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The fourth-order iterative diagrams involving Nh and b,h, intermediate states and including m as well as p
exchange are calculated in momentum space without any approximation. It turns out that, due to retardation
effects in the propagators, these contributions are by a factor of 3 smaller than former models using twice-
iterated transition potentials with simple propagators of pion (and p) range. This fact allows the use of much
shorter-range cutoffs at the Nh, vertices than before. NN scattering phase shifts are calculated using these
diagrams together with a suitably modified one-boson exchange potential, likewise derived from noncovariant
perturbation theory. The effect of the Nhp vertex is different in various partial waves; its decisive I'ole in
getting a consistent description, especially of the important P phases, is demonstrated, It is shown that the
static limit (necessarily used by other groups working in r space) is not a good aporoximation and, moreover,
its effect cannot be mocked up by a mere change of parameters.

NUCLEAR REACTIONS Nucleon-nucleon interaction, NN —N4 and NN —44
transition potentials with ~ and p exchange, noncovariant perturbation theory.

I. INTRODUCTION

One of the main reasons for considering explicit
isobar degrees of freedom in the two-nucleon force
stems from the fact that such a procedure allows
modifications of the NN interaction due to the pre-
sence of other nucleons to be taken into account.
For relatively dense systems, like infinitely ex-
tended nuclear matter ~and of course even more
for neutron stars), it is now rather obvious that
such many-body corrections play a large role. '
Even in light nuclei, like "0 (Ref. 2) and the
triton, these modifications have nonnegligible ef-
fects.

In fact, due to new developments in the nuclear
matter problem, there are good reasons to believe
that the empirical saturation point cannot be ob-
tained without including such (density dependent)
modifications of the NN interaction. Recent theo-
retical studies of the md% vertex function and
new empirical evidence' suggest a rather weak
tensor force (especially a small deuteron D state
probability PD around 4%). However, usual po-
tential models with such a low D state probability
will surely overbind nuclear matter. For example,
one version of the Bonn potential HM26 gives
about a 24 MeV binding already in a standard first-
order Brueckner calculation. (The empirical
binding energy is 16 MeV. ) Higher-order contri-
butions are expected to give several MeV addi-

ti.onal attraction, i.e. , even more binding. More-
over, typical variational calculations, which are
nowadays more fashionable, predict overbinding
even for the Heid soft-core potential, ' in spite of
the fact that this potential has a very strong tensor
force (PD= 6.4%). Such calculations yield ~20 MeV
binding compared to the 10 MeV binding predicted
by a standard first-order Brueckner calcula-
tion.

Of course, for purely phenomenological models,
such modifications cannot even be defined, they
can only be included within a meson theoretical
framework. Thus, an extended dynamical picture .

is necessary, not only for a basic understanding
of the interaction between two nucleons, but also
in order to obtain a correct description of nu-
clear phenomena.

The first to consider explicit b, (1236) isobar
contributions in the two-nucleon force and their
quenching in nuclear matter was the group of
Green and co-workers. They replaced the inter-
mediate-range attraction of the phenomenological
Reid potential' in the 'So partial wave by isobar
contributions generated from transition potentials
V„~(NN- Nb, ) in a coupled-channel framework. In
nuclear matter, these isobar contributions are
reduced due to Pauli and dispersive effects, which
strongly increase with the density of the system.
Thus the saturation energy is reduced by about
6 MeV, however, the density dependence of those
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many-body corrections is too weak to come off
the Coester line. '

Recently, two of the present authors' have ex-
tended this method starting from a semitheo-
retical one-boson exchange potential. ' Part of the
more or less fictitious o describing the inter-
mediate-range attraction was replaced by twice-
iterated pion-range transition potentials. (It is
important to note in this context that it is not
realistic to replace the whole cr by 6 isobar con-
tributions. According to what is knowri from the
dispersion-theoretic description of 2n exchange,
at least half of the intermediate-range attraction
is built up by the m-m interaction). In addition to
contributions arising from NN- Nh, those arising
from the transition NN- AA were also taken into
account. Furthermore, the isobar contributions
were consistently included in all partial waves and
an accurate fit of all NN scattering phase shifts
and deuteron data was obtained. A standard first-
order nuclear matter calculation moved the satur-
ation energy of HM2' from -24 MeV to about

'

-10 MeV.
In these calculations, however, an artifically

strong cutoff was required to prevent a 6 contri-
bution larger than half of the total 0 contribution.
Consequently, the results show a strong sensitivity
to the cutoff parameter. This effect c@n be partly
traced back to the neglect of p exchange at the
NA vertex. At least in S states, it cancels part of
the pion-range transition potentials a,nd thus should
weaken the cutoff dependence. In fact, according
to preliminary calculations, 'o the consideration of
p exchange not only reduces the cutoff dependence,
but also removes characteristic discrepancies in
higher partial-wave phase shifts (J.~ 1).

It has become a matter of controversy whether
the simple pion-range propagator (Z, '+m, ') ~,

(Z being the momentum transfer) can provide a
realistic description. The transition potential
concept can handle without. difficulties only those
time-ordered diagrams which have a pure baryonic
intermediate state (iterative diagrams), i.e. , only
the first 4 out of 12 (if antiparticles are neglected)
as shown in Fig. 1. According to Smith and
Pandharipande, ' the pion-range propagator might

. summarize the effect of all 12 diagrams to a
certain approximation. However, their arguments
rely heavily on cancellations between crossed-box
diagrams (involving NN, Nb, , and r b. states).
These critically depend on the detailed structure
of the nNN and DNA vertices which are not known
to a sufficient accuracy. Moreover, it is not clear
whether these cancellations persist in higher or-
ders.

Since most people dealing with isobar contribu-
tions work in coordinate space, it is clear why so

FIG. 1. Time-ordered diagrams with positive energy
NA intermediate states,

much effort is put into avoiding the exact time-
ordered propagators. The reason is simply that
these propagators (defined in momentum space)
cannot be transformed analytically into r space.
They can only be handled approximately, simu-
lating them by manageable r space expressions.
This is very cumbersome, see e.g. , the recent
work of Saarela. "

In our case, , however, these time-ordered
propagators present no problem since we work
throughout in momentum space, see Ref. 9.
Furthermore, as shown by Schutte, the use of
time-ordered perturbation theory provides a uni-
fied Scheme for the two-body as well as the
many-body problem, i.e., the transition from the
two-body to the many-body problem is well de-
fined. In fact, this scheme already defines modi-
fications of the NN interaction in the medium for
the pure one-boson exchange (OBE) picture (with-
out introducing isobars). According to calculations
done by Kotthoff et aL,"the OBE potential (mainly
the pion-exchange part) is quenched in the medium,
which reduces the saturation energy in riuclear
matter by about 5 MeV.

There is another reason why time-ordered pro-
pagators should be used instead of the simple
pion- range propagator. Recent disper sion-theoreti-
cal investigations" have shown that the use of the
pion-range propagator overe'stimatks the isobar
contribution by a factor of 2 or 3. The use af ex-
act time-ordered propagators reduces the isobar
contributions (as will become clear later, see
also Ref. 12) and are thus more in line with dis-
persion theory.

One may ask why not use the results of disper-
sion theory directly in order to construct a nu-
cleon-nucleon potential. Then all diagra, ms like
those of Fig. 1 are automatically included in the
right way, and one avoids all the difficulties with
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explicit field-theoretical models. In fact, if we
would restrict our considerations to the two-nu-
cleon problem, dispersion theory is probably the
best one can do since it provides strong con-
straints due to correlations with 71% and m7t scat-
tering data. However, if the fir. zl aim is to under-
stand nuclear- structure phenom. ~ena, we strongly
believe that modifications of the NX interaction
have to be taken into account. These cannot be
handled in a dispersion-theoretical treatment. Of
course, the results of dispersion theory should be
used as a constraint for explicit field-theoretical
models in order to pin down ambiguities in pro-
pagators, form factors, and so on.

In this paper, it is our aim to present a detailed
study (a) of the NAp vertex and (b) of the exact
time-ordered propagators, i.e., we calculate the
first four diagrams in Fig. 1, including (m+ p) ex-
change. It will turn out that both effects reduce
strongly the isobar contribution with pion range
found in Ref. 9. This will allow cutoff parameters
at the Nhm vertices whj. ch are in a much more
reasonable range than before, i.e. , like in the
other OBE vertices. Furthermore, since our cal-
culations are carried out in momentum space, we
are able to take into account the full complexity of
the NA vertex functions. Therefore, we can study
the approximation of going to the static limit at
the Nh vertices, which has to be used by other
authors in order to obtain manageable y space ex-
pressions.

II. OUTLINE OF THE FORMALISM

In this chapter we evaluate explicitly the first
four (iterative) diagrams of Fig. 1, which can be

(q', Eq I

Ik, Eg) (-k, E), I

(&,Eq) (-~, E, I

FIG. 2. Notation for the first diagram in Fig. l.

where g, is the pion-nucleon coupling constant,
f„~„the coupling constant at the NC vertex, and
rn„ is the pion mass. Here 4 denotes the nucleon
field operator, P the pion field, 4'" the field oper-
ator of the 6 isobar and 7, T are isospin matrices.
According to standard rules (see Refs. 13 and 14),
the first diagram of Fig. 1, which for convenience
is redrawn in Fig. 2, can be generated by the
second iteration of a transition potential V„~„
namely,

reproduced by iteration of a transition potential.
In addition, we also evaluate the four similar dia-
grams with two isobars in the intermediate states.

%e first consider the case of m exchange and
start with the usual interaction Lagrangians

L„~ =v'4m g i@Ty%$,
(2.1)

L~~, =u'4m +~' O'T@ "Bqp+H.c. ,

(2.2)

with

(2.3)

where E,= (M'+q')'~', E,*.=(M' q~')+' ', M is the
mass of the nucleon (= 938.9 MeV), and Mz, is the
mass of the b, isobar (=1236 MeV). Also, z is the
starting energy, w, is the energy of the exchanged
pion, &o,= [(q' —q)'+m„']'~', and a„=(q' —q)„. The

summation goes over the helicities of the particles
in the intermediate states, i.e., h, = +—,', h, = + 2 „+2,
since the 6 isobar has spin ~. Here, u denotes
the Dirac spinor describing the nucleon, whereas
u" is the conventional Barita-Schwinger spinor
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2 2 2A„-m„
A'+q' —q

(2.4)

describing the isobar. I, is a dipole-type cutoff with A, a parameter, the so called cutoff mass.
The sum of diagrams 1-4 of Fig. 1 plus those in

which the 6 appears on the left-hand side, can
then be written as

with

,„&q'A,'A,'i V,,',(z) [ma,a+)&k t, I +[V„',(~) i@A,A, )
h h k

j, ~ 2

(2.5)

V~ g = (V„g 1+ Vx ~,~)W2

V„~, differs from Eq. (2.3) only in the denominator, where Z, has to be replaced by E,*.
Analogously, the sum of the iterative diagrams involving Ah intermediate states is given by

(2.6}

&q'A,'A,'i ~;,(~) ~qA, a, ) = g
with

&q'A,'W,'( V~(z) (kl,*a,*)&k I y +
) V;,(~)iqA, A, )

2E,*-z (2 7)

Vh, h,
= Vd, ~,i+ Vb,h„,2

where

(2 9)

(2.9)

and Vz,~, is the same as VQQ i Explicit expressions for V„"~ and V~~ can be found in the appendix of Ref.
9. Only the denominators have to be changed appropriately [Note .also that the denominators are the same
if one neglects retardation effects in Eqs. (2.3) and (2.9).)

Next we evaluate the contribution from p exchange. %'e start from the interaction I agrangians

I.NN p
= v'4w gpss'y~R + ' -4O""v 4 8„

(2.10}

where gz, fz are respectively, the vector and tensor AN coupling constants, f~~& is the Nhp coupling,
and mz is the mass of the p meson; v""= ', i [y", y—'].

Thus we obtain for the first four diagrams of Fig. 1 (pius those where the h appears on the left-hand
side) with p exchange

&q'A,'~,'~Vg, (i) ~ka,I,*)&kI,r,*[VP,(z) [qA, W, }
khy, h2

(2.11)

with
j

V„',=(V„', , +V), ,)W2,

where

(2.12)

MM
&q'A,'A2IVg~, ,(~}lqA,A2)=

2 &

'"
Z Z

', ~| T.&,(q', q)@A,(-q')~'r"u~,*(-q)
2v mp E,. E

Bg Bg
x g' ' g" ' -- uA'(q') g y8+ ' io&b" uA (q) (2.13}

and again, V„~, differs from V~pz, , only in the denominator, where E, has to be replaced by E,*. Corre-
spondingly,

&q'A,'A,') Vg, (s) (kf;I;)&k a,*a,*(V'„(~)(qA, a, )
hj, h2

(2.14)
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with

~a~ = Var, ~+ V~~,2
P P P

where

2

&q'A,'A.'IV', ,( )IqA,*A.*)=,. "':,', T T, E, (q', q);(-qb'y" ~(-q);(q')y'y' '.",(q)

(2.15)

X ~g&age. —~v&88'u a- ~u~ogo e+™u&8gew
2 (()

p
(I' q ~ +E q

+ ((& p
—z):

and V~~ 2 is the same as V~~, . The form factor is chosen to be

2 2 3~0 -mo
A '+(f' —t))')

P

(2.16)

(2.17)

with AP being a cutoff parameter. For convenience, we give explicit results for specific matrix elements
of V„z and Vz/ in the appendix.

The sum of all possible exchanges in diagrams 1-4 of Fig. 1 (including those with mixed v, p exchange)
can then be written as

d3k
&q'AlAllM ~(z)lqA, A.) = g „" [&q'A,'A,'IV„",(z)li!,a,*&+&q'A,'A,'IV)', (z)li a, a+&]

k+ k
—g

hg, h2

and for hh intermediate states

x [&i!x!2 IVg~(z) lqA, A, &+ &i I,@.*IVgz(z) lq!~,A.)l (2.16)

((('Al»I M~~(~)1((&»& gf . I(f=Al&' I&'E~(~)i&»-)*'&+(0 A%I)"~*(~')l&»):&)
he he l

2

x E&i!f!2 I V,~(z) I qJt, Ji2)+ &i!,*!
I V,~(z) IqA, !i2& (2.19)

V.s(z)=V„, (z) M„,( )-Mz-„(z). (2.20)

Here Vpas(z) is the one-boson-exchange potential
of Ref. 14 with suitably modified parameters. In
contrast to Ref. 14, we now make a more conven-
ient choice for the form factors, i.e., in Vo» we
choose

One final remark should be made. Of course,
these iterative diagrams could have been ob-
tained without introducing the concept of transition
potentials. Specifically, the sum over intermedi-
ate helicities can be replaced by suitable projec-
tion operators. However, transition potentials
are explicitly needed in order to calculate isobar
components of wave functions, which are of con-
siderable importance in nuclear physics. (We will,
however, not perform such calculations in this
paper. ) It should also be noted that in order to

. make the cutoff mass in I", equivalent to the one
used in Ref. 9, we have multiplied both E„and I'P
in Eqs. (2.4) and (2.17) by the factor (E,*M/E, M~)'~
in the definition of V„& and by E, M/E, M~ in the
definition of V~~.

In order to calculate phase shifts, we define an
effective potential

(2.21)

at the vertices, with n=1 for n =m, g, cr, 6 and n= —,
'

for ~=@,~, y; ~'=(E, , -E,)'-(q'-q)'. M„(z)
and M~~(z) are obtained from Eqs. (2.18) and

(2.19). The R matrix is then given by

R(z) = V,s (z) + V.,~ (z) R(z),
P

g 0
(2.22)

=(A,'A,'IV,'„(q', qlz) IA,A, )

I' &J).,'A2I V,'gg (q', klz) I h, !z,&
dk k'

0 @k
h j. , h2

x (!,!,IR'(q', qlz) IA,A, &. (2.22)

Here, the starting energy is z =2E,. The deuteron
data are calculated analogously. For further de-
tails, we refer to Refs. 9 and 14 and to the review
article of Erkelenz. "

where P denotes the principal value. Explicitly,
we obtain, in partial waves and helicity state basis,

&A,'A,'IR'(q', qlz)l A,A, &
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TABLE I. Parameters for the transition potentials. Here A

and A are given in MeV.
P

A A2
~Neap

0.27 15.41 1200 1200

III. RESULTS AND DISCUSSION

where f,'= (m, /2M)'g, ', g, ' = 14.4, and g, '= 0.55,
f, /g, = 6.6 as suggested by the analysis of Hohler
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FIG. 3. The NA contribution with only n exchange,
i e , the co.nt. ribution of (q' ~M~~(s)~q) in Eq. (2.5), for
the $'0 partial wave, with q'=q0= 250 MeV [z =2(qo
+M ) / ] as a function of q is denoted by the solid lines.
Curve 1 shows the full relativistic results while curve
5 shows the results when the static limit is taken at the
N4 vertices. The dashed curve (curve 2) is obtaihed by
replacing the time-ordered propagators in the transition
potentials Yz~ &

and Vz~ 2 by simple pion-range pro-
pagators. The dashed-dot curve (curve 3) is obtained
using the prescription of Durso et aE. (Ref. 15), i.e.,
taking V&z ~ as in curve 2 but using a range of v 3m
in V~~~ 2, In the dashed double-dot curve (curve 4) the
range in Vzz ~ is taken as 2m, , while it is taken as
4m in VNg 2.

The parameters in the transition potentials,
used throughout this paper, are given in Table I.
The value 0.27 for f„~,' is between the Chew-Low
value (0.32) and the value derived from the quark
model (0.23) and is actually suggested from vN
studies. " f„~,' is obtained using the usual rela-
tion' based on the quark model

2 2

and Pietarinen. " The cutoff parameters are
chosen to be 1200 MeV in both E, and E, and are
therefore in a much more reasonable range than
before. '

In Fig. 3 (solid line) we show the contribution
of diagrams 1—4 of Fig. 1 (plus those in which the
d appears on the left-hand side). involving only v

exchange, i.e. , the contribution of Eq. (2.5), in the
'So partial wave, for q'=q, =250 MeV [z =2(q,'
+M')' ']. The dashed line is obtained by replac-
ing the time-ordered propagators in both Vpf'Q

and P„'~, by simple pion-range propagators, i.e. ,
by (q' —q)'+m, ', in other words, retardation ef-
fects are neglected. It is seen that these retarda-
tion effects suppress the contribution by a factor
of 3. In Ref. 15, a modification of the pion-range
propagator, sti.ll tractable in x space, was pro-
posed in order to take into account these effects.
It consists of taking V„'~, the same as before,
but using for the propagator in V„'~, (q' —q), '
+3m, ', i.e. , the range is shortened to v 3 m, . We
see that the result (dash-dot line) goes in the right
direction, however, the effect is only 20%%uo of the
total retardation effect. That this modification
underestimates the effect can be traced back to
severe approximations used to derive it (initial
nucleons at rest and neglect of nucleon recoil ef-
fects), as was already recognized in Ref. 15.

This shows that, in order to simulate the exact
time-ordered propagator, the range has to be
chosen much shorter. We arbitrarily choke 2m,
for V„n, [i.e. , (q'-q)'+4m, ' for the propagator]
and 4m, for V», . The result is given by the dash-
double dot curve. It is seen that this (phenomeno-
logical) prescription roughly agrees with the cor-
rect result for low momenta q, but overestimates
it for higher q. This suggests that a very sophis-
ticated prescription is needed in order to replace
time-ordered propagators by manageable x space
expressions, see also Ref. 12. In any case, such
a replacement destroys the specific structure of
the propagator necessary for a well defined pre-
scription in going from two-body scattering to
nuclear structure, see Ref. &3.

In addition, we show the results if we go to the
static limit at the fqh vertices in Eq. (2.5), keep-
ing the propagators the same. It reduces the ex-
act contribution by roughly 25/o. Our calculations
have shown that this is true for all propagators
considered in this figure. Thus the combined use
of (i) the static limit at the vertices and (ii) the
pion-range propagator (as is usually done in x
space calculations, see Ref. 1) overestimates the
contribution from an exact calculation of diagrams
1-4 by roughly a factor of 2.

Figure 4 shows the corresponding results for
the contribution of the iterative diagrams involv-
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FIG. 6. The analogous Ah contribution to Fig. 4 for
only p exchange. The notation is the same as in Fig.
5 except for curve 3, where m~ is replaced by
mp +mp (M& M) in the propagators of both Vzz &

and V~~~ 2.

vertices. A cot+parison with Fig. 3 shows that the
inclusion of p exchange suppresses the N4 contri-
bution by a factor of 2 in this partial wave. The
result for the static limit happens to be the same
in spite of the fact that both m and p contributions
are strongly modified separately. This feature,
however, does not persist in higher partial waves.

The two solid curves (curves 1 and 2) denote the
sum of N4 and 44 contributions, for the relativ-
istic case and the static limit, respectively, i.e.,
the sum of Eqs. (2.18) and (2.19). Thus the differ-
ence between curves 1 and 3 or between curves 2
and 4 gives the 44 contribution. A comparison
with Fig. 4 shows that the hb(m+ p) contribution
is in fact larger than the 44, m contribution, i.e. ,
in this channel, the inclusion of p exchange en-
larges the 44 contribution. The strong reduction
of the total contribution due to the static limit
(nearly by a factor of 2) can be completely traced
back to the reduction of the 44 contribution. The
dash-dot curve shows only the n' contribution (Nb
+ hh), which roughly agrees with the correspon-
ding (v+ p) contribution. Again, the strong reduc-
tion of the X4, m' contribution by adding p exchange
is partly cancelfed by an increase of 44, m due to
the inclusion of p exchange.

In Fig. 8, the two solid lines (curves 1 and 2)
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-0 ~ 4—

-0 ~ 8-

3

-0 ~ 6-

-2 ~ 0-

-0 ' 8
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9 (f1eY)
1000 1250

FIG. 7. Besults from combining r and p exchange
using time-ordered propagators. The solid curves de-
note the NE and h6 contributions with m and p exchange,
i.e., M~&+M~. The dashed curves denote only the ND
contribution with x and p exchange, i.e., M~~. Both the
full relativistic and static limit cases are shown, curves
1 and 3 and curves 2 and 4, respectively. The N4 and
hA contribution with only x exchange is also given by
the dashed-dot curve. As before, the results are
shown for the '$0 partial wave with q' =@0=250 MeV.

-2 ~ 4

0 250 500 750
( t1pV )

1000 1250

FIG. 8. Besults from combining x and p exchange
using simple x- and p-range propagators. The dashed
curves denote the NA and AE contribution with ~ and

p exchange replacing the time-ordered propagators in
the transition potentials by simple x- and p-range
propagators. The solid curves denote the same results
with time-ordered propagators. Both the full relativ-
istic and static limit cases are shown, curves 1 and
3 and curves 2 and 4, respectively.
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again show the (N4+ rh, h) contribution arising from
(v+ p) exchange. The two dashed lines (curves 3
and 4) show the results when the time-ordered
propagators in the transition potentials are re-
placed by usual pion-range and p-range propaga-
tors [i.e., (q' —q}'+m, ', (q'-q}'+m, ']. As be-
fore, curves 1 and 3 show the relativistic result
and curves 2 and 4 the static limit at the N4 ver-
tices, respectively. Again ee see that the use of
the exact propagator reduces the contribution
drastically. This figure also shows that the con-
sistent use of the static limit in the whole expres-
sion (i.e. , static limit at the vertices together
with pion range) overestimates the exact contribu-
tion by a factor of 2.

These results show that the possibility of using
a reasonable value for the cutoff mass in the N4
vertices is due to the combined use of time-order-
ed propagators and p exchange. The effect of p

exchange is different in various partial waves (as
will be seen below by looking at the effects on the
NN scattering phase shifts). In fact, p exchange
seems to help in obtaining a consistent descrip-
tion of the data, see Ref. 10.

Figures 9-18 show the resulting NN scattering
phase shifts, obtained by solving Eq. (2.23) nu-
merically. The experimental error bars are
taken from the energy-independent Livermore
analysis. ' 'The solid curves show the results if
the full, unapproximated V,«[Eq. (2.20)] is taken,
with parameters in V»E adjusted such that a
reasonable description of all phase shifts is ob-
tained. 'The corresponding parameters are shown
in Table II. It is seen from the figures that a
quantitative description of all phase shifts (like
in realistic pure OBE models) is not possible at
this stage (nor did we expect that). Possibly this
is due to the fact that diagrams 5-12 of Fig. 1 and
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FIG. 9. Nucleon-nucleon nuclear bar phase
shifts (in radians) as a function of the nucleon lab
energy (in MeV). The error bars are taken from the
energy-independent Livermore analysis (Ref. 19).
Results for the full V«(Eq. 2.20) discussed in the text
are denoted by the solid curves, with the full relativis-
tic and static limit cases taken at all the NA vertices
shown in curves 1 and 2, respectively. For the dashed
curves, ~ contributions have been omitted from V,zz,
in curve 3 the 66, p contribution is omitted, while in
curve 4 the whole AA contribution is omitted. The
dashed-dot curves denote the analogous results for the
NA contribution when the whole h4 contribution is
omitted as well. For curve 5, the h4 and Nb, , p con-
tributions have been omitted from V,gf ~ and for curve
6, both. the whole 6A and N6 contributions have been
omitted. These two curves are not shown for T=0
states, since NA states are forbidden there. The en-
tire intermediate range attraction is left out in curve
7, i.e., the N6, the AA and the 0 contributions have
been omitted from V„&.
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FIG. 18. The same notation as in Fig. 9-17 is used
here except that curve 2 has been omitted since it
cannot be distinguished from curve 1 in the figure.

the corresponding diagrams involving two-nucleon
and two-isobar states have still to be included.
(At the moment they are effectively described by
part of the phenomenological &r meson). In other
words, we are rather sure that an extension of -the

simple OBE model must include all diagrams of
Fig. I (plus the noniterative diagrams involving
two-nucleon intermediate states) before a quanti-
tative description of the data can be expected again.
Nevertheless, we strongly believe that one should
proceed step by step and study the effects separat-
ely. The present description of the data is good
enough to study specific features of the isobar
contributions (i) in two-body scattering, which is
the main goal here, and (ii) in nuclear structure,
which is done in a separate paper. "

All other curves in Figs. 9-18 are obtained by
making certain approximations and by omitting
specific contributions in V,«, i.e. , the parameters
are always kept the same. Curve 2 gives the re-
sult if the static limit is taken at all N~ vertices.
The dashed curves (curves 3 and 4) show the re-
sults if 44 contributions are omitted; in curve 3
the p meson in the 44 contribution is omitted,
whereas for curve 4 the whole 44 contribution is

omitted. The dashed-dot curves (curves 6 and 6)
show the analogous results for the N4 contribu-
tions when the whole 44 contribution is omitted
as well. The dashed-douhle-dot curve (curve 7)
is obtained by omitting, in addition to the whole
(Nd + h4) contribution, also the a contribution,
i.e., the total intermediate-range attraction is
left out. Thus, going from curve 6 to curve 4
shows the effect of introducing the whole N4 con-
tribution, whereas the step from curve 4 to curve
1 gives the effect of the whole b 4 contribution.
Going from curve 5 to curve 4 shows the effect of
the N4, p contribution separately, and the step
from curve 3 to curve 1 gives the Lh, h, p contribu-
tion. Going from curve 4 to curve 3 gives the
effect of the &4, m contribution, whereas the step
from curve 6 to curve 5 gives the Nh, m contribu-
tion. There are, of course, no dashed-dot curves
(curves 6 and 6) for isospin-zero states, since
N4 states are forbidden there.

The Ifigures show that the use of the static limit
at the N4 vertices in general reduces the=isobar
contribution (apart from 'D). The effect is large
in S waves. In 'Sy for example, where only Ah,

states contribute, the i'sobar contribution is re-
duced to roughly one third of its original value.
Figure 7 showed that also in 'S, the main effect
comes from the 44 contribution, i.e. , the N&
contribution does not change appreciably if the
static limit is used, see also Ref. 10. This is
plausible, since, due to its shorter range, the
rh4 contribution is more determined by higher-
momentum components, which, in turn, are more
affected by the static limit. Thus, the effects of
going to the static limit cannot be neglected any-
more, in contrast to Ref. 9, where the artificially
strong cutoff (A, - 600 MeV) suppressed strongly
any effects in the high-momentum components.
Furthermore, the relativistic N4 vertex can only
partially be mocked up by increasing, e.g. , the 0
contribution, since the effect is different in differ-
ent partial waves.

The effect of the Lh, 4 contribution is comparable
to the N4 contribution in the 'So partial wave, but
is reduced in higher partial waves due to its com-
paratively shorter range, especially the 44, p

TABLE II. Parameters for Vo&E defined in the text. Here m and A are given in MeV. The number in
brackets denotes the ratio of coupling constants f jg .

P P

14.4

138

4.9978
54-8.5

2000 2000

13.5416

599.7
1300

0.0718

960

1300

30.012

782.8

0.4701 (6.61)
712

1650

5.3613

1020

1650
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TABLE III. Low-energy scattering and deuteron data. Here

E, Q, and PD are the binding energy, quadrupole moment and

D-state probability. of the deuter'on, respectively. Also, a and

a, are the singlet and triplet scattering lengths while r, and r,
are the singlet and triplet effective ranges, respectively.

Exp. Theory

E (MeV)

Q(fm )

PD (/o)

a, (fm)

r, (fm)

a (fm)

r, (fm)

2.22462 + 0.00006

0.2860 + 0.0015

-23.715 + 0.015

2.73 + 0.03

5.423

1.748

+ 0.005
+ 0.014

2.2249

0.280

4.50

-23.70

2.74

5.40

1.72

contribution is strongly suppressed in waves (I,
~ I). In general, p exchange acts opposite to v

exchange; the role of p exchange is nicely demon-
strated, e.g. , in the 'P, partial wave. In fact,
the inclusion of p exchange helps in obtaining a
consistent description of the important 'P states,
see also Ref. 10. Note that our total 4 contribution
has roughly the same strength as the version in
Ref. 9 with A, -700 MeV. With such q, cutoff mass,
typical discrepancies showed up in Ref. 9 for 'P-

states and 'D, . The present figures show that p
exchange partly removes these discrepancies.

Compared to the former procedure in Ref. 9
(where the simple pion-range propagator was
used), the total 4 contribution is now suppressed
much more in higher parti. al waves. This feature
can be traced back to the much shorter range
generated by the retardation effects of the time-
ordered propagators.

Finally, the low-energy scattering and deuteron
data determined from the exact Vgfg are given in
Table III. Note the small value of the D state
probability in spite ot the relatively weak gNN

form factor used here. This ',feature can be traced
back to the retardation effects of the time-ordered
propagators, which suppress higher-order contri-
butions in V„.„i.e. , contributions coming from the
tensor force. Thus, it is possible to obtain a low

D state probability (which nowadays seems to be
favored by certain few-body reactions") without

using an unreasonably strong ~NN form factor.

fects in the time-ordered propagators (which re-
sults in the simple propagators of pion, respec-
tively, p range) leads to a serious overestimate of
the isobar contributions by as much as a factor
of 3. On the other hand, the static limit under-
estimates the contribution by roughly a factor of
2. Therefore, the combined use of (a) pion-range
and p-range propagators in the transition potential
and (b) the static limit (which is necessarily per-
formed by groups working in x space) overesti-
mates the isobar contribution by roughly a factor
of 2. This is in line with the dispersion-theoret-
ical results of Ref. 15 based on empirical amp-
litudes for NN- 2m in the pseudophysical region.
However, since this factor is slightly different in
different partial waves, the approximations (a)
and (b) cannot adequately be mocked up by a mere
change of parameters.

NN scattering phase shifts have been calculated
using these diagrams together with a suitably
modified QBE potential. It turned out that the ef-
fect of the N4p vertex is different in different
partial waves; this feature helps to improve the
description especially of the important 'P partial
wave phase shifts. 'The overal. l agreement with
empirical data is good enough to allow a meaning-
ful calculation of binding energies of nuclei. 'The

resuks of such calculations are reported in a sep-
arate paper. ' On the other hand, the slight, but
characteristic discrepancies between theoretical
and empirical phase shifts in some partial waves
suggest an extension of the present model. 'The

next step is to also include the noniterative dia-
grams of Fig. 1 together with those involving in-
termediate NN and && states. This problem is
presently being attacked by the present authors
and will be the subject of a forthcoming paper.

Many stimulating discussions with Professor
K. Bleuler are gratefully acknowledged.

APPENDIX

Here we give the results for some matrix ele-
ments of our p exchange transition potentials,
which are needed in order to describe NN scat-
tering. Here q is parallel to the z axis, q lies
in the xz plane and 5 is the angle between o and q'.
We first define the following quantities:

IV. CONCLUDING REMARKS

In this paper, we have calculated the fourth-
order iterative diagrams involving N4 and 44 in-
termediate states and including m- as well as p ex-
change in the framework of "old fashioned" per-
turbation theory. The neglect of retardation ef-

Ap «k
g p Ap 1+ p

where W =E, +Af, W'=E, .+hI, and 8'~=E,*+M&,.
Furthermore,
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D
4& f W W*W 'I'

(2~)' m, 4E, , E,+E,

C„,(I)E,
2(Afp(Eq( + EB + (2)

p
—Z)

(2m)' ff), &' 4E,qE,* 2(d&(E, +E,*+(dz-z) '

where C„f2(I), Cf,f,(I) are appropriate isospin tac-
tors, I being the isospin of the two-baryon system:

C„,(0)=O, C„,(1)=( )";
»( )=-~&2 Cdd1)= —(g)"

We start with V~~~ „ i.e., Eq. (2.13):

((1 22 ~ V]((ss} 2 ~gp p) IJ)fg( )B' 'sin3 (gq+ff})[', q'A,—B+ + (
—', q' +q)Apt, ]

' (-,q'(E, +E,)AA}, sq'qAA, " -(-,'q' ~ q)(E, —E,}A,B ]j

+pq' p+ p
~B~+ -A~+B~ — g r+ g

+22AM,"+(E, -B,)A,B ])sssq

(2']] iq's„)f(s-i) =B s-', (-', )'"2'sinq
( (Es fq)(AB —AsB, ) — (~(E, +E )A, B —22A~ +(E, , —E }A B ])2M

&ikklV&&, ,%ah) =D f(~)'I'l (g,+f) (kq'-q)A, B*—(kq'+q)A*B, -2 (q'+q)B*.B,—~ q'(A„B.*-A)B.)

(E,.+E,)(,q' -q)A-M*-q'qA~f -[(E,.+E,)E,*+2q'] A B,*

+ (E-E,)((,q,
'+q)A "B +2—(q' q)B,"B — ' q'A,"B

I

(E+f})((q' -q)A, B "+(q'sq)AM, + 2 (q'+q)B,B,)s
((E, +E,)(q' —q)A Bs —(E, -E,)(q' q)AB}s

—2(E, -E,) (q'+q)B,*B cos3

+2' (E,+fs) *(A,B -A-"B,)+ ' (A,B, -A,"B,)) —@~q(EACH" + ,'(E, +E,}A B"-

+I ' (E, +E,)+2 IA B,*+(E,, -E,)I3A*B +

(9 & 2 I VN5, 21%2 2) D Nisi((} )"»nS (Is()+f()) I (Bq'+q)A+B,*+ kq 'A,*B, [E,*(A,B—*+—A *B,) + 2qB,B *]

I- —'— (E, +E,)(&q'+q)A B~+q'qA~~ — [(E.+E)E*+2q']A~+

—(E —E)l: q'A;B —, E'A B -qq —.BB}
q' q'
A~' - -

~Vi~ -]

+qt +

+a &(E +E)A B,* -qA~A' +~ (Eq +E,) ' +2. ~A~*'M~

+ (E, E,)~
—,A,*le + ' A~-( cos9

f]fI f2 )
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&4'2 2IVEQ, I%2 2) D ~2(2)'9'sins(1+cos3)~Q +f )(A,B,*+A,*2&,)

- ' [(E,.+E,)A B,*+2qA A.* —(E,, -E,)A,*B ] I,

&(1'2 2
~ Vgg ~/22) — D„g(2) (1-cos8) (g, +f,)[ ~q'A B*-(aq'+q)A*B, ]

+ [q'qA A — q'(E, +E )A B —(—'q'+q)(E—E )A, "B ])

+ pq' g +,B~+A*B,

+ ' [2qA A —(E, +E )A B, +(E"; —E ),A B ])cosq
J

(t('l -llq». , lt(ll)= »(2)"'sCcSI~ (E, +f) (W'+q)(A. B:+A."B.)- q'(A. a -A a.)-2 2 a.a )P P

I I

[
(Eq. +E )(Eq'+q)A B,*+q'qA,*A — [(E,,+E )E*+2q2]A B*

Eg Qf
2

-(E,.-E,)((w'+q)A:B. + ' q'A'a 2 q a"a ) I

A B, E',~„* A B,

+ ' qA+A ,'(E, +E )A—B,* [(E,+E )+2q2]A B*

+ (E —E)( AB+.,—' A "",B cosa I,M

(2 *-*
I V» . Iq* -*) Bc(')" (=(+c,os—,c)I '(E +f ) —,q'A."B.—(' ' 2q)A -B cqa'(A.'a:+A:B))

q'qA A*-(zq'-q)(E;+E, )A B+

I
+ [(E,, +E,)E,*+2q']A B,*

—(E, E)'q' A" B +2 ——A, —B.j

z(E,, +E,)A B*+qA A*+ [(E,+E,)E,*+2q2]A B,*

—(E,.-E)(—'A"B +—'A, B. cosq I.]

Also &q'B z( Vg& J(T —fi —A ) can be obtained from &(I'& g V](fz 2JqA2A, ) by replacing there (q, cos&) by (-q,
-cosa) and &q'B —~a

( V~~, j(l -A, -A2)can be obtained from -&g'2- 2 I V]((z,2I(TA2A2) by the same replacement.
We now present the results for Vz~~ „ i.e., Eq. (2.16):

&q'-2, -',
~
Va«,

~

q-', -', ) = D« ,'(1+ cosa){[(q"+ 2q'-)A,*'+q"B,*']—4q'qA,*' cosa+ q" (A.*' —B,*')cosa),

&(l' —,'~
~
V«, ~q~ —B) = D« ,'q"(A, A* B,-*B*)s—in'g, —
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b

+ 2q'(q' —q);A,*B*—2q'(q' + q)

+ (q' —q'q+ 2q ) A*B*— q'(q'+ 2q)B,*

2

J

+q' 2qA. ,*A*—(q' —q) B A,*'+(q'+q) ~ A*'+(q'+Bq) A,*B,*

2(q' —q) ~ A,*B* +2(q'+q), A*B,*

2

+ (q' —Sq,' A*BB+2q 1 —2 ~(BI*B*'M~ M~')

+2(q'+q) ' B,*' —2(q' —q) 'B*' cosa

+q' -+2, (A.A B,B ) ~ (A '+B +A, ' B,"')'oos'SI,

(i'l —l
I V~~, 2 I ql —~B) = -D B (1 + «»~) — ' q'qA.*A" +q" '

~ — A*' - 2q'(q'+ q)—0A,*B.*

—q'(q' —q) A. *B,* + ' q'(q' —2q)B,*B."

I
—

M .(q'B,"' —2q')B,"' —(-,'q" —q'q ~ q')B"')

+ q' '- (q'+ q)A,*A.*+—,'q'A*'+ 2(q'+ q) ', A,*B,*+(q' —q) A*B,*

Eg 2
sq ' B."B"+ . (q'B,"'-q')B -(lq'-q)B") o 3

2"p2 1 gg2 gg2 0 g2 ~@g2 ~ f ~g~g ~g~g COS2g ~

4
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Further matrix elements can be obtained by noting that

and

(q' —,'2
( V~~, ( qA, A,),

~

A, —A,
(
even

-(q —,'-,'
( V;, , [qA,A,&, (

A, -A,
)
odd

&q-', --,'(V:, , (qA, A,&=&q -', --,'(V:. , (q

In addition, (q' —,
'

—,
'

~
V~~,

~
q —A, —A,) can be obtained

Irom —(q'-,' —,
' V«, ~qA, A,) by replacing there

(q, cos8) by —q, —cosp) and (q' —,
' ——,

'
t V«,

~
q —A,

—A,) can be obtained from (q' —,
' ——,

'
~

V',
~
qA, A,)

by the same replacement.
In actual calculations, we need the partial wave

amplitudes. They are given by the general for-
mula

(A', A',
~

V~(q', q
~

z)A, A, )

+1
= 21T d(cosa)d ~, (8)(q'A', A',

~
V(z) ~qA, A,),

«1

A=A, —A2, A'=A', -A2

and are evaluated numerically.
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