PHYSICAL REVIEW C VOLUME 18, NUMBER 2 AUGUST 1978

Hadronic atoms in momentum space

Yong Rae Kwon and F. Tabakin
Department of Physics and Astronomy, University of Pistsburgh, Pittsburgh, Pennsylvania 15260
(Received 9 February 1978)

A momentum space method for hadronic atoms is developed to incorporate relativistic, nonlocal, complex
hadron-nucleus interactions. The logarithmic singularity due to the Coulomb interaction has been treated by
Lande’s subtraction technique. Vacuum polarization, and both nuclear and pion finite-size effects have been
included in this momentum space method. Precision eigenvalues and eigenfunctions for the Schrodinger,
relativistic Schrodinger, Klein-Gordon (of various types), and Dirac equations have been calculated using a
rapid and convenient inverse iteration method. Reliability of this novel approach is confirmed by comparing
with parallel coordinate space methods. Several illustrative applications are made to simple pionic, and
kaonic cases to demonstrate possible applications. For example, it is found that: (1) to extract the pion size
from pionic atom data, energy shifts must be measured to an accuracy of better than 50 eV; (2) to
determine the form of Klein-Gordon equations appropriate for kaonic atoms, one needs a precision of better
than 20 eV; (3) the finite-range of the m-N interaction plays a non-negligible role and, therefore, should be
carefully included in the pion-nucleus interaction. More extensive applications of these methods are

suggested.

I:NUCLEAR STRUCTURE Hadronic atoms, momentum space formulation, and its:l
: applications.

I. INTRODUCTION

A momentum space methed for hadronic atom
studies is presented in this paper. The goal is to
develop precision methods for evaluating non-
static, nonlocal, and relativistic effects which
occur in hadronic -atoms. In those atoms, the
dominant effect is naturally Coulomb binding, but
strong interaction information can be extracted,
provided one has a flexible and precise numeri-
cal technique for including the basic hadron-nu-
cleon interaction. This interaction is made com-
plex to simulate the disappearance of the bound
hadron into various open channels. Adopting the
conventional assumption that a complex wave
equation describes the dynamics, one can associ-
ate strong interaction level shifts and widths with
complex energies.!”® In this way, detailed infor-
mation about rather complicated nonlocal hadron-
nucleus interactions at low energies can be reliably
extracted.

It is clearly more convenient to treat a Coulomb
interaction in coordinate, rather than in momen-
tum space. Why then do we advocate using mo-"'
mentum space, which is known to be unitarily
equivalent to a coordinate space description? The
hope is that such a solution, althoughunwieldy for a
Coulomb interaction, will provide a much simpler
treatment of the rather complicated strong inter-
action dynamics. Thus, by solving a Coulomb
problem in momentum space, a convenient and
flexible means for studying important relativistic
and nonstatic aspects of the basic hadronic probe
becomes available.

Several types of dynamic hadron-nucleus effects
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can be treated in momentum space, some of which
are presented in this paper. For example, the
finite pion-nucleon range, and associated off-shell
models can be included in standard pionic atom
studies. Also, the fundamental absorption mech-
anism, which is of paramount importance, can be
examined using nonlocal operators that go beyond
the over-simplified quadratic density models. For
kaonic atoms, subthreshold resonances are modi-
fied by nucleon motion, by A formation® in the
nuclear medium, and by nuclear binding effects,
all of which require treatment of highly nonlocal
operators and coupled-channel equations. Rela-
tivistic effects can also be treated conveniently

in momentum space; for example, the relativistic
kinetic energy operator, (p2+m2)Y2—m, is now
quite simple. Also, the Klein-Gordon and the
Dirac equations can be solved. The study of alter-
native relativistic equations and associated non-
static effects is of particular interest in funda-
mental systems, such as charmonium,* and bound
states of 7”7 -proton® and 7™ -u® systems. Thus
many physical applications are possible using the
methods presented here.

The task is therefore to cope with the Coulomb
interaction in momentum space, which has a
famous logarithmic singularity in each partial
wave. Analytic solutions of the point-Coulomb
problem are available, but do not help, since we
wish to include complex, strong interaction ef-
fects. Numerous studies of the Coulomb problem
in momentum space exist. One approach that
appealed to us. initially was to extend the Vincent-
Phatak matching technique” to bound-state prob-
lems. Indeed, that idea is a practicable ap-
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proach. However, a direct subtraction technique
due to Alexander Lande® proved to be the simplest
and clearest way to neutralize the singularity.
Thus a convenient numerical solution of a long
standing problem is now available, largely due to
a clever subtraction step and to the availability of
large computers.

In Sec. IIA, we present several wave equations
which can be used to specify the dynamics of had-
ronic atoms. These are expressed as discrete
matrix problems by the introduction of a care-
fully designed grid of momentum points. Next
(Sec. II B), the electromagnetic interaction, which
means the point-Coulomb interaction modified by
finite (nuclear and hadron) size and vacuum polar-
ization effects, is shown to be readily incorporated
into a momentum space numerical treatment. As
a sensitive test of the procedures, various stan-
dard hadronic atom cases, which have been al-
ready treated in eoordinate space, are presented.
This step provides contact with past work and
serves as a crucial test of the reliability of the
momentum space tack. Several examples of phy-
sical applications are then offered to illustrate
how one can include nonstatic effects, and as a
prelude to future extensive applications, some
of which are proposed inour concluding section.

II. MOMENTUM SPACE FORMULATION

A. Wave equations

What types of wave equations are appropriate
for specifying the dynamics of hadronic atoms?
For pionic and kaonic atoms, various types of
- Klein-Gordon equations are natural choices;
whereas, for, antiprotonic and sigmonic atoms,
the Dirac equation is suitable. In addition, a
relativistic Schrodinger equation can be defined
and easily treated in momentum space and can
‘be used for either bosons or fermions. The first
wave equation to be considered is the ordinary
Schrodinger equation, which serves to illustrate
the approach. Once that case is understood,
generalization to the relativistic Schrodinger, the
Klein-Gordon, the Dirac, and coupled-channel
equations follows straightforwardly. Later, we
discuss how to include the electromagnetic and
complex nuclear interactions.

Schrodinger equation

After angular momentum projection, we can
write the Schrodinger equation in momentum space
as a one-dimensional integral equation,

—’2’;¢,<p>+fo (b, )by ()PP D = Eby(P),
(1)

where p denotes the reduced mass, and p the
relative momentum. The interaction v;, which is
generally assumed to be complex, includes a
Coulomb potential plus a nuclear potential. The
nuclear finite size and vacuum polarization cor-
rections are also incorporated, as discussed
later.

With the properly chosen Gaussian integration
points p,’s and weights w,’s, Eq. (1) can be writ-
ten in a discrete form ’

2 Np
52 0u(bn) + 2 Vha0u(B) 0, =Ei(P), (@)

where v, =v,(pn, b,), and NP denotes the number
of integration points. These integration points
must be carefully designed to account for the nu-
clear and atomic dimensions (see Appendix A).
Introducing matrices, H,, = ($n2/21)0m + 04, D,
and ¢,,= ¢,(p,) for each I value, we write the
Schrodinger equation in matrix form,

HP=Ed. (3)
Note that & canbe non-Hermitian, in which case both
$ and E are complex. The imaginary part of E is
identified as one-half the level width; whereas,
the real part yields the level shift.?

A method for solving the above matrix equation
for bound-state problems with real, short-
ranged potentials has been developed earlier.®
We go beyond that work by including the long-
ranged Coulomb potential and a complex nuclear
potential. In addition, we employ an efficient
method for finding selected complex eigenvalues
and eigenfunctions (see Appendix B). The main
advantage of this inverse iteration method® is
that it requires only one inversion of a complex
NP X NP matrix, followed by simple matrix multipli-
cations. Consequently, less computing time and
core space is required compared with matrix
diagonalization methods.

We now show how this inverse iteration method
can be applied to other wave equations.

Klein-Gordon equation

Treating the hadron-nucleus plus Coulomb po-
tential, V=V, + V., as the fourth component of a
four vector, we obtain one version of the Klein-
Gordon equation,

(E-VPp=(pc®+uc)o. (4)
This equation can be written in the form
[p2c+v(Ep)]o=¢€9, (5)

where the binding energy is Eg=E — uc®. The op-
erator, v(Eg)=2(Eg+1c?)V - V2, depends on Ep,
as does the quantity e=Eg(Ep+2uc?). The energy



934 YONG RAE KWON AND F. TABAKIN 18

dependence of the operator v prevents Eq. (5)
from being a standard eigenvalue problem.

However, we can solve Eq. (5) using a simple
iterative technique. A reasonable first guess E,
is used in v(E,), and then Eq. (5) is solved by the
previously mentioned method. That process yields
an eigenvalue €, from which an improved eigen-
value E, is extracted from the relation €
=E,(E,+2pc?). With the newly determined E,,
v(E,) is defined again and the process is repeated.
For an initial guess, which is reasonably close to
the actual eigenvalue, it is found that three or
four iterations suffice to give an accurate eigen-
value.

The other version of the Klein-Gordon equation
is obtained by treating the hadron-nucleus poten-
tial V as a scalar and adding it to the mass term
in Eq. (4),

(E-V.Po=[p2c?+(uc®+Vy)le, (6)

where V, is the electromagnetic interaction. The
quadratic terms in Eqs. (4) and (6) are awkward
for a nonlocal potential. Therefore, approximate
forms are often used; namely,

(E-V)p=(p2c?+u’c*+2EVy)o (1)
and
(E=V . )Pp=(p2c®+pic*+2uc?Vy)o. (8)

However, it is not necessary to make the above
approximations, since the troublesome, nonlocal
quadratic terms can be handled using a matrix
approach. The V?¢ term, for a central V,, can
be written as a product of matrices

@ 1veie)= [ ) f (035, p")0s (", P)Pdp")

X ¢, (p)pap’

NP NP
- [ 4 2, Iy 2
_Z (Z ‘Um]-U inpj w/>¢npn wn
n=1

j=1

NP NP . -~ -~ ~y A
:Z ( ijan)(Pn:V (P’
n=1 i=1

where X;m,, =vl, piw, and ¢, =¢,(p,). The p,’s
and w,’s are again the Gaussian integration points
and associated weights (see Appendix A). The
above procedure permits us to investigate the
role of the usually neglected quadratic terms. We
can also test the two forms of the Klein-Gordon
equations, Egs. (4) and (5), or their approximate
forms, Eqgs. (7) and (8), by applying them to
kaonic atoms (see Sec. IIC).

Experimental work!! is underway to investigate
the appropriate form for a pionic atom wave equa-
tion. Theoretically, the correct wave equation

should follow from some future basic theory, which
we believe will require the methods developed
here. )

Dirac equation

In this section, we explain how the Dirac equation
including a complex, nonlocal nuclear potential
plus the electromagnetic interaction, can be solved
numerically in momentum space. This general
method can be applied to investigate various non-
static and relativistic corrections in antipro-
tonic, sigmonic, and muonic atoms. The basic
idea is to extend the previous discussion to a
larger matrix, thereby incorporating the extra
degrees of freedom. Indeed, this example demon-
strates that the solution of wave equations for
higher-spin particles merely requires adopting
larger matrices.

The Dirac equation in momentum space involves
a wave function with a large component, g,.(p),
and a small component, f,(p). Inthe j=1+3 case,
after angular momentum projection, the Dirac
equation can be written as a coupled set

[ Ul(p’ P’)g1+1(Pl)p'2dp' —Pcfz(P) :EBng(p) ’

0

f VUps 1(1’, P')fz(P')P'zdP' —2I~1C2fz(p) —PCng(P)
o

=Egfi(p), (9)

which, in a discrete form, becomes

Np
E v"inngla- 1( P")Pﬁw,, _pmcfl(pm):EBng(pm) ’
n=1

NP
Z vintllft(pn)pnzwn - Zﬂczft(pm) ‘megl+1(pm)

n=1

=Epfi(pn). (10)

"For j=I- 3, a similar form holds.

The coupled channel aspect of Eq. (10) can be
treated readily by simply constructing complex
supermatrices H and ¢ of dimension 2XNP:

-0 2w,y form ,m<NP

~Pm-npCOm-yp n» fOr m>NP,n<NP
Hmn=

—PnCOpy noyp, form<NP,n>NP

2 1+1 2
-2“'6' 6mn"{"vmn pn*NP Wy-np> form,n>NP

g gl+1(pm)) for m <NP
fi(p,), form>NP.
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The enlargement of the Hamiltonian matrix,
which is introduced to include the large and small
Dirac spinor components, is a simple extention
of the steps used to incorporate both real and
imaginary components of the wave function for the
case of a complex potential. To treat particles of
higher spin, a corresponding enlargement of the
matrix H would be required. With the above
supermatrices, a simple matrix eigenvalue prob-
lem follows, and the previously described search
method is now directly applicable. Because of the
coupled nature of the Dirac equation, the dimen-
sions of the complex matrices are 2xXNP, which
involves only a moderate increase in core and in
computing time. It is clearly straightforward to
set up the Dirac case, once one can handle the
Schrodinger problem in momentum space.

Relativistic Schrodinger equatibn

One way of introducing relativistic effects from
a phenomenological viewpoint is to invent a
relativistic Schrodinger equation. This equation
has a relativistic kinetic energy, but still involves
a potential,

[(P2c2+uzc4)”2—ucz+V]¢:;?¢- (11)

This type of equation appears in relativistic po-
tential formulations.'? In coordinate space, the
operator, (p2c?+pulc®)? - uc?, is awkward, to
say the least, but it is simply a number in mo-
mentum space. Therefore, the momentum space
calculation proceeds as smoothly as for the
Schrodinger equation. The only change is that the
p%/2u term is replaced by the above kinetic en-
ergy operator. This relativistic Schrodinger
equation is another viable candidate for a dynamic
treatment of hadronic atoms.

B. Electromagnetic interaction

Having discussed several possible wave equa-
tions, let us now consider the electromagnetic in-
teraction expressed in momentum space. Our
steps are to consider first the point-Coulomb
potential and then the nuclear finite size and
vacuum polarization effects.

Point-Coulomb interaction and Lande subtraction

It is natural to use a coordinate space approach
for purely local potentials. Why are we then in-
troducing a relatively difficult method to treat the
local Coulomb interaction? Interest in the mo-
mentum space formulation for the bound-state
problem has been stimulated by the existence of
hadronic atoms. To investigate various significant
nonlocal strong interaction effects found in had-

ronic atoms, a momentum space technique is
clearly desirable. To accomplish that goal, we
have to sacrifice some ease in describing the
point-Coulomb potential.

The hydrogenic atom problem formulated in mo-
mentum si)ace has a long history; see, for ex-
ample, early papers by Rubinowitz!® and Lévy.™
The subsequent historical developments cul-
minated in the Bethe-Salpeter equation for bound
fermions. The search for improved formulations
continues, motivated by recent developments in
the positronium and charmonium systems.* In
all of these developments, the main difficulty in
the momentum space treatment of a bound-state
problem arises from the long-ranged nature of
the Coulomb potential. This long-ranged aspect
causes a logarithmic singularity to appear in the
Coulomb potential matrix for each orbital angular

momentum [, ‘
N Zé pE+p >
v, (p, p') =~ vy Q, (“2—1);7— . (12)
Here, the Legendre function of the second kind,
Q;, is logarithmically singular at p=p’. This
singularity has recently been ovevcome by an in-
genious subtvaction technique oviginated by Lande.
His idea is to introduce an analytically integrable
quantity in the wave equation, in analogy to the
principal-value subtraction done for scattering
problems.®?® In particular, he introduces an
integral involving the Legendre polynomial in the
following steps:

A Ef v,(p, PG () prdp’
0

o

=f0 v,<p,ﬁ')[¢1<()’)p'2 '(f(’z))z]dp'

+0,(p)p? f P,(z Lapr, (13)
where z=(p%+p'?)/2pp’. Since the quantity inside -
the brackets in Eq. (13) vanishes linearly at the
logarithmic singular point of v,, the integrand of
the first integral in Eq. (13) equals zero at p=p’.
The second integral can be found analytically (see
Appendix C). Thus we can write a discrete form

of Eq. (13), '

NP
A:Z U:qul(pn)pnzwn
rouonnt[- 2 A (Omers U]

n*m

(14)
where S, is the analytically integrabie quantity,
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- (T ulpp) ., Ze® [ Quz) dp
sp= [ b ay-- 2 [ P b

(15)
There are no diagonal matrix elements of v, in
Eq. (14). The singularity has been cured. De-

fining nonsingular diagonal matrix elements of v,
at our convenience, )

1 X VW,
Ul(pmf .bm)= W [_21 P,[(pm2+17,,2)/21)mpn]

+‘Sl(pm)] ’ (16)

we can simplify Eq. (14):

NP
A= Z Ufnn¢l( pn)pnzwn ’
n=1
which is totally free of the original singularity.
The singularity has been isolated into Lande’s
subtraction integral, S;(p).

Having eliminated the singularity in the poten-
tial term, we can directly solve the eigenvalue
problem, since the Hamiltonian matrix is now
well behaved. The quadratic dependence of the
kinetic energy term gives no numerical difficulty
because of the faster fall-off of the wave function.
We checked the reliability of these steps by
performing calculations with various wave equa-
tions. Before presenting the results of our study,
we proceed to discuss how to include nuclear
finite size and vacuum polarization contributions
in a momentum space treatment.

Nuclear finite-size effect

The extended charge distribution of the nucleus
has an important effect on the energies of low-
lying atomic states. This effect is quite signifi-
cant for hadronic atoms, since the overlap of the
hadronic wave function with the nucleus is ap-
preciable. The Coulomb potential for an extended
charge is given by '

VFS(?)=_Ze2f d?'T”(—fL , Coan

-1

where the nuclear charge distribution p(¥) is nor-
malized according to [ dfp(f)=1. The Fourier
transform of Eq. (17) is particularly simple;
namely, the Fourier transform of the point-Cou-
lomb potential multiplied by the nuclear charge
form factor p(g),

Vesla)=-25 ”q(f!) : (18)

For a given pair of momentum variables, p and p’

b

we decompose Vyg4(g) numerically using Gaussian
integration,

2 T
vfs(p,p’)=——z—1—f—f ’;(—Z)P‘,(cose)sinede.
[s]

(19)

Since the integrand in Eq. (19) is well behaved
when p #p’, the integration can be done numerical-
ly with high precision. In the case of p=p’, care-
ful consideration is required, because that inte-
grand is logarithmically singular at 6=0. When
plg) is expanded near ¢=0, p(g)=p(0)+g*p(0)+ 2+,
the p(0) term dominates the value of the integral
for p=p’. Therefore, the diagonal terms in Eq.
(19) have the same logarithmic singularity as the
point-Coulomb potential, which we can handle using
Lande’s subtraction technique. Note that any type
of nuclear charge form factor may be readily
employed in Eq. (19) with nominal effort. Indeed,
we have used form factors for the uniform, the
Fermi, and the harmonic well distributions to
represent the nuclear finite size.

It is of particular importance that we can readily
generalize Eq. (19) to incorporate the finite size
and polarizability’® of the hadrons themselves by
simply muitiplying Eq. (19) by the appropriate
hadron form factor (see Sec. IV A, for some sam-
ple cases).

Vacuum polarization corrections

Vacuum polarization is well known to be signifi-
cant for atomic systems. Much work'® has been
done to develop coordinate space potentials which
incorporate the vacuum polarization irreducible
diagrams. Since hadrons are located quite close to
the nucleus, they are influenced by the strong
electric field of the nucleus; consequently, radia-
tive corrections for hadronic atoms are larger
than for electronic atoms. Of the two radiative
corrections, the self-energy and the vacuum po-
larization, the latter dominates in hadronic atoms,
contrary to the electronic atom case. It is there-
fore important to include the vacuum polarization
in our momentum space treatment.

For a nuclear charge distribution p(T), the
vacuum polarization potential to order aZa is
given by the Uehling potential”

V,(7)=-2Ze? f " atF, )

1771

x( [ @) expl-@/X) - 1))

20
where (20)
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F,(t)= <t22+3—1)(t2 1)p/z

and X, denotes the reduced electron Compton
wavelength. Observe that Vz(?) is a superposition
of Yukawa potentials, the Fourier transform of
which is trivial. Therefore we can write the mo-
mentum space expression of Eq. (20) in a simple
form,

Vo(q)=- % f:. dt F,(t) F%%)W . (21)

Finite-size effects are included by keeping p(q)
in Eq. (21). Higher-order vacuum polarization
potentials, as given in the literature, are of sim-
ilar structure. For example, to order a®Za, the
vacuum polarization potential in momentum space
is

f @t F\(8) ot Ay LU )P

V4(q) ==53 +(2t/x ¥

where
F,(t)= < )[H(t)w(t)]

13 7 2
_ 2 1/2 i
H(t)=-(-1) [54152 * 1087 T or

<3§2 + 32 > In[8#(# - l)ﬂ

+<ﬂ _2 5 —2—> Inf2+ (2 - 1)1/2]

G(t)=<§8t— - 5%) jtm ds(sf 7 11) In[s + (s? - 1)/2]

—(s® = 1)"/21n[8s (s% - 1)]>.

\ (23)
This form has been extracted by Blomqvist'® from
the irreducible diagrams representing vacuum
polarization as discussed earlier by Killen and
Sabry.'®

The integrands in Eqs. (21) and (22) are well
behaved; therefore, both integrals can be per-
formed numerically with high precision for a given
g. The integral in Eq. (23) can be shown to be
finite despite the singular integrand; here, one
needs to subtract its singular aspect and treat
it analytically before proceeding to numerical in-
tegration. The above vacuum polarization po-
tentials can be projected:for each / value, as done
in Eq. (19).

For a point nucleus, we can replace the charge

form factor, p(g) in Egs. (21) or (22) with 1. How-
ever, the effect of the nuclear finite size on the
vacuum polarization can also be included easily
using the steps described here. Moreover, the
effect of the finite size of the hadron itself on the
vacuum polarization can now be readily investi-
gated by simply multiplying Eqgs. (21) and (22) by
the appropriate hadronic form factor. :

III. TEST OF THE METHOD

A momentum space method has been discussed
which permits one to study various nonlocal ef-
fects that occur in hadronic atom theories. Be-
sides the significant advantage of handling non-
static effects, this momentum space formulation
has other useful features; for example, the method
includes the quadratic terms of the Klein-Gordon
equation and does not resort to a perturbation
method to calculate the nuclear finite size and
vacuum polarization corrections. The latter point
is important since such effects are not simply
additive. For example, the strong interaction
influences both the finite size and vacuum polar-
ization effects via a change in the wave function.
Before discussing interesting applications of this
method to nonlocal and relativistic effects, we
present some results that can also be calculated
in coordinate space. By comparing with the cor-
responding coordinate space results, we can es-
tablish the accuracy and the reliability of this
novel momentum space method.

A. Point-Coulomb interaction

To confirm the validity of Lande’s subtraction
method for handling the logarithmic singularity
of the point-Coulomb interaction (see Appendix C),
we first consider the Schriodinger, the Klein-Gor-
don, and the Dirac equations for a point-Coulomb
interaction in momentum space using various
meson masses. Numerical results obtained with
a varying number of grid points are given in Table
I along with exactly known energies As the per-
centile errors indicate, the logarithmic singularity
of the point-Coulomb interaction in momentum
space can be handled accurately using Lande’s
subtraction method. Note that relatively few grid
points are needed for very accurate and quite
stable solutions. For the Klein-Gordon and Dirac
equation, the accuracies obtained are comparable
to those found for the Schriddinger equation. The
calculated momentum space and coordinate space
wave functions are found to coincide (to better than
0.1%) with the analytically known values.



938 YONG RAE KWON AND F. TABAKIN 18

TABLE 1. Evaluation of the Coulomb energy in mo-
mentum space: a test of Lande’s subtraction method (all
energies are in keV).

Atomic state NP E % error
Schrodinger equation: E (exact) =—367.866

3d 20 —367.842 0.0065
(K~-325) 40 —367.866 0.0002
60 —367.866 0.0000

Klein-Gordon equation: E (exact) =—236.653

18 20 —-236.805 0.0660
(1=160)) 40 ~236.674 - 0.0088
60 —236.659 0.0027

Dirac equation: E (exact)=-280.912

9 20 -282.120 0.4300
(M--‘{())Ca) 40 -280.801 0.0400
. 60 —280.905 0.0029

B. Nuclear finite size and vacuum polarization corrections

To show the versatility of the present momentum
space technique, we calculated the finite-size ef-
fect for various nuclei using appropriate charge
distributions. We also calculated vacuum polar-
ization corrections to order ¢®Za including the
effect of nuclear finite size. QOur numerical re-
sults for pionic atoms are presented in Table II,
along with the charge density parameters for
Gaussian and Fermi distributions, as described
in Ref. 19. These momentum space results are
generally quite similar to published coordinate
space values. However, a precision comparison
with published results is difficult since the density
parameters and approximations used by various
authors are not always completely specified.
Nevertheless, the results in Table II, are stable,
physically reasonable, and in good agreement
with parallel coordinate space cases. Indeed, the
stability and accuracy suggests that the momentum

space technique can be applied to a broad range of
Coulomb bound-state problems.

C. Kaon-nucleus interaction

The motivation for developing a momentum space
technique is to incorporate the often complex, non-
static hadron-nucleus interaction. For example, it
is well known that for kaonic atoms the dynamics in-
volves coupled channels and subthreshold reson-
ances,32% which are highly nonstatic and affected
by nucleon motion. The methods presented here
are ideally suited for such problems. However,
to test the reliability of this method for a complex
nuclear interaction, we consider first a simplified
kaonic atom problem, using a local optical poten-
tial

2

Val) - g () (P20, (2
where we use @ as adjusted to fit the experiment
rather than taking it to be the K-N scattering
length; p(g) is the nuclear form factor [p(0)=1].
The strong interaction shifts and widths of kaonic
atom levels are given in Table III, for comparison
with those obtained by Koch and Sternheim.?* The
fitted values of the @’s and parameters for the
charge density in Ref. 21 are used for these cal-
culations. As the results clearly show, the co-
ordinate space results are reproduced in momen-
tum space. Furthermore, due to the greater flex-
ibility of the momentum space technique, we are
easily able to solve the various kinds of Klein-
Gordon equations using the above interaction.

The équation dependence of the strong inter-
action shifts and widths, for example, of the
(3d-2p) transition of the K~-8% atom is given in
Table IV. From this table, it is clear that the
inclusion of quadratic nuclear terms affects the
level shifts and widths only slightly. The largest
difference occurs in comparing the results using
Eq. (4) to those from Eq (6), where a level shift
difference of 5 eV and a width change of 18 eV
are found. These changes are negligible compared

TABLE II. Nuclear finite size and vacuum polarization corrections for pionic atoms. For
2¢, 1N, and 190, we used the harmonic well density including proton size and nuclear motion
as described in Ref. 19. For 328, ¥Ca, and °®Ni, the standard two-parameter Fermi distribu-
tion is used. All parameters are taken from Ref. 19. Nuclear finite size is included in vacuum

polarization calculations.

Density parameters EKG FS VP
State Nucleus (fm) (keV) (keV) (keV)
1s 2g a=1.64 —132.466 -0.897 0.642
1s uyn a=1.67 -180.773 —1.744 0.954
1s ie} a=1.76 —236.660 —-3.266 1.278
2p 32g c=3.26 t=0.59 —237.206 —0.027 0.777
2p 40ca c=3.64 t=0.57 —371.391 —0.119 1.352
2p 8N c=4.28 t=0.57 —~1730.975 —1.151 2.409
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TABLE III. Strong interaction level shifts and widths of kaonic atoms. The coordinate space
results are quoted from Ref. 21. The density parameters and approximations given in Ref, 21
are also used for the momentum space calculations.

Shift (keV) Width (keV)
Nucleus Level c a 7 space p space 7 space p space
2 " 2p 2.39 0.44 0.632 0.620 1.571 1.551
32 3d 3.20 0.59 0.516 0.503 2.346 2.317

to present experimental uncertainties, but serve
to illustrate the accuracy level required to as-
certain which Klein-Gordon equation is appropri-
ate.?*® The use of arelativistic Schrédinger equa-
tion yields results very close to those found using a
Klein-Gordon equation which treats the nuclear
potential as the fourth component of a four vector.
That Klein-Gordon equation [Eq. (4)] canbe derived
from the relativistic Schrodinger equation provided
one neglects the commutator term [V, (p3c?

+ u%e9)t/2]. Therefore our results explicitly dem-
onstrate that this commutator is indeed negligible
for the kaonic atom case.

D. Complex wave functions

Wave functions for the pionic and kaonic atom
cases are shown in Figs. 1 and 2. The complex
wave functions are first obtained in momentum
space (see Appendix B) and then subject to a
Bessel transform to generate these coordinate
space wave functions. The normalization was
made using f b(R)D(R)k?dR=1, which we believe
is appropriate for the complex states we con-
struct. That is, we interpret the states as pro-
jections of Gamow states. For a discussion of the
meaning of complex eigenvalue problems and their
associated normalization, we refer the reader to
Ref. 2. The effect of the strong interaction is
clearly seen in these wave functions; the same

TABLE IV. The wave equation dependence of the strong
interaction level shift (¢) and width (I') of the (4 f-3d)
transition of K ™-S% atom. V is the Coulomb potential
plus nuclear finite-size effect, and V is the kaon-nu-
cleus optical potential [Eq. (24)].

Equation € (keV) T (keV)

(1’2 VotV )¢=E ¢ 0.497 2.296
2u C N B

(E=V )¢ =(p%?+ p2ct +2EV )¢ 0.503 2.317
(E=Ve—Vy)ip=(p%c?+ pich)p 0.503 2.298
(E=Vo)P¢=(pPc+ et +2ucV)e 0504 2.318
(E =V )%= [p2c?+(pct+Vy)e 0.512 2.338
[VpEcT+ p2cd + Vo + Vylp=E¢ 0.502 2.299

pattern is seen as for wave functions displayed in

Refs. 1 and 20.

IV. ILLUSTRATIVE PHYSICAL APPLICATIONS
A. Effect of the pion finite size

It was previously asserted that the hadron
finite size could be included relatively easily us-
ing momentum space. Fortunately, the form fac-
tor of ‘the pion has recently been directly mea-
sured® yielding a rms radius of the pion
(r?,'2=(0.56+0.04) fm.

Is it also possible to determine the size and
perhaps the polarizability of the pion indirectly
from pionic atom shifts? To study this question,
we take the pion form factor to be of simple Gaus-

0.3+
Re ()
0.2 - $e
N
L2}
"w
X
o
(o)
- 0.l '
Im ()
| ! | ! I
0 | 2 3 4 5
r (fm)

FIG. 1. The Coulomb wave function ¢, (7) and the
pion wave function ¥ (#) of 2p state of ¥°Ca calculated by
using Eq. (26), with parameters given in Ref. 1. Wave
functions are normalized with the convention
J# (R)p (R)e%dR =1, as discussed in Sec. IID.
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| | L | |
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FIG. 2. The Coulomb wave function ¢, (#) and the
kaon wave function ¥ () of 2p state of 2¢ calculated
by using Eq. (24) with the fitted parameter @ = (0.44
+0.83¢) fm in Ref. 21. The same normalization conven-
tion is used as in Fig. 1.

sian form
Py (q) = exp(—(r *),4°/6), (25)

which gives the directly measured pion rms ra-
dius; then, we calculate the effect of the pion finite
size on the Coulomb energy. The level shift due

to the finite size of the pion is given in Table V,
for a range of nuclei. These pion finite-size

shifts vary from 4 to 5% of the shift due to the
nuclear finite-size effect, with a decreasing per-
centage effect found for heavier nuclei. This de-
crease is consistent with a variation given by
1(r?, /v, )A™?3, as follows from a simple radius
change estimate. The pion finite-size effect for
1=0 increases from about 6.4 to 8.7% of the
vacuum polarization correction. The increase with
nucleon number A follows the usual trend; that is,
the finite-size change is an increasing fraction of
the vacuum polarization effect for heavier nuclei.

TABLE V. Energy shifts due to pion size in pionic
atoms.

State Nucleus Shift (eV)
1s zg —41
1s Uy -74
1s 160 -120
2p 329 -2
2p 9ca -6
2p 58Ni —44

TABLE VI. Effect of the finite range of the pion-nu-
cleon interaction on shift and width of the (3d-2p) transi-
tion of 77-%2S atom.

Range Shift Width
(fm) (keV) (keV)
0.0 0.677 0.408
0.1 0.675 0.406
0.2 0.668 0.394
0.3 0.658 0.377
0.4 0.643 0.357
0.5 0.627 0.339

The level of precision required to reliably extract
information concerning hadron finite size is very

high, especially when one considers other uncer-

tainties in the hadron-nucleus interaction.'®

B. Finite range of the pion-nucleon interaction

Another application of the present method is first
to treat the standard pion-nucleus optical poten-
tial of the Ericson-Ericson form® in momentum
space, and then to extend it to include nonlocal ef-
fects such as arise from the short but finite range
of the pion-nucleon interaction. In momentum
space, the pion-nucleus optical potential can be
described as )

2n7 2 kEk'

21+1
x [tH,. (k") + (I + I)H,,,l(k,k')]) ,

VA, k") =~

(F,(k, k) +

(26)
where F,(%,%’) and H,,,(k, ') are double Bessel
transforms of F(v) and H(»), which are defined
as follows:

Fr)=b,Ap(r)+0,[Np, ) = Zp,(v)]+i(ImB,)A%*(r),

B G(r)
HO) =@ 360)
where

G(r)=c,Ap(r)+c,[Np,r) = Zp, )]+ i(ImC,)A%%(¥) .

The conventions follow those used by Backenstoss.!
It is relatively simple to extend this work to more
general density dependences.?* One needs only to
be very careful to obtain precise double Bessel
transforms, which is a manageable but nontrivial
task.

To mitigate the divergence for a large % of the
Kisslinger K-k’ term in the potential, we used a
cutoff form K+’ exp[—0?(k* +£/2)] with @ as a
parameter. This parameter corresponds roughly
to the finite range of the pion-nucleon interaction;
equivalently, it assures a bounded or unitary
pion-nucleon ¢t matrix. As an example, the level
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shift and width of the (3d-2p) transition of the
71°-S%% atom is tabulated against & in Table VL

A reasonable value for this range is 0.26 fm using
the p meson mass. At this value, one finds the
level shift and width change by 0.015 and 0.024
keV, respectively. The inclusion of such finite-
range effects illustrates one of the major benefits
of the momentum space approach as found earlier
for pion scattering®®; namely, to include such
finite-range effects and various off-shell models.
Several nonstatic, dynamic theories of the pion-
nucleus interactions, such as those based on iso-
bar doorway ideas®® or p meson exchange,® can
now be studied and tested in the pionic atom con-
text. Such studies are planned in later work.

V. DISCUSSION AND CONCLUSION

We have described a momentum space approach
for solving complex wave equations and demon-
strated its reliability and flexibility by several
examples. Many interesting questions remain
and we hope to stimulate interest in applying
these techniques to various basic problems. Our
view is to follow this work with detailed applica~
tions to pionic and kaonic atoms and to other sys-
tems. .

At this stage, we already have gained some in-
sight into the role of selected physical effects.
The finite hadron size does influence the level
shifts and widths in a manner consistent with
elementary considerations. Also, the sensitivity
to a variety of possible Klein- Gordon equations
has been examined. These studies indicate that to
extract hadron size, and perhaps hadron polariza-
tion information, we will need experimental pre-
cision better than 50 eV for pionic atoms. To
ascertain the appropriate wave equation from an
empirical viewpoint, one will need to achieve ac-
curacies of better than 20 eV for kaonic atoms.

The finite range of the pion-nucleon interaction
is seen to play a non-negligible role and should be
examined further using fundamental pion-nucléus
interactions. The absorption p*(r) terms can be
physically modified and general forms can now be
examined to probe the basic absorption of pions in
detail., For the charmonium problem, it is clear
that momentum space offers a useful tool that
might resolve some problems concerning relativ-
istic effects and the lepton production rates.*
Other interesting applications are to the basic
7T -proton atomic system,® to the 7°-u bound state,
to new isobar models for 7 absorption, and to the
NN systems.

An overriding issue is to validate the working
hypothesis that a complex wave equation stipulates
the dynamics.? Clearly, one can extract widths

6

and shifts in other ways; indeed, basic quantum
mechanical considerations suggest alternate pro-
cedures. Nevertheless, it might be possible using
coupled field theory wave equations and projection
operator methods to deduce that a complex wave
equation problem is the appropriate description.
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APPENDIX A: CHOICE OF GRID

The basic step one takes to numerically solve a
wave equation in momentum space is to write it as
a finite matrix equation by introducing a suitable
choice of discrete integration points and weights.
That choice is crucial. In coordinate-space treat-
ments, one merely selects suitably small special
increments for the well-delineated nuclear and
atomic regions to achieve stable solutions of the
differential equations. In the momentum space
case, the choice of grid is less convenient and
much care is required to assure stable solutions.

Nevertheless, to have the opportunity to examine
nonlocal, relativistic, nuclear interactions, it is
worthwhile to make the effort of carefully de-
signing discrete momentum points. Therefore,
despite the relative difficulty in selection of a
numerical grid in momentum space, it is important
to gain experience in making that selection. The
guideline for selection of grid points is simply
to tailor a mapping to place sufficient points where
the integrand of the wave equation is significant.

To accomplish this goal, we have designed the
following mapping which has the feature of giving
us control over the location of points based on the
nuclear and atomic dimensions. This is a sensitive
matter since the atomic and nuclear regions in mo-
mentum space are not as clearly separated as they
are in coordinate space. Many suitable mappings
zan be developed; however, we found the followmg
form to be particularly convenient:

C, tan(n/4)(1 +x,)
py= 1+(C,/Cs) tan(n/4)(1+x,) ’

for 0<p<Cg,

(A1)
and

Cytan(n/4)(1 +x,)
1+(Cy/Cy) tan(n/4)1 +x,) *

for Cg<p<Cs+Cy, (A2)

pi=Cs +
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where x,’s are standard Gaussian points defined
in the interval (-1,1). In the above, C, (atomic)
and Cy (nuclear) control the distribution of atomic
and nuclear points, respectively. Also Cg (size)
is related to the “nuclear size” and C, (p maxi-
mum) defines the largest p value associated with
the smallest spacial point. C, should be large
enough not to affect the numerical results. Typical
values for the pionic atom case are C, =0.02 fm™!,
Cy=0.3 fm™; Cg=0.1fm™, and C,,=10° fm™*. It
is often helpful to make these choices [ dependent
to directly include centrifugal effects.

APPENDIX B: INVERSE ITERATION METHOD

The momentum space approach to bound-state
problems with complex nuclear interactions is
made a viable numerical technique by an efficient
procedure for solving for selected eigenvalues and
eigenfunctions. For that purpose, an inverse iter-
ation method, as has been suggested to us by
Bardsley, is described in this appendix. Such an
approach provides a key to solving bound-state
problems for selected eigenvalues, since it re-
quires low core and little computer time.

The crucial steps are to introduce a good first
guess, €,, for the desired eigenvalues, and then
form areciprocal operator, B, = (H - €,)"!, which
involves the Hamiltonian H. It is possible to con-
struct the exact eigenvalue E, and its eigenfunction
|, by simple manipulations of the operator B,.
That procedure involves expanding an arbitrary
state |x2) in the complete set |,

I X:> :Z Cn'
n

and multiplying it N times by the known operator
B .

n

) = BY X =2 Co (B
- &= e [e 100+ 2 (%—';%—) "]

n'#n

—€,)"|Pped

(B1)

If the enefgy spectrum is nondegenerate, and €,
is close to E,, the above sum in Eq. (B1) will be
dominated by one term as N increases

IXﬁ> - (En - €n)-Ncn |¢n> .

(For a degenerate case, a linear combination of
states would be extracted.) The above abstract
steps can now be expressed in momentum space

Xn (p) = (E, - €,)"C,0,(p),

where we can visualize the momentum p defined on
a discrete grid.

In practice, we divide x¥(p) by its element with
maximum modulus to avoid a possible numerical dif-
ficulty in the iterationprocess. Defining sequences
x¥(p) and ¥ (p) by

Nel( p\= B TN SNaL( LY Xp " (p)
X H(p)=Bx, (p), ‘X,, (») -'m’
(B2)
we have, asN increases,
1wy 0(p)
max[x} (p)]= E.—<, n(i))—m-

Hence the desired exact eigenvalue and eigenfunc-
tion can be extracted:

E,=¢€,+1/max[x) (p)], (B3)
and

Da(p) =N XN (P), (B4)

where N, is determined by normalization. The
above result is independent of the choice p and of
the arbitrary starting function |x,°,). Usually, a
stable eigenvalue is found with N>4. A particular-
ly appealing feature of this approach is that the
initial guess does not need to be very close to E,.
Note that the above method is valid even when
H is non-Hermitian and therefore can be used to
obtain complex eigenvalues. The computer storage
requirements involve mainly the complex matrix
B,, with the only algebraic steps being repeated
matrix multiplications. One can also readily
generalize the approach to degenerate spectra.

APPENDIX C: EVALUATION OF LANDE’S SUBTRACTION
INTEGRAL

The logarithmic singularity due to the long-
ranged Coulomb interaction has been coped with
by invoking Lande’s subtraction idea, Lande’s
observation is that a logarithmic singularity is
integrable, so that one can complete the integral
in Eq. (15).

Recall that the subtraction integral S, is

_%LI.’_L_ s__Ze (" Q=) ap
Si(p)= f P,(2) m Jo Pyz) p’’
(C1)

where Z = (p®+p’?)/2pp’. The relation
@)=, (L)W, ,(a),

where

Winle)= 2 5

P‘o_l(Z)Pl_,l (z) ’
17a1 '

with W_, =0, permits us to isolate the logarithmic
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singularity. Inserting this expression into Eq. (Cl)

we have
L (T (bt dp’
Si(p)==7 7 [2fo ln(p—p’) b’
- ap’
1
f ——L——P A ] (C2)

The first integral in Eq. (C2), which involves the
crucial logarithmic singularity, is done analy-
tically,

f <” *P'> B (c3)
o p-p'/ P
The second integral in Eq. (C2)
(2) dp’
Wi, (2)
f e (c4)

has a nonsingular integrand since z >1. It can also
be done analytically for each I value; for example,
I,=0, I,=1, I,=(3)"/?, and I,=(8+5v10)/18. How-
ever, for higher [ values, the analytic result is

TABLE VII. Evaluation of the Lande’s subtraction in-
tegral.

L=l T Wiy [P p' f2pp] dp!
o PloZ+p D /2pp’T p’

l I 1 I

0 0.000 000 6 1.436 975
1 1.000 000 7 1.454790
2 1.224 745 8 1.468 421
3 1.322 855 9 ©1.479187
4 1.877702 10 1.487 905
5 1.412705

rather complicated and its precise value has been
determined numerically for [>3 (see Table VII).
The final result for S, is very simple

Zé* (m >
- < 1) (C5)
This subtraction technique can be applied not only

to the Schrddinger but also to the Klein-Gordon,
Dirac, and various relativistic equations.
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