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Treatment of the Schrodinger equation with a nonlocal nonsymmetric potential*

T. Sasakawa

Department ofPhysE'cs, Tohoku University, 980 Sendai, Japan

T. Sawada

Department ofApplied Mathematics, Faculty ofEngineering Science,
Osaka University, 560 Toyonaka, Japan

(Received 21 October 1977)

A method for expanding a nonlocal, nonsymmetric potential as th'e sum of separable terms is presented.

The method of calculating the bound state and the scattering amplitude is described. A numerical example

of the nonlocal potential related to n-d elastic scattering is given.

NUCLEAR REACTIONS Method for calculating a nonloca1, nonsymmetric po-
tential, with an example.

I. INTRODUCTION

In the (energy independent) optical model, ' in
the resonating group model, "' and in the elastic
n-d scattering problem, ~ we meet with a nonlocal
nonsymmetric potential. Although a method for
solving the Schrodinger equation in such a poten-
tial has been proposed, ' it has not been shown to
be practical as yet.

Recently, we have suggested another method, '
in which the nonlocal nonsymmetric potential
U(x, v') is divided into a real symmetric part and
a real antisymmetric part which is equal to i=a'-1
times a Hermitian part. The eigenfunctions for
each part are defined, and U(r, w') is expressed
as the sum of separable potentials in terms of
these functions. For a real symmetric kernel, the
method of calculating the eigenfunctions has been
well established. However, for a Hermitian ker-
nel, the eigenfunctions have not been given much
consideration in the literature. In Ref. 6, we have
defined these functions and proposed a practical
method of calculating them.

In the present paper, we present a more elegant way

of computing the eigenfunctions and their eigenvalues
for the Hermitianpartof V(r, x'). In Sec. II, we de-
scribe the method of separable expansion. The real
symmetr ic part is treated the same way as in Ref. 6.
However, the treatment of the &ermitian part
given here is new and has not been discussed any-
where else to the authors' knowledge. The separ-
able expansion of U(x, r ') facilitates the calcula, —

tions of various processes a great deal, if the
number of separable terms is not too large. The
bestway, then, is to express the main part of
U(r, x'} as the sum of a few separable terms, and
treat the remaining part of U(x, x') as perturba-
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tion. The process is explained in Sec. QI for the
calculations of bound states and scattering states.
In order to demonstrate the feasibility of the meth-
od, in Sec. 97, we give as an example the approxi-
mation of the nonlocal potential that we encounter
in the n+ d scattering problem in terms of a few
separable terms.

II. SEPARABLE EXPANSION

I,et the real, nonlocal, nonsymmetric potential
V(r, r') be divided into two parts,

where the symmetric part U~(r, r ') and the Hermi-
tian part U„(r,x') are defined by

and

U„(r,r') =-,'i[v(r, x') —U(r', r)] .

Since U~(~, x'} is real symmetric, we can easily
obtain the maximum eigenvalue ~~, and its eigen-
function g, ,(x),

U x, x' x' dr'=X (4)

by Rayleigh's method. ' We then construct the
symmetr ic matrix

U~ '(r, x ') = U~(x, x') —X~,g~, (x)gg, (r ')

and obtain the second eigenvalue and eigenfunc-
tions, and so forth. Generally, from
96
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U',"'(r, r')= V, (r, r') g ~, „«,„(r)q,„(r'),
Equation (11) is obtained from Eqs. (3) and (8).
The function pz „(r)is orthonormalized as

we obtain Xs „„andgs „„(r)by solving the equa-
tion

« „(r)y~ (r)dr= 6„„.
(~)

' Us '(r r')&s, s+ (r'}dr'=~s, sr+ &s, s+ (r) . (7)
Further, the identity

H' n + H' m + d+
The calculation is done very easily. So far, the
method is essentially the same as that described

. in Ref. 6. However, we note that the eigenfunctions
used in Ref. 6 are the Sturm-I. iouville functions,

Govsgs „—-Xs „(trs„,for negative energy.

For positive energy, we must use (PG, (6': the
principal value of Cauchy) in place of G, . The
function (trs „(r)thus depends on energy, while
the function Ps „(r)does not. This is one of the
advantages of the present paper compared with
Ref. 6. The functions (trs „arenormalized as

„rU s, r' „r'chal'=5

while the functions gs „(r)are orthonormalized as

~en S & nNt

holds for all n and m.
Finally, making use of the above properties, we

see that U~(r, r ') can be expanded as

v„(r,r') =g ~„,.[yz,.(r}y« .(r')
-y*„(r)y „(r')]

(Im[(((r„„(r)]Re[/~ „(r')]
—Re[y~, „(r)]1m[A~ „(r')]]

(12)

(Re: the real part; Im: the imaginary part. )
Therefore Eq. (1) is expanded into the sum of sep-
arable terms

Vslsr, =~s, 4s,
Then

(8)

Thus the calculation of. gs „(r)[Eq. (7)] and its
normalization are more easily done than for
gs „(r).This is another advantage.

For handling the Hermitian part, we proceed
as follows, making use of the special properties
of U„(r,r') (This p.art is new, and has not been
described in Ref. 6.)

To the Hermitian matrix U„(r,r'), there exists'
a set of real eigenvalues (A.„„jand (complex)
eigenfunctions ((tr„„j,

Vsu( r')=Z ~s, &s, (r)&s, (r')
M

+2K~ dim[4 .(r)]Re[A .(r')]
nt-I

—Re[(tr„, (r)]1m[cd&„(r')]j.

(13)
In Eq. (13), we have stopped the sum over n and

m at suitable numbers N and M. We treat the
rest,

V(r, r') v(r, r')=-—v„,(r, r'),
VH AHrm sr mar m

where U„'is defined by

rr„*(rr')= f r„( ')r(,rrr rr)rrrr, '(10)

as perturbation. 1V and M must be so chosen that
the perturbative calculation may converge. In
concluding this section, we note that all quantities
in Eq. (13) are real. This property facilitates
further calculations.

Since U„'is a real symmetric matrix, it has real
positive eigenvalues (A,„'jwhich we can obtain
numerically. Once we obtain (&„'j,the eigen-
values jA.„„jof U„(r,r'), and ((t(„jof Eq. (8)
can be found.

Now, if (p„„jis the set of eigenfunctions be-
longing to the eigenvalues f&„j,the set ]Ps« „j
belongs to the eigenvalues (-A„jsatisfying

vela, =-~sr, 4'*a,

III. PERTURBATIVE CALCULATIONS OF BINDING ENERGY

AND SCATTERING AMPLITUDE

We express Eq. (13) simply as

(15)

For negative energies, we solve the bound-state
problem
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g=G, Ug .

By Eqs. (14) and (15), Eq. (16) reads

(16)
&n; I(& —Q~gMO(nial(I»= ngl 1 G ly (26)

j 0

4=G.Z~; I &;&(n; IP&+G.vt . (17)

Treating GGV as a, perturbation, Eq. (17) is ex-
pressed as

We put ()l, I g&, found by solving Eq. (26), into Eq.
(25) a,nd then g into Eq. (24) to obtain the ampli-
tude.

For positive energies G, is complex, which may
be expressed as

G, Z& I&&&n;I4&.
0

1 = 1+ GOV+ GOVGOV+ '
0

(19)

The binding energy is calculated by solving the
equation

Here the operator (1 —G,V) ' must be calculated
by the expansion

G, = ——
I
sinkr&(sinks ' I+pG,

with

1
(P6 = ——coskx& sinks& .

k

The operator

1
G = Go Go+ GoVG

0

(27)

(28)

(29)

(q,. I g& = QM, ,A, (q,. I g&,

where

M, , = ()7,.
I

G, l(,.& =QMI,".),
1 Go V 17o

M,'l'= « l(G,V)" G, I &,& .

(20)

(21)
1

1 + (PG()V+ (PGOV(PGOU +
0

(30)

that appears in M, ~ of Eq. (26) is calculated in the
following manner:

We assume that the potential V defined by Eq.
(14) is sufficiently weak so that the perturbative
series

Once the binding energy is obtained from Eq. (20),
we can find the vectors ()7,. I p& also from Eq. (20).
These vectors are used in. Eq. (18) to obtain the
wave function of the bound state.

For positive energies, if we let the initial state
be (t&, the SchrMinger equa, tion reads

(= (I)+ G, U(

converges. We use Eq. (27) into Eq. (29) to obtain

G= G, ——lsinkr)( irlsv n)). G(3()
1 z

1 —(PGOV

Multiplying by (sinkxlV on both sides of Eq. (31),
we find

= 4'+ Go Q ~
I «&&%1(1'&+G.V& ~ (23)

1
(sinks

I
VG =

1+ (i/k)(sinkr I V[1/(1 —(PGOV)] sinks&

For simplicity, we restrict ourselves to s wave.
(The generalization to other partial waves is
straightforward. ) The scattering amplitude is
given by

1
&(sinkxlV G, .

0

Putting Eq. (32) into Eq. (31), we obtain

1T= -(smk~lUI(&.
k

From Eq. (23), we have

Gr G. basil(s&(n;IG&)
0 t

(24)

(25)

G = 1 —— sinksi 1

1

1+ (i/k)(sinks I V[1/(1 —(PGoV)] I sinks&

1s (sinkr
l V) G

0
(33)

First we should find (q,. I
((&& solving the set of linear

algebraic equations
This expression may be used for calculations of

M;, [Eq. (21)] in Eq. (26).
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IV. EXAMPLE

99

In this sec.ion, we shall examine the convergence of the series (21) for negative energies and that of the
series

o G,
~ g, &=+~,';.'(n)

0 n&
(34)

involved in M, & [Eq. (21)] of Eq. (26) for positive energies.
As an example, we shall take a nonlocal potential that appears in the n-d scattering [see Eq. (171) of

Ref. 4.],

8 4~3t-&2+&z~»z) ~

~(y„y.) =
3 x,dx, y(x,)V(x, )y([ (x,'+-,' (y,'-y, ')(]'~'],

~/3 I~2-(z~ » ~z t

t

where p(x) denotes. the wave function of-the deuteron, and V(x) denotes the phenomenological nucleon-
nucleon potential. Here, we take the potential fitted to the 'S, data, '

V(x) = Kc[-p, exp(-p, x)+p, exp(-2p, x)+ (p, —p, ) exp(-5p, x)]/x,

(35)

with

@t."=197.MeVfm, p, =3.1344, p, =1.5502 fm '
5.0

y, (fm}

7.5 10.0 12.5
P3 = 7.4616. (36)

The function xg(x)V(x) is large only at the region
near @=0. As a result, the main contribution
comes from the lower limit of the. integral (35),
and especially from a small region where g2 p Yz.
There is no other competing restriction. Since
the deuteron wave function extends to a large dis-
tance, the function Q[[~x,'+ —, (y,

' -y, ')
~

]'~' ] m Eq.
(35) vanishes very slowly along y, = —,'y, . There-
fore, (A) the potential is very long ranged. For
a set of points (y, +c, y, -2&) and (y, —a, y, +2m),
the lower li;mit of integration is

~ y, ——,y, + 2c
~

and

~y, ——,'y, —2e ~, respectively. Therefore, (B) the
potential is almost symmetric along the line of

y, = —,'y, . The nonlocal potential (35) is shown in
Fig. 1, which represents the above properties (A)
and (B). To perform the calculation effectively, we
make use of the fact that the potential (35) is al-

2.5

5.0

7.5

10.0

12.5

15.Q

TABLE 1. The matrix elements (41). The energy used is

(3f2/4fn)k'= —(6 —2.229) MeV, where 2.229 MeV is the

binding energy of deuteron.

17.5

20.0

—0.3604
-0.8061
—0.9985
—1.0899
-1.1343
-1.1561
—1.1668

8

9
10
11

12

13

—1.1721
-1.1746
-1.1759
-1.1765
-1.1768
-1.1770
—1.1771

22.5

25.O—

FIG. 1. The nonlocal potential (35). The dash-dot
line shows the line of y2=(2)y~.
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5-0
y, (tm)
7.5 10.0

TABLE II. The matrix elements (42). The energy used is

(3f /4ypg)f, =26 Me&.

5.0

1.8136
1.7228
1.7230
1.7224

1.7223

1.7222

7.5

10.0

12.5

15.0

17.5

20.0

225

25.9

FlG. 2. The potential Us pm n of Eq. (38).

most symmetric with respect to y2= 2y, . First,
we decide the mesh points such that (y„y,)
= (2m, n) in units of length a, where I and n are
some integers. Then we define the potential ma-
trix U, „consisting of these points and divide
it into two parts:

N

I". =g~'. ". ' (s=g=l), (41)

where MI~& is given by E(l. (22), are given in
Table I for (3''/4m)k'= -(6 —2.229) Me+. For
example, at positive energies, the matrix ele-
ments

almost exhausts the potential U. The eigenvalues
and eigenfunctions of U» „arecalculated by
E(ls. (4) and (7). For the matrix U, , „,the max-
imum eigenvalues is found to be A.s, =-0.6260,
which is not large. For. the Hermitian matrix,
the maximum eigenvalue of U„,„'is found to be
0.03283, thus the maximum eigenvalue of U„,

. is 0.1812. Since the contribution from the Herm-
itian part is rather small, we do not include it in
the approximate potential, but we approximate
U, „by

U.":; "=&...IC...(2m»&s. „(~)I. (39)

The approximate value of U,
„„

is so far unknown.
Calculating I(1&~;(2m+ 1)) by a numerical (four
point) interpolation from

I P~, (2m)), we obtain

Ub „x.)""""=&„,I(„,b, ))&t,„b.) I. (40)

This is to be used as U„„(r,r ') of E(l. (14). For
an example, at negative energies, the matrix ele-
ments

U2m, n Us&2m, n SUH~2my n & (37) . N

I(+&N Q ~(+&(n& (f ~ I) (42)
where Us is a real symmetric matrix and U„is
a Hermitian matrix defined by

Us
~ 2m~ n & (URm~ n+ an, m)

Us ~ „—&z(U~ „—U~„~).
Figure 2 shows the potential Us 2 „.The com-
parison of Fig. 2 with Fig. 1 shows that Us,

(36)

n=o

where M,'. ;.""' are given by Eq. (34), are given in
Table lI for (3h'/4m)k'=26 MeV. In both cases,
we see that the perturbative calculations of Jl/I,.

&

and M,'z' converge. This example shows that the
proposed method is very practical in handling non-
local potentials.
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