § MeV of the centroid using

the pure 27w approximation for G,,,,. I is in this
sense that we find the VSW effect to be somewhat
weakened, but none the less important, by the use
of plane-wave propagation.

We conclude by presenting in Figs. 14 and 15
the obligatory spectra for *°0 and °F using each
of the present calculations of core polarization in
combination with the G-matrix elements for the
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FIG. 14. The spectra of 130,

valence states to produce effective interaction
matrix elements. We note merely the relative
stability of the level structure against changes in
the method of calculation of the core polarization.
Again the TJ = 10 levels prove exceptional. Cal-
culations with 27w G, alone yield results in con-
siderably better agreement with experiments.

The inclusion of high energy particle excitations
significantly reduce the overall effect of the sec-
ond-order core-polarization diagram, as was
found by VSW and the present work. How to amend
this situation is clearly of interest and importance.
There is room for the influence of higher order
core-polarization processes such as exchanges of
RPA phonons between valence nucleons. There is
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FIG. 15. The spectra of '8F,

the possibility that a different nucleon-nucleon po-
tential model, such as the Paris potential'” and

the Bonn potential,!® may suppress the effect of
these high energy particle excitations. We feel
that there ought to be some mechanism which would
restore the much needed core-polarization contri-
butions to the effective nucleon-nucleon interac-
tion in nuclei.
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