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The fourth-order iterative diagrams involving NA and AA intermediate states and including 7 as well as p
exchange are calculated in momentum space without any approximation. It turns out that, due to retardation
effects in the propagators, these contributions are by a factor of 3 smaller than former models using twice-
iterated transition potentials with simple propagators of pion (and p) range. This fact allows the use of much
shorter-range cutoffs at the NA vertices than before. NN scattering phase shifts are calculated using these
diagrams together with a suitably modified one-boson exchange potential, likewise derived from noncovariant
perturbation theory. The effect of the NAp vertex is different in various partial waves; its decisive role in
getting a consistent description, especially of the important P phases, is demonstrated. It is shown that the
static limit (necessarily used by other groups working in r space) is not a good approximation and, moreover,
its effect cannot be mocked up by a mere change of parameters.

transition potentials with m and p exchange, noncovariant perturbation theory

[NUC LEAR REACTIONS Nucleon-nucleon interaction, NN —~NA and NN — AA ]

I. INTRODUCTION

One of the main reasons for considering explicit
isobar degrees of freedom in the two-nucleon force
stems from the fact that such a procedure allows
modifications of the NN interaction due to the pre-
sence of other nucleons to be taken into account.
For relatively dense systems, like infinitely ex-
tended nuclear matter {(and of course even more
for neutron stars), it is now rather obvious that
such many-body corrections play a large role.!
Even in light nuclei, like 0 (Ref. 2) and the
triton,? these modifications have nonnegligible ef-
fects. '

In fact, due to new developments in the nuclear
matter problem, there are good reasons to believe
that the empirical saturation point cannot be ob-
tained without including such (density dependent)
modifications of the NN interaction. Recenttheo-
retical studies of the 7NN vertex function* and
new empirical evidence® suggest a rather weak
tensor force (especially a small deuteron D state
probability P, around 4%). However, usual po-
tential models with such a low D state probability
will surely overbind nuclear matter. For example,
one version of the Bonn potential HM2° gives
about a 24 MeV binding already in a standard first-
order Brueckner calculation. (The empirical
binding energy is 16 MeV.) Higher-order contri-
butions are expected to give several MeV addi-
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tional attraction, i.e., even more binding. More-
over, typical variational calculations, which are
nowadays more fashionable, predict overbinding
even for the Reid soft-core potential,” in spite of
the fact that this potential has a very strong tensor
force (Pp~ 6.4%). Such calculations yield ~20 MeV
binding compared to the 10 MeV binding predicted
by a standard first-order Brueckner calcula—
tion. )

Of course, for purely phenomenological models,
such modifications cannot even be defined, they
can only be included within a meson theoretical
framework. Thus, an extended dynamical picture
is necessary, not only for a basic understanding
of the interaction between two nucleons, but also
in order to obtain a correct description of nu-
clear phenomena.

The first to consider explicit A(1236) isobar
contributions in the two-nucleon force and their
quenching in nuclear matter was the group of
Green and co-workers.® They replaced the inter-
mediate-range attraction of the phenomenological
Reid potential” in the S, partial wave by isobar
contributions generated from transition potentials
Vya(NN -~ NA) in a coupled-channel framework. In
nuclear matter, these isobar contributions are
reduced due to Pauli and dispersive effects, which
strongly increase with the density of the system.
Thus the saturation energy is reduced by about
6 MeV, however, the density dependence of those
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many-body corrections is too weak to come off
the Coester line.?

Recently, two of the present authors® have ex-
tended this method starting from a semitheo-
retical one-boson exchange potential.® Part of the
more or less fictitious o describing the inter-
mediate-range attraction was replaced by twice-
iterated pion-range transition potentials. (It is
important to note in this context that it is not
realistic to replace the whole o by A isobar con-
tributions. According to what is known from the
dispersion-theoretic description of 27 exchange,
at least half of the intermediate-range attraction
is built up by the 7-7 interaction). In addition to
contributions arising from NN - NA, those arising
from the transition NN - AA were also taken into
account. Furthermore, the isobar contributions
were consistently included in all partial waves and
an accurate fit of all NN scattering phase shifts
and deuteron data was obtained. A standard first-
order nuclear matter calculation moved the satur-
ation energy of HM2® from —24 MeV to about
-10 MeV.

In these calculations, however, an artifically
strong cutoff was required to prevent a A contri-
bution larger than half of the total o contribution.
Consequently, the results show a strong sensitivity
to the cutoff parameter. This effect can be partly
traced back to the neglect of p exchange at the
NA vertex. At least in S states, it cancels part of
the pion-range transition potentials and thus should
weaken the cutoff dependence. In fact, according
to preliminary calculations,'® the consideration of
p exchange not only reduces the cutoff dependence,
but also removes characteristic discrepancies in
higher partial-wave phase shifts (L =>1).

It has become a matter of controversy whether
the simple pion-range propagator (A2+m %)™,

(K being the momentum transfer) can provide a
realistic description. The transition potential
concept can handle without difficulties only those
time-ordered diagrams which have a pure baryonic
intermediate state (iterative diagrams), i.e., only
the first 4 out of 12 (if antiparticles are neglected)
as shown in Fig. 1. According to Smith and
Pandharipande,! the pion-range propagator might
.summarize the effect of all 12 diagrams to a
certain approximation. However, their arguments
rely heavily on cancellations between crossed-box
diagrams (involving NN, NA, and AA states).
These critically depend on the detailed structure
of the 7NN and nNA vertices which are not known
to a sufficient accuracy. Moreover, it is not clear
whether these cancellations persist in higher or-
ders. )

Since most people dealing with isobar contribu-
tions work in coordinate space, it is clear why so
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FIG. 1. Time-ordered diagrams with positive energy
NA intermediate states.

much effort is put into avoiding the exact time-

ordered propagators. The reason is simply that
these propagators (defined in momentum space)

cannot be transformed analytically into » space.
They can only be handled approximately, simu-

lating them by manageable » space expressions.
This is very cumbersome, see e.g., the recent

work of Saarela.!?

In our case, however, these time-ordered
propagators present no problem since we work
throughout in momentum space, see Ref. 9.
Furthermore, as shown by Schiitte,” the use of
time-ordered perturbation theory provides a uni-
fied scheme for the two-body as well as the
many-body problem, i.e., the transition from the
two-body to the many-body problem is well de-
fined. In fact, this scheme already defines modi-
fications of the NN interaction in the medium for
the pure one-boson exchange (OBE) picture (with-
out introducing isobars). According to calculations
done by Kotthoff et al.,** the OBE potential (mainly
the pion-exchange part) is quenched in the medium,
which reduces the saturation energy in nuclear
matter by about 5 MeV.

There is another reason why time-ordered pro-
pagators should be used instead of the simple
pion-range propagator. Recent dispersion-theoreti-
cal investigations'® have shown that the use of the
pion-range propagator overestimates the isobar
contribution by a factor of 2 or 3. The use of ex-
act time-ordered propagators reduces the isobar
contributions (as will become clear later, see
also Ref. 12) and are thus more in line with dis-
persion theory.

One may ask why not use the results of disper-
sion theory directly in order to construct 4 nu-
cleon-nucleon potential. Then all diagrams like
those of Fig. 1 are automatically included in the
right way, and one avoids all the difficulties with
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explicit field-theoretical models. In fact, if we
would restrict our considerations to the two-nu-
cleon problem, dispersion theory is probably the
best one can do since it provides strong con-
straints due to correlations with 7N and 77 scat-
tering data. However, if the firal aim is to under-
stand nuclear-structure phenomena, we strongly:
believe that modifications of the NN interaction
have to be taken into account. These cannot be
handled in a dispersion-theoretical treatment. Of
course, the results of dispersion theory should be
used as a constraint for explicit field-theoretical
models in order to pin down ambiguities in pro-
pagators, form factors, and so on.

In this paper, it is our aim to present a detailed
_ study (a) of the NAp vertex and (b) of the exact
time-ordered propagators, i.e., we calculate the
first four diagrams in Fig. 1, including (7 +p) ex-
change. It will turn out that both effects reduce
strongly the isobar contribution with pion range
found in Ref. 9. This will allow cutoff parameters
at the NA7 vertices which are in a much more
reasonable range than before, i.e., like in the
other OBE vertices. Furthermore, since our cal-
culations are carried out in momentum space, we
are able to take into account the full complexity of
the NA vertex functions. Therefore, we can study
the approximation of going to the static limit at
the NA vertices, which has to be used by other
authors in order to obtain manageable » space ex-
pressions.

II. OUTLINE OF THE FORMALISM

In this chapter we evaluate explicitly the first
four (iterative) diagrams of Fig. 1, which can be

}
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FIG. 2. Notation for the first diagram in Fig. 1.

reproduced by iteration of a transition potential.
In addition, we also evaluate the four similar dia-
grams with two isobars in the intermediate states.

We first consider the case of 7 exchange and
start with the usual interaction Lagrangians

Lyyn= Wgni@?ys‘l'&; s
(2.1)
Lyan =f4?%u ¥T¥#s,¢+H.c.,
T

where g, is the pion-nucleon coupling constant,
fwnar the coupling constant at the NA vertex, and
m, is the pion mass. Here ¥ denotes the nucleon
field operator, ¢ the pion field, ¥* the field oper-
ator-of the A isobar and 7,T are isospin matrices.
According to standard rules (see Refs. 13 and 14),
the first diagram of Fig. 1, which for convenience
is redrawn in Fig. 2, can be generated by the
second iteration of a transition potential Vy, ,,
namely,

@,A;AQIM;A,l(Z)laAlAQ = Z .

hy ko

with

[ @ ANV @R Ry 2 XE R BEI V] 61 (2)[EAA,)

@’AiAéIV;A,l(Z)‘aAlA;>= (271,)3 My E .,
a

where E, =(M?+§2)*2, E¥=(M%+§%)'2, Mis the
mass of the nucleon (=938.9 MeV), and M, is the
mass of the A isobar (=1236 MeV). Also, z is the
starting energy, w, is the energy of the exchanged
pion, w,=[(§ - §)%+m,%]"2, and A,=(g"-q),. The

4m gﬂfNA'rr M (MMA

1/2* .
E,,E:) Tl.T2Fw(ql’q)Au

2.2
Ef+E, -z ’ (2.2)

ﬁAé(—ﬁ’)uK;(—ﬁ)ﬁA;(ﬁ’)v 5“/&1(6)
20, (Egr +E ¥ Wy — )

(2.3)

summation goes over the helicities of the particles
in the intermediate states, i.e., k,=+%, h¥=£3,+3,
since the A isobar has spin 2. Here, u denotes
the Dirac spinor describing the nucleon, whereas
u* is the conventional Rarita-Schwinger spinor
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describing the isobar. F, is a dipole-type cutoff with A, a parameter, the so called cutoff mass.
The sum of diagrams 1-4 of Fig. 1 plus those in
Fo- ( A% —m,? )2 (2.4) which the A appears on the left-hand side, can
T\AZH @ -9 ’ then be written as

. sy, QAN VT AR KR )RRy REIVEAR)EAA,)
@MMIMLDENA)= 3 [ a g : (2.5)
1. %2
with
VLTA:(V;A,z‘*V;A,z)‘/_Z- . (2.6)

Vya,. differs from Eq. (2.3) only in the denominator, where E, has to be replaced by E*.
Analogously, the sum of the iterative diagrams involving AA intermediate states is given by

N, » @ M|V RAR) R B FREY R IE|V Ea(2)IEAAL)
@ MM M Ep(E) AN = T . 3. [ SESTAER A A AR (2.7)
with
Var=Viaa+Viaaes , (2.8)
where

(= Y (@it (G ey (@)
2w (Ey+EX +wy ~2)

4T fuadd MMy & m o oas

@' MIVRa(DNEAFAY) = @n° m,? E E* T, T, F,.(@,d)A,4,
B q

(2.9)

and V3, , is the same as Vj,,. Explicit expressions for VJ, and V1, can be found in the appendix of Ref.
9. Only the denominators have to be changed appropriately. [Note also thai the denominators are the same
if one neglects retardation effects in Eqs. (2.3) and (2.9).]

Next we evaluate the contribution from p exchange. We start from the mteractlon Lagrangians

Lyy, =Var (gp‘ll'yaT\Ilcp + fM \Ilo“”?\ll(a é,-9, ¢,,))
(2.10)
Lyap =mi—f—’1-’%9~ Ty Sy T (2,8,-0,9,),
where g,,f, are respectlvely, the vector and tensor pNN coupling constants, fy,, is the NAp coupling,
and m,, is the mass of the p meson; o*”=%i[y*,y"].

Thus we obtain for the first four diagrams of Fig. 1 (plus those where the A appears on the left-hand
side) with p exchange

2% SCANIVEN@)R R ERy E |V A)[TALN,)

@' NAM G AREAA,) = Z , (2.11)
ot Ef+E,-z
with
Vl@A:(VﬁA,x’LVﬁA,zW—Z_,' . . (2.12)
where ‘
, 4 fyap M [ MMy Ve o .o .
@AM VR a,4(2)|EA, A = @F —frz;ﬂ* —'< BB Ty T Fo@', Qi p5(=q")y oy *u(-0)
8 8 '
£,8, =848, 7 (& ( _Z.Lig A“)u q 2.13
2w,(Ey+E +w, - 2) Tn@N\go7e* 37 0ol Jua @ (2.13)

and again, V,,,A » differs from V§, , only in the denominator, where E, has to be replaced by E¥. Corre-
spondingly,

CEHUPINO I AESDD dek @ ANV R Z)|kh;’g2<kh*h*iV Aal@ANN) (2.14)

hy ,hz
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with
Vaa=V2aa1+VRaz s (2.15)
where .
N 47 2 MM
@AMV () EAFAY) = Loy MM,

@2n)? m,?

A Aagﬂu_A Apggya—4, AaguB+A Aigau

Frr L1 T Fp @, D) apg (<8 Sy Hud (-G @)y *y “u @
4 a-ae .

2w, (E +E¥+w, - 2)

and V4§, , is the same as V3, ;.

AZ_mZ )3
=L 75
Fp (A 2@ -ar/

(2.16)

The form factor is chosen to be

(2.17)

with A, being a cutoff parameter. For convemence we give explicit results for specific matrix elements

of Via and V24 in the appendix.

The sum of all possible exchanges in diagrams 1-4 of Fig. 1 (including those with mixed =, p exchange)

can then be written as

@' AJAF| My p(2)|TA L A) = Z ff;‘—z‘

(@AM VR AR ER RE) + @ ALV

A(Z)|Eh1h§>]

hyhS

‘ X[ Ry hE |V A@[TALN,) + ERy REIVE A(2)]TALA)] (2.18)
and for AA intermediate states '

IAITAL F1 _ d’r PATALITT 7% % EIA L AL YP v 7, %7, %
@' AN Mpp(2)|EA,A,) = ; . 2_E;*———z— [@ AN VRN R RIRE) + @ AL VAN K RERE)]
LR ¥ : :
x [(kh*h*lvAA 2)GA A+ ERIRF|VAARR)|GAAL)] (2.19)
r

One final remark should be made. Of course, AzZ-mz2 \"
these iterative diagrams could have been ob- Fo= A~ A? ) (2.21)

tained without introducing the concept of transition
potentials. Specifically, the sum over intermedi-
ate helicities can be replaced by suitable projec-
tion operators. However, transition potentials
are explicitly needed in order to calculate isobar
components of wave functions, which are of con-
siderable importance in nuclear physics. (We will,
however, not perform such calculations in this
paper.) It should also be noted that in order to
make the cutoff mass in F, equivalent to the one
used in Ref. 9, we have multiplied both F; and F,
in Eqs. (2.4) and (2.17) by the factor (E*M/E MA)"'2
in the definition of V,, and by EXM /E M, in the
definition of Vpx.

In order to calculate phase shifts, we define an
effective potential

Vetr (2) = Vopg (2) =My a(2) =Mpnp(2) .

Here, Vogg(2) is the one-boson-exchange potential
of Ref. 14 with suitably modified parameters. In
contrast to Ref. 14, we now make a more conven-
ient choice for the form factors, i.e., in Vypp we
choose )

(2.20)

at the vertices, with n=1 for a=m,7,0,6 and n=3
for a=p,w, ¢; A’ =(E, - E) - (@ -4)°. Mpp(2)
and M y,(2) are obtained from Egs. (2.18) and
(2.19). The R matrix is then given by

P
R(2) = Ve (2) + Vegg (2) R(z), (2.22)
z-H,
where P denotes the principal value.

we obtain,

Explicitly,
in partial waves and helicity state basis,

(AAJIR(q', ql2)| ALA,)

—<A Azl n(q qu)lAAz

>EIN 2”’“’ (LAY Vst (", 12| By )

Ry:hy

X(hyhy|R7 (", ql2) | A ALY . (2.23)

Here, the starting energy is z=2E,. The deuteron
data are calculated analogously. For further de-
tails, we refer to Refs. 9 and 14 and to the review
article of Erkelenz.'®
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TABLE I. Parameters for the transition potentials. Here A
and A‘o are given in MeV.

f!%/An : f[\zlAp An Ap
0.27 15.41 1200 1200

III. RESULTS AND DISCUSSION

The parameters in the transition potentials,
used throughout this paper, are given in Table I.
The value 0.27 for fy,,” is between the Chew-Low
value (0.32) and the value derived from the quark
model (0.23) and is actually suggested from 7N
studies.'” fy,,? is obtained using the usual rela-
tion! based on the quark model

2 fNAr

fNAp f 2_L(1+f/gp)2

where f,*= (m,/2M)g,?, g,2=14.4, and g,2=0.55,
A /g,,= 6.6 as suggested by the analysis of Hohler

Nw & — (0

T T T T
0 250 500 750 1000 1250
G (Mev)

FIG. 3. The NA contribution with only v exchange,
ie. “ the contribution of (g’ |M%A(2)|qg) in Eq. 2. 5), for
the So partial wave, with ¢’=gy=250 MeV [z=2(qy?
+M% /2 as a function of ¢ is denoted by the solid lines.
Curve 1 shows the full relativistic results while curve
5 shows the results when the static limit is taken at the
NA vertices. The dashed curve (curve 2) is obtaihed by
replacing the time-ordered propagators in the transition
potentials V§, 1 and VY, ; by simple pion-range pro-
pagators. The dashed-dot curve (curve 3) is obtained
using the prescription of Durso et al. (Ref. 15), i.e.,
taking V}{,A' 1 as in curve 2 but using a range of W,,
in V74, 2. In the dashed double-dot curve (curve 4) the
range in V §, 4 is taken as 2m,, while it is taken as
4m, in V’VA, 2

and Pietarinen.'® The cutoff parameters are
chosen to be 1200 MeV in both F, and F, and are
therefore in a much more reasonable range than
before.®

In Fig. 3 (solid line) we show the contribution
of diagrams 1-4 of Fig. 1 (plus those in which the
A appears on the left-hand side)-involving only 7
exchange, i.e., the contribution of Eq. (2.5), in the
1S, partial wave, for q’=q,=250 MeV [z =2(g,?
+M?)1/2], The dashed line is obtained by replac-
ing the time-ordered propagators in both Vi, ,
and Vy, , by simple pion-range propagators, i.e.,
by (§’ - §)?+m,? in other words, retardation ef-
fects are neglected. It is seen that these retarda-
tion effects suppress the contribution by a factor
of 3. InRef. 15, a modification of the pion-range
propagator, still tractable in » space, was pro-
posed in order to take into account these effects.
It consists of taking V},,, the same as before,
but using for the propagator in V§, , @ -§),*
+3m,?, i.e., the range is shortened to V3 m,. We
see that the result (dash-dot line) goes in the right
direction, however, the effect is only 20% of the
total retardation effect. That this modification
underestimates the effect can be traced back to
severe approximations used to derive it (initial
nucleons at rest and neglect of nucleon recoil ef-
fects), as was already recognized in Ref. 15.

This shows that, in order to simulate the exact
time-ordered propagator, the range has to be
chosen much shorter. We arbitrarily chose 2m,
for Vy,,, [i-e., (@ —-§)%+4m,? for the propagator]
and 4m, for Vy, ,. The result is given by the dash-
double dot curve. It is seen that this (phenomeno-
logical) prescription roughly agrees with the cor-
rect result for low momenta g, but overestimates
it for higher q. This suggests that a very sophis-
ticated prescription is needed in order to replace
time-ordered propagators by manageable » space
expressions, see also Ref. 12. In any case, such
a replacement destroys the specific structure of
the propagator necessary for a well defined pre-
scription in going from two-body scattering to
nuclear structure, see Ref. 13.

In addition, we show the results if we go to the
static limit at the NA vertices in Eq. (2.5), keep-
ing the propagators the same. It reduces the ex-
act contribution by roughly 25%. Our calculations
have shown that this is true for all propagators
considered in this figure. Thus the combined use
of (i) the static limit at the vertices and (ii) the
pion-range propagator (as is usually done in»
space calculations, see Ref. 1) overestimates the
contribution from an exact calculation of dlagrams
1-4 by roughly a factor of 2.

Figure 4 shows the corresponding results for
the contribution of the iterative diagrams involv-
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FIG. 4. The results for the AA contribution with only
7 exchange, i.e., Eq. (2.7), with the same notation as
in Fig. 3. For the Durso et al. (Ref. 15) prescription
(curve 3), both V4, 1 and V4, » have range v3m,,
while for curve 4 they both have range 4m, .

ing AA intermediate states, i.e., the contribution
of Eq. (2.7). The modifications of the range are,
however, consistently changed compared to the
former case: for the dash-dot line, m, is now
replaced by V3 m, in the propagators of both V3, ,
and V3, ,; for the dash-double dot line, m, is re-
placed by 4m, both in V3, , and V3, ,. There are
characteristic differences compared to Fig. 3.
First, the relative contribution of higher momenta
is much larger now; this shows that the AA con-
tribution is considerably shorter ranged than the
NA contribution of Fig. 3. Second, for low mo-
menta, the NA and AA contributions are roughly
the same for the pion-range propagator, whereas
the use of the exact time-ordered propagators
reduces the AA contribution relative to the NA con-
tribution. On the other hand, the effect of modi-
fying the range is the same as in Fig. 3. Also,
the use of the static limit at the vertices together
with the pion-range propagator overestimates the
true contribution again by roughly a factor of 2.

A comparison with Fig. 2 of Ref. 9 shows that,
for lower momenta, the sum of the NA and AA con-
tribution, i.e., the sum of Eq. (2.5) and (2.7),
agrees roughly with the corresponding contribution
using the pion-range propagator and A,~ 850 MeV
(the different values for fy,,> used in this work ‘
and in Ref. 9 have to be taken into account). In
other words, the use of the exact time-ordered
propagators allows the use of A, =1200 MeV in-
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1075M (Mev2)

T

T T
0 250 500 750 1000 1250
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FIG. 5. The analogous NA contribution to Fig. 3 for
only p exchange. Again the solid curves denote the
results for the full relativistic and static limit cases,
curves 1 and 4, respectively. Curve 2 denotes the re-
sults with simple p-range propagators in V4, ; and
V fa, 2 while for curve 3, when the Durso et al. (Ref. 15)
prescription is used, m“,2 is replaced by m, 2+mp (Ma
— M) in the propagator for Vi, ;.

stead of A, =850 MeV.

In Figs. 5 and 6, we show the analogous contri-
butions for p exchange, i.e., Eqs. (2.11) and (2.14).
Again, the exact time-ordered propagators reduce
the contribution obtained with the usual choice
[i.e., (¢’ —q)*+m,? as propagator] by roughly a
factor of 3 as in the case of pion exchange. This
shows that the effect of time-ordered propagators
cannot be neglected as suggested in Ref. 12. The
dash-dot line again shows the result for a modi-
fication of the p range propagator according to
Ref. 15. In Fig. 5, m,® is replaced by m,** ~m,?
+m,(M,—M) in the propagator of Vi, , (V§,,, is
the same as for the dashed line); in Fig. 6, m?
is replaced by m,** in the propagator of both V%, ,
and V%, ,. We see that the agreement with the
exact result is much better than for the pion case.
Again, the combined use of the static limit at the
vertices and p range propagator [(§’ —§)*+m,?}]
overestimates the exact result by roughly a fac-
tor of 2.

The next two figures show the effect of combin-
ing the m and p exchange contributions. In Fig. 7,
the two dashed lines show the NA contribution,
i.e., Mya(z) of Eq. (2.18), again in the 'S, partial
wave for g’=¢,=250 MeV. Curve 3 denotes the
full (relativistic) result, whereas curve 4 shows
the result if the static limit is taken at the NA
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FIG. 6. The analogous AA contribution to Fig. 4 for
only p exchange. The notation is the same as in Fig.
5 except for curve 3, where m, 2is replaced by
m, 2+m, (Ma—M) in the propagators of both V5, ;
and VPAA' 2e
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FIG. 7. Results from combining 7 and p exchange
using time-ordered propagators. The solid curves de-
note the NA and AA contributions with # and p exchange,
i.e., Myp+Mps. The dashed curves denote only the NA
contribution with = and p exchange, i.e., My,. Both the
full relativistic and static limit cases are shown, curves
1 and 3 and curves 2 and 4, respectively. The NA and
AA contribution with only 7 exchange is also given by
the dashed-dot curve. As before, the results are
shown for the IS, partial wave with g’ =g,=250 MeV.

vertices. A comparison with Fig. 3 shows that the
inclusion of p exchange suppresses the NA contri-
bution by a factor of 2 in this partial wave. The
result for the static limit happens to be the same
in spite of the fact that both 7 and p contributions
are strongly modified separately. This feature,
however, does not persist in higher partial waves.

The two solid curves (curves 1 and 2) denote the
sum of NA and AA contributions, for the relativ-
istic case and the static limit, respectively, i.e.,
the sum of Egs. (2.18) and (2.19). Thus the differ-
ence between curves 1 and 3 or between curves 2
and 4 gives the AA contribution. A comparison
with Fig. 4 shows that the AA(7 + p) contribution
is in fact larger than the AA, 7 contribution, i.e.,
in this channel, the inclusion of p exchange en-
larges the AA contribution. The strong reduction
of the total contribution due to the static limit
(nearly by a factor of 2) can be completely traced
back to the reduction of the AA contribution. The
dash-dot curve shows only the 7 contribution (NA
+ AA), which roughly agrees with the correspon-
ding (7 + p) contribution. Again, the strong reduc-
tion of the NA, 7 contribution by adding p exchange
is partly cancelled by an increase of AA&,7 due to
the inclusion of p exchange.

In Fig. 8, the two solid lines (curves 1 and 2)

\
\‘_

10"°M(Mev 2)

T T T T
0 250 500 750 1000 1250
Q (MeVv)

FIG. 8. Results from combining 7 and p exchange
using simple 7- and p-range propagators. The dashed
curves denote the NA and AA contribution with 7 and
p exchange replacing the time-ordered propagators in
the transition potentials by simple 7~ and p-range
propagators. The solid curves denote the same results
with time-ordered propagators. Both the full relativ-
istic and static limit cases are shown, curves 1 and
3 and curves 2 and 4, respectively.
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again show the (NA+ AA) contribution arising from
(7 + p) exchange. The two dashed lines (curves 3
and 4) show the results when the time-ordered
propagators in the transition potentials are re-
placed by usual pion-range and p-range propaga-
tors [i.e., (@ -9P2+m,?, (@ -§)?+m,?]. As be-
fore, curves 1 and 3 show the relativistic result
and curves 2 and 4 the static limit at the NA ver-
tices, respectively. Again we see that the use of
the exact propagator reduces the contribution
drastically. This figure also shows that the con-
sistent use of the static limit in the whole expres-
sion (i.e., static limit at the vertices together
with pion range) overestimates the exact contribu-
tion by a factor of 2.

These results show that the possibility of using
a reasonable value for the cutoff mass in the NA
vertices is due to the combined use of time-order-
ed propagators and p exchange. The effect of p

1.2
0.8
g 0.4
g
* -0.0
s =
w
w
2 0.4
I
a.
o
V1 -0.8- <
- ~
-1.2 T e T
0 100 200 300 400

Eigb (MeV)

FIG. 9. Nucleon-nucleon nuclear bar phase
shifts (in radians) as a function of the nucleon lab
energy (in MeV). The error bars are taken from the
energy-independent Livermore analysis (Ref. 19).
Results for the full Vs, (Eq. 2.20) discussed in the text
are denoted by the solid curves, with the full relativis-
tic and static limit cases taken at all the NA vertices
shown in curves 1 and 2, respectively. For the dashed
curves, AA contributions have been omitted from Vg,
in curve 3 the AA, p contribution is omitted, while in
curve 4 the whole AA contribution is omitted. The
dashed-dot curves denote the analogous results for the
NA contribution when the whole AA contribution is
omitted as well. For curve 5, the AA and NA, p con-
tributions have been omitted from Vs, and for curve
6, both the whole AA and NA contributions have been
omitted. These two curves are not shown for T=0
states, since NA states are forbidden there. The en-
tire intermediate range attraction is left out in curve
7, i.e., the NA, the AA and the ¢ contributions have
been omitted from Vig,.

exchange is different in various partial waves (as
will be seen below by looking at the effects on the
NN scattering phase shifts). In fact, p exchange
seems to help in obtaining a consistent descrip-
tion of the data, see Ref. 10.

Figures 9-18 show the resulting NN scatterihg
phase shifts, obtained by solving Eq. (2.23) nu-
merically. The experimental error bars are
taken from the energy-independent Livermore
analysis.'® The solid curves show the results if
the full, unapproximated V,,, [Eq. (2.20)] is taken,
with parameters in V55 adjusted such that a
reasonable description of all phase shifts is ob-
tained. The corresponding parameters are shown
in Table II. It is seen from the figures that a
quantitative description of all phase shifts (like
in realistic pure OBE models) is not possible at
this stage (nor did we expect that). Possibly this
is due to the fact that diagrams 5-12 of Fig. 1 and

1.2+
g 0.8
=
= 0.4
I
w
w
2 -0.0
s
a
& 0. <.
-o.aL - :
0 100 200 300 400
Ejgp (MeV)
FIG. 10. (See Fig. 9.)
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E s (MeV)

FIG. 11, (See Fig. 9.)
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3D, PHASE SHIFT (rad)
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FIG. 18. The same notation as in Fig. 9—17 is used
here except that curve 2 has been omitted since it
cannot be distinguiched from curve 1 in the figure.

the corresponding diagrams involving two-nucleon
and two-isobar states have still to be included.
(At the moment they are effectively described by
part of the phenomenological ¢ meson). In other
words, we are rather sure that an extension of the
simple OBE model must include all diagrams of
Fig. 1 (plus the noniterative diagrams involving
two-nucleon intermediate states) before a quanti-

tative description of the data can be expected again.

Nevertheless, we strongly believe that one should
proceed step by step and study the effects separat-
ely. The present description of the data is good
enough to study specific features of the isobar -
contributions (i) in two-body scattering, which is
the main goal here, and (ii) in nuclear structure,
which is done in a separate paper.?®

All other curves in Figs. 9-18 are obtained by
making certain approximations and by omitting
specific contributions in V,, i.e., the parameters
are always kept the same. Curve 2 gives the re-
sult if the static limit is taken at all NA vertices.
The dashed curves (curves 3 and 4) show the re-
sults if AA contributions are omitted; in curve 3
the p meson in the AA contribution is omitted,
whereas for curve 4 the whole AA contribution is

TABLE II. Parameters for V,

omitted. The dashed-dot curves (curves 5 and 6)
show the analogous results for the NA contribu-~
tions when the whole AA contribution is omitted
as well. The dashed-double-dot curve (curve 7)
is obtained by omitting, in addition to the whole
(NA+ AA) contribution, also the ¢ contribution,
i.e., the total intermediate-range attraction is
left out. Thus, going from curve 6 to curve 4
shows the effect of introducing the whole NA con-
tribution, whereas the step from curve 4 to curve
1 gives the effect of the whole AA contribution.
Going from curve 5 to curve 4 shows the effect of
the NA, p contribution separately, and the step
from curve 3 to curve 1 gives the AA,p contribu-
tion. Going from curve 4 to curve 3 gives the
effect of the AA, 7 contribution, whereas the step
from curve 6 to curve 5 gives the NA,m contribu-
tion. There are, of course, no dashed-dot curves
(curves 5 and 6) for isospin-zero states, since
NA states are forbidden there.

The figures show that the use of the static limit
at the NA vertices in general reduceés the:isobar
contribution (apart from D). The effect is large
in S waves. In%,, for example, where only AA
states contribute, the isobar contribution is re-
duced to roughly one third of its original value.
Figure 7 showed that also in S, the main effect
comes from the AA contribution, i.e., the NA
contribution does not change appreciably if the
static limit is used, see also Ref. 10. This is
plausible, since, due to its shorter range, the
AA contribution is more determined by higher-
momentum components, which, in turn, are more
affected by the static limit. Thus, the effects of
going to the static limit cannot be neglected any-
more, in contrast to Ref. 9, where the artificially
strong cutoff (A, ~ 600 MeV) suppressed strongly
any effects in the high-momentum components.
Furthermore, the relativistic NA vertex can only
partially be mocked up by increasing, e.g., the ¢
contribution, since the effect is different in differ-
ent partial waves.

The effect of the AA contribution is comparable
to the NA contribution in the S, partial wave, but
is reduced in higher partial waves due to its com-
paratively shorter range, especially the AA,p

opg defined in the text. Here m and A, are given in MeV. The number in
brackets denotes the ratio of coupling constants fp /g o

T n I

S w o ]

g2 14.4 49978 13.5416
a

(3

A, .2000 2000 1300 1300

0.0718 30.012
m 138 548.5 599.7 960

0.4701 (6.61) 5.3613
782.8 712 1020
1650 1650 1650
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TABLE III. Low-energy scattering and deuteron data. Here
E, Q, and P}, are the binding energy, quadrupole moment and
D-state probability of the deuteron, respectively. Also,as and
a, are the singlet and triplet scattering lengths while 7, and r,
are the singlet and triplet effective ranges, respectively.

Exp. Theory
E (MeV) 2.22462 + 0.00006 2.2249
Q (fm?) 0.2860 *0.0015 0.280
P, (%) 5 2 4.50
a, (fm) -23.715 +0.015 -23.70
r, (fm) 2.73 +0.03 2.74
a, (fm) 5.423 £0.005 5.40
r, (fm) 1.748 +0.014 1.72

contribution is strongly suppressed in waves (L
=21). In general, p exchange acts opposite to 7
exchange; the role of p exchange is nicely demon-
strated, e.g., in the 3P, partial wave. In fact,

the inclusion of p exchange helps in obtaining a
consistent description of the important 3P states,
see also Ref. 10. Note that our total A contribution
has roughly the same strength as the version in
Ref. 9 with A, ~ 700 MeV. With such a cutoff mass,
typical discrepancies showed up in Ref, 9 for °P
states and 'D,. The present figures show that p
exchange partly removes these discrepancies.

Compared to the former procedure in Ref. 9
(where the simple pion-range propagator was
used), the total A contribution is now suppressed
much more in higher partial waves. This feature
can be traced back to the much shorter range
generated by the retardation effects of the time-
ordered propagators.:

Finally, the low-energy scattering and deuteron
data determined from the exact V, are given in
Table III. Note the small value of the D state
probability in spite of the relatively weak nNN

form factor used here. This feature can be traced

back to the retardation etfects of the time-ordered
propagators, which suppress higher-order contri-
butions in Vg, i.e., contributions coming from the
tensor force. Thus, it is possible to obtain a low
D state probability (which nowadays seems to be
favored by certain few-body reactions®) without
using an unreasonably strong 7NN form factor.

IV. CONCLUDING REMARKS

In this paper, we have calculated the fourth-
order iterative diagrams involving NA and AA in-
termediate states and including 7 as well as p ex-
change in the framework of “old fashioned” per- -
turbation theory. The neglect of retardation ef-

fects in the time-ordered propagators (which re-
sults in the simple propagators of pion, respec-
tively, p range) leads to a serious overestimate of
the isobar contributions by as much as a factor

of 3. On the other hand, the static limit under-
estimates the contribution by roughly a factor of
2. Therefore, the combined use of (a) pion-range
and p-range propagators in the transition potential
and (b) the static limit (which is necessarily per-
formed by groups working in » space) overesti-
mates the isobar contribution by roughly a factor
of 2. This is in line with the dispersion-theoret-
ical results of Ref. 15 based on empirical amp-
litudes for NN - 27 in the pseudophysical region.
However, since this factor is slightly different in
different partial waves, the approximations (a)
and (b) cannot adequately be mocked up by a mere
change of parameters. -

NN scattering phase shifts have been calculated
using these diagrams together with a suitably
modified OBE potential. It turned out that the ef-
fect of the NAp vertex is different in different
partial waves; this feature helps to improve the
description especially of the important 3P partial
wave phase shifts. The overall agreement with
empirical data is good enough to allow a meaning-
ful calculation of binding energies of nuclei. The
results of such calculations are reported in a sep-
arate paper.? On the other hand, the slight, but
characteristic discrepancies between theoretical
and empirical phase shifts in some partial waves
suggest an extension of the present model. The
next step is to also include the noniterative dia-
grams of Fig. 1 together with those involving in-
termediate NN and AA states. This problem is
presently being attacked by the present authors
and will be the subject of a forthcoming paper.

Many stimulating discussions with Professor
K. Bleuler are gratefully acknowledged.

APPENDIX

Here we give the results for some matrix ele-
ments of our p exchange transition potentials,
which are needed in order to describe NN scat-
tering. Here { is parallel to the z axis, q’ lies
in the xz plane and 9 is the angle between § and §’.
We first define the following quantities:

lq !
A= (1e5%), ar-(1e52L5),

q' q q'|. q
(e 8). oe(is)

where W=E,+M, W' =E_+M, and W*=EX+M ,.
Furthermore,
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Do = AT fyne W’ (W *W>1/2 where Cya(I), Capl) are appropriate isospin fac-
NYAT 27 m o 4E, \E}E, tors, I being the isospin of the two-baryon system:
CnaDF, Cyal0)=0, Cya(l)=(®)"2

zwp(Eq,+E¢+wp—z)’
Cpn(0)= =V2, Can(l) = — (R)1/2
tr fyu? WOWH Con(DF, AN » Can(1)=- (9

DAA:-(Z‘H)’ myp? AE EX 2w,(E; +EX+w,-2)’ We start with V§, ,, i.e., Eq. (2.13):
P q p\q ¢ P A, 1
|

@551V a L [ = Dyal)V2sing [((gp+fp)[%q'A B¥+ (e +q)AB,]
-éwL[%q'(E,, +EJA_B¥+q'qA_A¥ — (39" +q)(Eyr —Eq)AfB-D

+%ql ((gp"'fp)(A-rBf 'AIB+) —Z_J;WL[(E", +EG)A_BI
+29A_A ¥+ (E, —Eq)A;"B-])cosS}‘,

f

(@33 |V [05-5) =Dy 3 )% sin® ((gp+fp)(A+Bf—Ai‘B+) -2 (B + EJA_B* - 24A A%+ (B, —Eq)A:*B_]),

14

(@35 |Va, |03 =Dya®V? {(gp+fp) ((%q' -q)AB*- (39’ +q)A¥B, -2 ;Z—A(q'+q)BtB+- i 1'(A.BY-A¥B)
A

ql

*
M p ABZ

~ Lo (5, + E) G0’ -4 B2 -0’08 A2~ (5, + Bz + 20"
+(Egr '—Eq)((%q’+q)AiB_+21—V’-f—A(q’+q)BfB_ —%’EWAIB-)]}
+ [(gp+f,,)<(q’ -q)A.B*+ (@' +q)A*B, + 21—&1—A(q' +q)b:,"B+>
Lo (@ +B)G@ -0 B2 -, -E)G A28

-2(E, -Eq)—ﬂ%—A—(qwq)B;*B_ﬂ cos)
' : 1 * * En*_ * * 1& *, L ; *
+4q (gp+fP)Z(A+B-_A-B+)+MA(A+B+ -AB,) —ZIV[(qA'A'+2(EqI+Eq)A'B‘

eq q2 * 1 Ax Eg* * 2
+ MA(E“'+E")+2M_A A_B++(Eq,—Eq)gA_B_+MAA+B_ cos |,

@221 Va8 -2) =Dya®?sing {(gp+fp) ((%q’+q)A+B $+30°A1B. [ ExA, B2 AB,)+ 2488
A
4
-é—{@[wa +E)GY + DA_B I+ q'QARA - (B, + E)EF+ %A B
A
—(E:—E)(lq'A*B L pxaxp_ —2q L 1ap )]
4 a2 +0 - IWA @ - IVIA -

+q’{(g'p+fp)(%(ArB+ "A+B-:-") _%(A+bf-A’_’(B+))

o lr EX q2 o
+ﬁ 2(E01+E¢)A,_Bf —qu_-ﬁ- (Eq: +Eq)7‘jt+2m _B*

*
+ (Byr —Eq)(%AIb_+ Eg g5 YSeoss ),
M,
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(@3 =5|V5a,,[03 -3 =Dyat )%’ sind(1 + cosd) ((g,,+fp)(A+Br+Arb+)
- 2{_57[(50, +E)A_B¥+2gA_A¥ - (E, —E )A¥B.] ),
(8% =3 V3 [389) = =Dy 7201~ cos9)| (g, + £)lb0"4, B - g’ +0)42B.]
+ %‘;,1— lg’qA.A* —3q"(E, +E)A_B¥ - (30" +q)(E, - E JA* B-])
+%q’<(g,,+f,,)(A,,Bi‘ +A*B,)
v Lo {00 At - (B, +BJABE+ (6, ~EJATB] )cos]
2L =11 1)1/2 Loy * o A% EY , * _ A% q? *
dz -2 ,VNA,llan)=DNA(3-) sind(< (g, +f,)( g’ +q)(A,B¥ +A* B,,)—mq (A,B* - A* B+)—2M—B+B_
. A
?
"% [(Eq, +E)(zq" +q)A.BF +q'gAF A, ‘%[(Eaﬁ’fq,)E:*zqzlA-Bf
-(E,-E )((zq +A*B_+ 2L raxp. —2——B*B >]}
M A
’ i * * EF * *
—-q' (g, +f,)z(A, BF+A} B)+3; A, BX+AXB))
A
vJe[gara 1@, E)A B _ LB, +E)+24%A B>
oM qasAa_ -2 ¢ tEMA. +—MA ot q+q -
1 E}
+(E,-E) gAj‘B_+ﬁAfB_>] cos9),
A
. ' EX
Q%-%IV?’M,JQ%—§)=D~A(%)1/2(1+coss)({(gp+fa)<%q,AfB+‘( q' -q)A,BX+ *i 4 ,(A BI+AlB )>
A
f" [q "qA_A¥* — g’ -g)E,+E)A_B*
ql
+3 [(E g +EJEE +247)4. B}
~(E, —E)bq <A*B +2 "A*B )]}
A E¥
' (gp+fp)<§(A+Bf+A3‘B*)+M(A+B:‘+A;“B*)>
A
i__. * A* —_— * 2 *
i 2(E,+E)A_B*+qA. +37 [(E,+E)E +2g%]A_B*

-(Ey-E )< A*B_ I Eq A*B >}} coss).

Also (§’33] VA ,ld = A, = A,) can be obtained from (§'33| V§4 ,/A,A,) by replacing there (¢, cosd) by (~g,
~cos9) and (' — 3| V§a,,/§ =A,-A,)can be obtained from —(q’s — 3|V, |§A,A,) by the same replacement.
We now present the results for Vi, ,,, i.e., Eq. (2.16): :

@35V, |333) =Daa 3 (L + cos9){[(g”* + 2¢*)A}® +q"*B}¥*] - 4¢'qA}* cos9 +q'* (A} - B}*) coss},

EIVAA 1 ’CIZ % = _DAA%q'z(AfAf - B}BY*) sin®9 s
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- . Ex* .
@312, 8 -9 =Dassinot ) (a7 + @ 20082 -2 B gazar cBi) -2 @ v gazE:)
A A
E*
q'<A;*2 - BP 2oL (ALAF —B;"B_*)) coss |,
A

12

- - . E}
@55 Van, |88 = -Das )"/ sing [((%q'z LOIATAT - T q gAY 4 ]
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2YA X B*
MA )A-OBl-
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-3q'(q’ - 2q)B}B* +—%q'*B}
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A
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. E} EP
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A A
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+{2q 2q%+2q M +4MA2)B*B' MAq (q" - 2q)B? ]
’ * A * ’ Eq 442 Eg .2 d_ Axpx
+q'|2qAYAX - (q —qFJ—M A +@'+ady] A +(q +3q)3~ A B?
A

* EX
v2q - ELarBr 120 + )L A*By
MA MA

’_ q *R* ( _ q2 ) -
+(q 34)]—”:%1_3_ +2g(1 M B*B?
E} E*
’ B*z_ 1 _ q *2]
+2(q +61)M—*LA ¥ _2(q q)—M B*?|cos9
2 1 E* G 2 '2 2 2 2
+q*|\5+2-- 5 J(A¥AX + B¥B¥) +—+ (A¥* + B¥* + A¥* + B}*) | cos® ¢,
M, M,
FrL_llye  |ZTL_1y_ 1 CEY i oaeax. Bl 47 e 4EE oo
(@3- 2| Via, |35 - 8 = —Duna5(1 +cos9) qqATAY +q" Ty - —AF — 2¢' (¢ +q) ~FALB]
' M, M7 4
(At q A*B* E: (7 * R %
-q'q’ - q)p~ATBY +57q'(¢" - 2q)BIB?
a A

’
AZ 2 (@'EF -2¢")BF - (54" - q'q +q2)Bf2)
A

E*
+q’(M (@' +q)AXA* + 2’ AX® L 2(q’ +q) A*B* (@' - )XZ——A:"Bj‘
N

+ 2q—’—B*B*

2 (E¥ - ¢")B — (5’ - q)B_*2> <089

*
—q'2<§(A_*2 B*2)+ (A*2 B}*?) ]I%L(A,f‘A:k +B;“Bf))cos28].
A
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Further matrix elements can be obtained by noting that

-1 -
-.,11 {VAA,1 IaAzA1> - (q'zz 'VZA,l lqA1A2>,

|A, ~A,|even

'3 V24 3N, |A, - A,]odd

and

(ﬁ’% - %[ VZA. 1 IEA1A2> =(ﬁ'é -

2|Vaa,

In addition, (a'gglvAA, |- A, - A,) can be obtained

from —(§'33|V4,,,|dA,A,) by replacmg there
(g, cos9) by (—¢q, —cos9) and (§’'% ZIVAA Ja-4a,
- A,) can be obtained from (§'3 - 3|V4,,,|dA, A2>

by the same replacement.

In actual calculations, we need the partial wave
amplitudes. They are given by the general for-
mula

a—Az"A1>'

(MAL VI (', q|2)AA0,)

+1
=21 [ d(coso)d {, (KT AL V(@) [A,0,),
-1

A:Al_AzyA,:Alx"Aé

and are evaluated numerically.
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