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Correspondences are shown between semiclassical and quantum mechanical calculations that employ the
same real potential. Comparisons are made to experimental scattering, complete fusion, and total reaction
cross sections for ' 0+ ' Pb. The separate roles of rainbow and absorptive effects are shown, Deductions of
the nuclear potential from fits to data clearly depend on the adopted sequence of data fitting procedures and
the freedom given at each stage to the parameters of the chosen potential. It is this sequence that plays a
large role in the inference of weak vs intermediate vs strong surface absorption. The sequence we choose
implies intermediate surface absorption for this case. Parameter adjustments are explored for data fits that
employ the proximity potential.

NUCLEAR REACTIONS Classical, semiclassical, and quantum mechanical
analysis for the system 60+ Pb. Elastic scattering, fusing, and all reactive
collisions are treated and related to classical turning points for each E wave.

I. INTRODUCTION

A widely used approach to reaction phenomena
begins with the parametrization of a real two-body
one-dimensional potential-energy function and sep-
arately a device or devices to describe reaction
(or absorption) probabilities of various sorts. '
For interactions between complex nuclei, the real
and imaginary parts of a phenomenological optical
potential are often eInployed in quantum mechan-
icai2 and/or semiclassicai3 calculations. Classical
mechanics is also, of course, used to advantage
with a real potential and some auxiliary assump-
tion(s) to specify reaction probabilities. ' The
quantum mechanical optical-model codes' have few
mathematical approximations but require many
parameters whose roles are interwoven and thus

I

hard to separate. By contrast classical and semi-
classical calculations usually involve more ap-
proximations but can often be characterized by
parameters whose meaning is more transparent
than the quantum mechanical ones. ' This trans-
parency can be very useful for building intuition
and identifying the relationship between various
measurements and the parameters in the model
potentials. ' 6

It is well known that experimental data for one
type (e.g. , elastic scattering or reaction cross
sections of a given class) can be accounted for by
very different potential-energy functions. Even

the basically different effects of absorption and re-
fraction are not easily separated by comparisons
of theoretical calculations to experimental results.
Most comparisons have focused on one class of
experimental data to the near exclusion of other
sources. In this study we successively modify a
nuclear potential to attempt to account for three
kinds of experimental data, cross sections for el-
astic scattering, fusing collisions, and all reac-
tions. We start with an empirically developed real
potential based on total reaction cross sections
and quarter-point angles for elastic scattering.
We try to develop a feeling for the different roles
of the real and imaginary potentials Qy the com-
parison of classical approach distances and deflec-
tion angles to quantum mechanical transmission
coefficients. By iterative modifications of the po-
tential we achieve reasonable fits to the data, but
we stop short of using energy dependent potentials.

For this exercise we use the same real potentials
(an empirical one or the proximity potential' ), and
we calculate transmission coefficients either by
pure quantum mechanics via the code ABACUS-3 or
via an empirical formula obtained from data sys-
tematics. ' Second, we use the extensive experi-
mental studies of Videbaek et al. ' and others" to
estimate the radial extent of the absorption for the
system "0+"'Pb. For elastic scattering we note
separately the rainbow and absorptive effects on
the gross cutoff from Rutherford scattering and
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also on the more detailed shape of the elastic an-
gular distributions. And finally, we discuss com-
parisons to calculations involving the proximity
potential which is proving to be very useful for the
description of interactions between complex nu-
clei."
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II. OBJECTIVES AND METHODS OF CALCULATIONS

A. Roadmap

The first objective of this study is to develop a
feeling for the relationship between classical tra-
jectory calculations and quantum mechanical, op-
tical-model calculations. We use a particular real
potential (Fig. I) to calculate classical deflection
angles and approach distances (Fig. 2). Then with
the same real potential in the optical model
(ABACUS-3), '.along with a Woods-Saxon imaginary
potential of varying radius parameter xr, we ob-
tain values of transmission coefficients (T,), l, &,
(the particular / with T, = —,'), reaction and elastic
cross sections (os and a„) for each input value of

We show the dependence of l, &, and 8,&4

(quarter-point angle for elastic scattering) on rz
(Figs. 3 and 4). From the classical trajectories we

obtain strong absorption distances D, &, (approach
distance for l, &,) and compare them to the classical
rainbow distanc'es R„(Fig. 2).

These various relationships between the classical
and quantum mechanical parameters give a picture
of scattering and reaction patterns from the limit
of rainbow dominance to that for surface absorp-
tion.

We then associate the complete fusion cross sec-
tion 0 „with the reaction cross section in an optical
model with absorption confined to the interior. In
this model the dependence of o„on energy (at low
energies) can be used to fix the s-wave barrier in
the real potential (or the fusion barrier). Similarly
in the limit of weak surface absorption the value of 8y/y

depends on the real potential near the rainbow dis-
tance (Figs. 2, 4-6). If strong absorption occurs out-
sideR„(i.e. , D,~, &R„)thenthe value of 8,Adepends on
the imaginary potential (Figs. 2-4). In addition,
the difference between 0 „and 0„as a function of
incident energy gives a reflection of the extension
of the absorptive potential beyond the maximum in
the real potential (Fig. 7).

For the reactions of O with Pb we make a
series of comparisons to experimental data. ' We
find that for energies greater than =90 MeV re-
fractive (or rairibow) scattering seems to dominate.
In this picture the strong absorption distance D, &,
remains almost constant with energy while the
fusion distance R varies with energy. This sug-
gests the possible applicability of several simple
semiclassical parametrizations for measured
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FIG. 1. The l-dependent real potential from Eqs. (13)
and (14), with V~(RO)=4.0 MeV, h(do-—4 MeV, Ro ——12 fm„
and Eo ——74.77 MeV. This potential is compared to the
real potential, proximity l(Eqs. (17)-(24)] . (b = 1S',
DR=+0.28 fm, Ay= -0.0317 MeVfm 2) plus Coulomb
potentials [Eqs. (25)-(27)]. The s-wave potentials are
compared in detail in Table I.

quantities: (1) To estimate o„one might use the
Hill-Wheeler formula with the approximation of a
constant mean absorption radius. " (2) For o„one
might also use the Hill-Wheeler formula, but with
a fusion radius R that decreases with increasing
energy "(3)Fo.r 8,«(E&90 MeV) one might use
semiclassical formulas for rainbow scattering. '
These treatments are briefly touched here and ex-
plored further in the following paper. "

Finally, we use the proximity potential' for some
similar calculations and comparisons. Certain
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kinds of parameter modifications are shown to be
necessary to obtain fits to experimental data.

S. Methodology'

The methods of classical, semiclassical, and
quantum mechanical calculations have been de-
veloped by many workers over a long period. The
particular equations and assumptions that we use
are fully described elsewhere"" so we will only
give a brief outline of the major inputs. Quantum
mechanical calculations have been performed with
the code ABACUS-3, described in Ref. 5. It rests
on an optical potential with real (or refractive) and
imaginary (or absorptive) parts. For the imag-
inary potential we used the conventional Woods-
Saxon form

W(r) = -iW, /$1+ expi (r —R,)/a, ]),
where S"„Rl, and al are the depth, radius, and
diffuseness of the imaginary well. We have made
a series of calculations that employ the same real
potential in classical, semiclassical, and quantum
mechanical machinery. This exercise was to ob-
tain the correspondences between the semiclassical
and quantum mechanical formalisms. The clas-
sical deflection angle 8(l or b) and the distance of
closest approach D.for each impact parameter 5
are obtained as follows:
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ft(l)= ir —2 I (b/r')(l —(b/y)' —) (v)/Z( '~'dv,

where

1 —(b/D) 2 —V(D)/E = 0,

(2)

and V(D) is the sum of nuclear plus Coulomb po-
tentials.

Cross sections for complete fusion are calculated
with the often made'assumption of friction free pass-
age over or through the real barrier. "'" In the opti-
cal model this situation was simulated by using a com-
plex potential of small radius (rI= 1.12 fm). Our
semiclassical approximation to this situation is to
calculate the transmission coefficients from the
Hill and Wheeler formula"

FEG. 2 (a) The classical deflection functions at several
angles versus distance of closest approach. R„ is the
rainbow distance. The distance A&'~2 ——12 fm corresponds
to E f /2 in the empirical semiclassical systematics of
Ref. 8. The 'D&g2 values correspond. to L

& y2 values calcu-
lated with ABAcUs-3 for imaginary Woods-Saxon potentials
with Wp

——10 MeV, al =0.5 fm, and rl as indicated and
the empirical real potential given in Fig. 1 and Table I.
(b) Classical values of l vs distance of closest approach.
Also shown are the orbiting l, rainbow l, and values of
l~ /2 for various values of ~z.

T, (E)=(1+exp[(2v/k(o„)(E, „—E)jj ',
where

E, = V,(R„)+V„(R )+ (l + a)'k'/2pR ',

&~.= I(b'/~)d'v(«)/«'I. „,
R„and l„«are obtained from Eqs. (7) and (8),

d V(r, l)/dr
I „, = 0,&m~

&agent

(7)
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PIG. 3. ABAcUs-3 calculations of l&g2 vs r& for Rp = 10 MeV and I= 0.5 fm. One curve is shown for +'0 = 20 Mev and a~
= 0.5 fm. For those cases shown by smooth curves the empirical real potential was used (Fig. 1 and Table I). For the
points a parametrization was taken from Ref. 10 (lovrer points al ——0.45, upper points al = 0.60 sed the Appendix).

E = V(r, I)„, = V, (R ) + V„(R )

+ (l~)t. + s) 0 /2pR

for E&EP„, (8)

where

R is the location of the maximum in V(~, I), and

E, ~ is the energy where the maximum in V(r, I)
just disappears. These transmission coefficients
[Eq. (4)] in turn specify the fusion cross section

(10)

Note that R decreases with increasing energy [in
contrast to Eq. (28) later].

For the reactions of "0with 20'Pb, the optical-
model calculations show that the strong absorption
distance is almost independent of energy. This ob-
servation suggests the possible applicability of the
Wong treatment for the total reaction cross sec-
tions. '" Here one also uses Hill-Wheeler trans-
mission coefficients but with the values of E, given
in terms of the height E,' and radius R,' of the s-
wave barrier [E,'= V,(R,')+ V~(RO)]

E, = V,(R,')+ V„(R,')+ (I+ s)'I'/(2pR, "),

with curvative 8+,. In this approximation the mean
absorption radius R„' is assumed to be independent
of l and E, and the parameters need not neces-
sarily be related to th|; real potential maximum.

For incident energies greater than 90 MeV for
"0+"'Pb, the rainbow distance seems to be great-
er than the mean absorption distance. This sug-
gests that the rainbow effect may be responsible
for the gross cutoff of the elastic scattering from
the Rutherford values. Thus a semiclassical form-
ulation of rainbow scattering may suffice to de-
scribe this cutoff. In this approximation' "the
essentially classical cross sections o,(l) are ob-
tained for each branch i of the deflection function
from the relation

g,.(E) =k (l+ —')[sin&~d8(l)/dl ~] '[1 —T, (E)], (12)

with absorption included via transmission coef-
ficients from Eq. (4) with E, given by Eq. (11) and
O'Qpo 4 MeV. These elastic cross se ctions for each
trajectory are then summed via the uniform ap-
proximation to allow for interferences for angles
less than the rainbow angle 8„."" For angles
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The proximity potential function O.(g) is given by

4 (g ~ l.2511)= -g (g - 2.54)' -0.0852(( —2.54)',

(18)
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and b is surface width.
The surface energy coefficient y is given by

y = 0.9517[1-1.7826(Ã —Z)'/A']+ &y,

(20)

(21)
FIG. 4. Calculated values from AsAcUs-3, are shown

for 0~F4 vs xI for various incident energies: solid lines
from the empirical potential of Fig. 1; 0 with empirical
potential E p

——75.77 Me V, R p
= 11.99 fm, and k~ p =4.0

MeV; 4 with empirical potential Ep=-73, 77 MeV,
Rp = 11.99 frn, and hap =4.0 MeV. In all cases (except
for the symbol +) Wp= 10 MeV, al =0.5 fm, and rz =1.32
fm. Experimental values from Ref. 9 are shown as X.
For the symbol (Ref. 5) + and 0 a parametrization was
taken from Ref. 10 (see the Appendix): +al =0.45 fm;
0 al =0.60 fm. 0 76+O ~-~~3+ ~~ (23)

and N, Z and, A refer to the combined system of
the two interacting nuclei. The radius R is given
by

R = C rC~/(C r+ C~),

where C is the nuclear central density radius cal-
culated for the effective sharp radius R from the
formulas

larger than the rainbow angle the spreading of the
wave packets is approximated by an equation due
to Da Silveira. "

For most calculations that are presented here
we use an empirical potential'*'

V(r) = E, [(e~,)—'/(2e'/p)](r -R,)', for r ~R„
(13)

and

C = R(l —b'/R') (24)

The surface energy coefficient [Eq. (21)] and the
radii R from Eq. (23) were varied from those or-
iginally proposed' by the arbitrary addition of 4y
and &8 chosen to reproduce the experimental fu-
sion cross sections. For the Coulomb potential
we used

V(r) = V,(r)+ V„(r)
= V, (r)+ V„(RO) exp[-(r R,)/d], for r—~ R„

(14)

with

V,(r) =Zaire'/r, for r &R, (25)

V, (r) = (Z+re'/2R, )(3 -r'/R, '), for r.(R„(26)

V,(r) =Z~Zre'/r, for r ~R,. (15)
where

The continuity of V(r) at R, requires that d be given
by

d = -R, V~(R,)/ V,(R,).
If the s-wave interaction barrier E, is found empir-
ically to be equal to the s-wave fusion barrier E, ,
then one would expect one radius (R,) to be appropriate
to both. " If E, & Eo then different radii are expec-
ted for interaction and for fusion and some adjust-
ments are required in Eqs. (11),(13),(14). For
reaction systems with Z+ r ~ 1000 these empirical
barriers seem to be very close indeed. '~"

%e also explore briefly the proximity potential'

R =1 30','"+X,"').
These two nuclear potentials for ' 0+ Pb are
compared in Table I for l =0. Also, the l-depen-
dent empirical potential is shown with the assoc-
iated l dependence of R in Fig. 1.

III. COMPARISONS BETWEEN CLASSICAL,
SEMICLASSICAL, AND QUANTUM

MKCHANKAL CALCULATIONS

As mentioned in the previous section most cal-
culations we will show were made with the empirical
real potential given in Table 1 and Fig. 1 [Eqs.
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FIG. 5. (a)-(g) Elastic scattering solid lines represent results calculated with ABAcus-3 for various values of rl and

dashed lines represent the semiclassical calculation of Ref. 14. The empirical potential was the same used in Fig. 1.
Data points are from Refs. 9 and 10.
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FIG. 6. Elastic scattering calculations with ABAcUs-3

and several values of xl. (a) for empirical real poten-
tial (shown in Fig. 1), (b) for proximity potential (b
=1 fm, BR=+0.28 fm, Ey= —0.0317 MeV fm ). In
each case 8"()=10 MeV and a1=0.5 fm.

(13)-(16)]with V„(R,) = -4.0 MeV, Il&u, =4 MeV, R,
=12 fm, and E,=74.77 MeV. This empirical po-
tential has a shape similar to the more fundamental
proximity potential which we explore in more de-
tail later. The first step in classical and semi-

classical calculations is the determination of the
deflection function e(l). Also of great pictorial
value is the distance of closest approach D(l). The
relationships between these three quantities (clas-
sical deflection angle 8, incident angular momen-
tum lA, and classical distance of closest approach,
D) are shown in Figs. 2(a) and 2(b).

Figures 1 and 2 carr& a lot of information that
can help to extend our feeling for the various fea-
tures of scattering and reaction cross sections.
The relationships between classical D and 8 and
the mean absorption l are quite revealing. The or-
biting distances R for each partial wave l are
shown for energies below 129 MeV, and the very
significant energy variation of the radius for or-
biting R is apparent in both figures. For this po-
tential, orbiting disappears for E&130 MeV. In
Fig. 2(a) we see a rainbow angle (maximum in e)
for all energies, even those well above that for the
disappearance of the orbiting condition. The rain-
bow distance R„ increases with increasing incident
energy. That distance D», corresponding to the
transmission coefficient T, = ~ (calculated by
ABAcUs-8) is also shown for three different imag-
inary potentials and for an earlier empirical cor-
relation. ' It is interesting that the strong absorp-
tion distances D, &, as well as the orbiting distance
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TABLE I. Comparison of proximity and empirical nuclear potentials (MeV).

Radial
distance

(fm)

10.04
10.64
11.04
11.64
12.04
12.64
13.04
13.64
14.04

b=1 fm
4R =0 fm

(Mev/fm)

21.185
10.569
6.200
2.786
1.634
0.734
0.431
0.194
0.114

'Proximity
b=1 fm

&& =+0.280
&y = -0.0317

(MeV/fm )

34.907
22.583
14;691
6.612
3.879
1.743
1.022
0.459,
0.270

b =0.85 fm
4R =+0.358
&y = -0.0354

(MeV/fm )

36.230
23.734
15.241
6.058
3.235
1.262
0.67$
0.263
0.141

b =0.81 fm
b A =+O.429
&y = -o.o4oo

(MeV/fm )

38.595 (37.502)
26.478 (26.550)
17.675 (17.524)
7.018 (7.176)
3.633 (3.515)
1.353 (1.111)
0.701 (0.504)
0.261 (0.152)
0.135 (0.068)

aEmpirical

30.149
19.207
13.369
6.734
3.697
1.383
0.718
0.269
0.140

Calculated with Ep=74.77 MeV; ~~p=4, 0 MeV' &g(&p) = 4 0 MeV and &p=ll 99 fm.
Woods-Saxon potential obtained by least squares fit to this modified proximity potential is

enclosed in parentheses: Vp =-45.504 MeV; r
p
=1.279 fm; a =0.497 fm.
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FIG. 7. Cross sections for fusion, Q; total reaction,
0; and reaction less inelastic ~60, O vs E . Curves
were calculated by AaAcUs-3, with the real empirical po-
tential in Table I, Wp = 10 MeV, ar = 0.5 fm and various
rr as indicated. Data from Ref. 9.

R all decrease with increasing energy, in contrast
to the increase shown for the rainbow distance R„. -

In Fig. 2 we see that the strong absorption distance
is greater than the rainbow radius (D», &R„) for
rr = 1.42 fm. Thus strong surface absorption will
dominate both scattering and reaction cross sec-
tions if nature favors this case. Qn the contrary,
if nature favors the case of imaginary radius rr
= 1.22 fm (or the empirical R, ~, = 12 fm) then R„

D, &, and the rainbow phenomenon will often dom-
inate the gross cutoff of elastic scattering. Inter-
mediate behavior would result from the situation
shown for r, =1.32 fm.

For the quantum mechanical calculations with the
same empirical real potential (and W, = 10 MeV,
a~=0. 5 fm) the values of f,~, are shown vs rz in

.Fig. 3. (Consider here only the smooth curves in
Fig. 3; we return to the points in the Appendix. )
For energies less than 130 MeV we note that l, &,
is essentially independent of absorptive potential
for r~ ~1.12 fm, but that l, ]2 increases with rr or
S', for rz&1.12 fm. This corresponds to the
screening role of the real potential for energies
below 130 MeV; only the lower l waves surmount
the barrier in Fig. 1 and enter the absorptive re-
gion (for rI ~ 1.12 fm). For energies below 130
MeV we will relate the behavior corresponding to
r~& 1.12 fm to the measured fusion cross sections.
The strong dependence of l, &, on r~ for high energy
(&130 MeV) and large rz simply reflects the in-
creased radial extent of W(r) compared to V(r)
For the higher energies we see no obvious intuitive
connection between r, and the fusion phenomenon.
(The three arrows simply provide reference points
between various figures. ) The fuzzy edge of the
reaction, probability (lr. =. .—lr.=. .) is significantly
greater for all these imaginary potentials than for
the empirical treatment of Ref. 8 [Egs. (10) and
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= vR610pe (+Rslope Eint)E (28)

It is interesting to analyze these calculated curves
in the conventional way. The curves for xi =1.42
and 1.32 fm are indeed linear, and the others have

(11)].
The quarter-point angle 8,«(that angle where the

elastic scattering g„ is —, the Rutherford value) is
commonly used to characterize the gross cutoff of
elastic scattering. In Fig. 4 we show values of
8y / 4 as calculated by ABACUS-3, for various imag-
inary potentials and the empirical real potential
used for Figs. 1-3. (Consider here only the
smooth curves in Fig. 4 and the points at z~ = 1.32
fm: We return to the points at r1=1.31 fm in the
Appendix. ) The important role of W(r) is clear for
energies near the barrier (where D, &, &R„, see
Fig. 2) as well as its decreasing role for higher
energies (where R„&D«,) By.contrast the sen-
sitivity of 8z/~ to the real potential is shown at all
energies by the points at ri =1.32 fm. These re-
flect the steep deflection functions at low energies
that gradually flatten with increasing energy as
shown in Fig. 2(a). One, therefore, expects the
real potential to dictate the value of 8«, for el-
astic scattering at 130 and 192 MeV, but absorption
could be very important for near barrier energies
depending on its exact radial extent. For inter-
mediate energies (88-102 MeV) either could rule.

In Figs. 5(a)-5(g) and 6 we look at the elastic
scattering distributions in more detail. It is ap-
parent at 80 MeV that absorption is very important
at angles greater than 120' (D, &, &R„ in Fig. 2).
Here we are below the real barrier, and the tail
of W(x) extends beyond the maximum in V(r) where
it nips a few of the projectiles as they pass. At
higher energies (see Fig. 6 for example) absorption
controls all the important angles if x~&1.42 fm as
was indicated in Figs. 2-4. For xi= 1.32 fm or
less, however, V(r) sets e, &4 by the rainbow effect
while W(r) governs the size of the peak g„/o„„and
the slope for 8 & 8, /, . This point, as shown in Fig.
6, has. been often emphasized by others. " Figures
5(e)-5(g) show that the semiclassically calculated
elastic cross sections fEqs. (13)-(21)of Ref. 14]
give essentially the same values of 8, /4 but differ
in the peak cross sections and in the slope of g„.
vs 8. These differences are due to a combination
of the different forms of T, vs l and possibly to
some of the semiclas'sical approximations.

In Fig. 7 we show reaction cross sections as cal-
culated by ABACUS-8 with imaginary potentials
having different radii. The plot is made versus
E, ' asis often done for analysis of data' via the
classical equation

TABLE II. Apparent radii and barriers compared with
respective input quantities.

a a
XZ R,lppe

(fm) . (fm) (MeV)

b

(fm)
&(Dg/2max)

'
(MeV) (MeV)

1.12 -11.7
1.22 11.7
1.32 12.1
1.42 12.9

74.3
73.5
72.4
69.3

-12.0
11.6- 12.2
12.0- 12.5
12.9- 13.2

74.7
74.6
73.8
71.0

0 4
1.1
1.4
1.7

Empirically evaluated by fitting cd ——xR@ ~2(1 —graf/g)
to the values of Oz calculated by ABAcUs-3 and in Fig. 7.

Closest approach distance in Fig. 2 corresponding to
l&/2 calculated by ABAcUs-3.

Coulomb plus nuclear potential evaluated at the max-
imum D&/2 in Fig. 2.

d & = &(Dg/2 mm) -Ant.

-a nearly linear region for 9X10 '&E '&13' 10 '.
In Table II the values of R„„,and E«, from Fig.
7 are compared to the corresponding values of
D», from Fig. 2 and V(D, &,) from Eq. (14). The
values of the approach distance vary somewhat
with energy so the comparison is not completely
unambiguous. Nevertheless, we can conclude that
the values of R„„,are within =0.3 fm of the values
of D, /, at high energy and the corresponding values
of E„,are within 1.7 MeV of V(D, &,) at near bar-
rier energies.

If it is reasonable to associate the fusion cross
sections with an ima'ginary well of small radius
(e.g. , ri-—1.12 fm), then the classical analysis
should give a good estimate of the real potential
maximum. The linear portion of the plot used to
evaluate R„„,for this case should be in the en-
ergy range (E, ) '&E 's(1.05E,„') '. Similarly
the analysis of reaction cross sections should give
a decent estimate of the mean absorption radius
D, /, and a slight underestimate of the associated
real potential V(D, &,). A comparison of fusion and
reaction cross sections can reflect the extent of
absorptive processes at distances outside the real
potential maximum.

It seems clear that we must obtain an initial ori-
entation concerning the relative importance of re-
fraction versus absorption for each case of inter-
est. This orientation is of crucial importance to
the sequence of fitting steps and therefore to the
number of parameters left free for each successive
fit to experiment. If the common intuitive picture
of fusing collisions is correct, then a consideration
of the fusion cross section at each bombarding en-
ergy can lead to the energy of the corresponding
real potential maximum. Then a consideration of
the total reaction cross section can give a rea-
sonably good idea of the relation between R and
Dj /2 and 8] /4 can fix the real potential at the
strong absorption radius or the rainbow radius,
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whichever is larger. This interplay can suggest
whether D», &R„or 8 &D, &,. Finally, more de-
tailed fits can be made to elastic scattering data
with the imaginary potential shape left free but
with the real potential constrained to maintain an
adequate description of o~, o,f and eg/4 In the
next section we follow this sequence for "Q+"'pb;
in the Appendix we discuss some comparisons to
the potential from Ref. 10.

IV. COMPARISONS TO EXPERIMENTAL RESULTS

In Table III, we give the measured cross sec-
tions for fusion (column 5), all reactions (last
column), and all reactions except inelastically
scattered "0 (column 8). As mentioned in con-
nection with Fig. 3, we might identify complete
fusion (E & 130 MeV) with the reaction cross sec-
tion obtained from ABACUS-3 with an absorptive
potential of rz =1.12 fm (column 4). Columns 2

and 3 give semiclassically calculated fusion cross
sections obtained as described in Sec. II, [column
2 from the empirical potential of Eels. (13)-(16),
column 3 from an adjusted proximity potential].
In each case the calculated values are slightly
greater than the measured ones (by about 2 —33'fp).

This reflects a real barrier height E, that is
slightly too low (=0.7 MeV) and/or too fat. This
comparison is also shown in Fig. 7, where the
cross sections are plotted against E ' as is often
done for data analysis. " The curves are those
calculated via, ABACUS-8 with the empirical poten-
tial [Ro =74.77 MeV, h&u, =4.0 MeV, Ro =11.99 fm,
and &„(8,) = -4 MeV] and various imaginary poten-
tial radii as indicated.

The measured reaction cross sections (column
12, Table III) are consistent with absorption char-
acterized by r~ =1.32 fm (column 10, Table III).
The strong absorption case for r~ =1.42 fm (col-
umn 9, Table III) gives reaction cross sections
that are much too large. The empirical semiclas-
sically calculated reaction cross sections (column
6 in Table III) are compared to the reaction cross
section excluding inelastic "0. The empirica, l
systematics leading to these values would have
usually excluded inelastic scattering and so we
also exclude it for this comparison. " ABACUS-3

calculations with an absorptive potential having
rz = 1.22 fm (column 7, Table III) give about the
same behavior as this empirical formula.

From these comparisons we conclude that the
intermediate surface absorption case character-
ized by ~I =1.32 fm gives a best fit for the true
total reaction cross section; the weaker surface
absorption of rr = 1.22 fm describes all those re-
actions except inelastic scattering and the no-
surface-absorption of ~1 & 1.12 fm describes the
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We use here the proximity and Coulomb poten-
tials [Eqs. (17)-(27)] for the real potential and the
Woods-Saxon form for the imaginary potential
[Eq. (1)]. There are three parameters in the
proximity potential 8, b, and y, each of which
the authors' feel is already reasonably well lim-
ited by the physical content of the model. How-
ever, each of these can be considered to have
some adjustability' without violation of the spirit
of the original model. In the last section me made
an adjustment in R and Z [bB =+ 0.280 fm, Eq.
(23), 4y =-0.0317 MeV fm ', Eq. (21)] to alter
the barrier height and position and thus improve
the description of the fusion cross sections. In
Table I, columns 2 and 3, we shorn the original
and the modified forms, respectively, and in
Table III, we compare the measured fusion cross
sections to the calculated ones [obtained with the
modified potential (column 3, Table III)]. This
modification makes a significant change in the
potential (see Table I) and is necessary to fit
o„.'o (This problem is discussed further in the
Appendix for the potential of Ref. 10.)

The second step in our potential refinement is
to improve the fit to 8,&4. This quantity depends
mainly on the real potential near R„or at =12.7
fm (Fig. 8). In Table I, column 3 we see that the
modified proximity potential is =0.4 MeV more
attractive than the empirical potential at 12.'? fm
and its calculated value of 6P», is correspondingly
smaller, =2 at 96 MeV, for example. Adjustment
of the imaginary potential could not cure this prob-
lem (Fig. 6}. Thus we resort to adjustment of 5,
8, and y in the potential while constraining the re-
sultingE, toretainthe fit to o„. Two such poten-
tials explored as examples are (a) 5 =0.85 fm,
OR=+0.358 fm, Ay=-0. 0354 MeVfm ' and (b)
b=0.81 fm, ~=+0.429 fm, 4y=-0.0400
MeVfm ' "

As we turn to the energy dependence of the elas-
tic scattering, each of these potentials can give
rather good fits for some energies. However,
both of them give systematic deviations at some
energies if S', a~, and x~ are not allowed an ener-
gy dependence. Potential (a) overestimates o„
at 80 and 83 MeV and to a lesser extent from. 88-
102 MeV. Potential (b) does a better job at lower
energies by systematically underestimates o„
for 8 & 8,&4 at higher energies.

These details of the elastic scattering are sen-
sitive to all the fine points of both the real and im-
aginary potentials: (1) functional forms, (2) ener-
gy dependences, (3) small deviations from the fro-
zen shape idealization, etc. Therefore, me have
not attempted a further improvement of the fit.
We simply conclude that it is possible to achieve
a good description of o„and 8,& 4 with a modified

proximity potential. Also, one can obtain an as-
sociated imaginary potential and fit o~ and many
but not all features of the elastic scattering.
These real and imaginary potentials have inter-
mediate to weak surface absorption mith both rain-
bom and absorptive effects on the elastic scatter-
ing

VI. SUMMARY

The procedure that we hive used begins with a
trial real potential which has a maximum at =12.0
fm. The variations of this potential have not de-
viated greatly in this respect. The value of the
real potential at the maximum has been adjusted
to fit measured fusion cross sections. The quar-
ter-point angle for elastic scattering has been
used to constrain the real potential betmeen 12.4
and 12.8 fm (see R„ in Figs. 2 and 8). The rela-
tionship between fusion and reaction cross sec-
tions has been used as an indicator of the strong
absorption radius 12.0-12.4 fm (D,~, for rz = 1.32
fm in Fig. 2). The shape of the elastic scattering
patterns has also been used to reflect the com-
bined effects of real and imaginary potentials.
The elastic scattering fits are good for 80, &3,
and 192 MeV but poor for v/~„c 0.1 for 88 & E
& 102 MeV. The use of an energy dependent po-
tential has not been explored.

It is, of course, possible that one could achieve
comparable or even better data fits with other po-
tentials. The fusion cross sections are quite
sensitive to the height of the potential barrier but
not very sensitive to its radial extent. A weaker
real potential mould still require a real maximum
of =75 MeV but could have Ro smaller than 12
fm. Nevertheless, the quarter-point angles would
require a nuclear potential of =1.4 MeV at =12.6.
fm. Likewise the reaction cross sections require
a somewhat lower barrier than 75 MeV at a strong
absorption radius =0.5-1 fm greater than that for
the real potential maximum. As many of the non-
fusing reactions lead to inelastic scattering, the
complete interpretive pattern depends on an ap-
propriate treatment of these very soft collisions.
The compilation of values of O, g4 in Befs. 22-24
is probably perturbed by the inclusion of inelastic
scattering along with the elastic. The compilation
of o~ values in Bef. 8 probably excludes inelastit.
scattering in almost all cases. These aspects
are discussed in the following paper. '4

We are grateful to B. Satchler for helpful com-
ments on the Appendix.

APPENDIX

In Ref. 10 Ball et al. made a careful study of a
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number of potentials as they relate to elastic
scattering by ' Pb. For the case of '60 they fitted
several potentials to the elastic scattering data at
192 and 129.5 NeV. They found that very good
fits required somewhat different parametrization
at each energy, but they did not explore the ques-
tion of energy-dependent potentials in much detail.
We wish to put their work in the context of this
study and for this purpose we use a set of Woods-
Saxon parameters they presented as a compromise
set [V=43MeV, r„=l.20fm, a„=0.'70fm, W

=15 MeV, &I =0.60fm (and 0.45 fm), and rz =1.31
fm]. For the discussion. of elastic scattering and
total reaction cross sections we focus on rl = 1~ 31
fm; for the discussion of fusion we vary rl as
discussed before for Fig. 3.

From the discussion of Tables II-IV and Figs.
3 and V we can anticipate that the Ball parameters
will underpredict &,f. Their values of 8, and Eo
are 11.5 fm and =77 MeV. A good fit in Table IV
requires an' Eo value of =75 MeV. The strong ef-
fect of this difference is evident from the com-
parisons for l, ~, shown in Fig. 3 and for &&f as
given in Table IV.

It is very interesting that the values of && and
l, y, from the potential of Ref. 10 for r~ = 1.31 and
al =0.60 fm are significantly different from those
from the other potentials (see Fig. 3 and Table
III). However, if one changes the value of a' only
slightly to 0.45 fm the reaction cross sections are
improved (Fig. 3). Evidently the choices of V(r)
and W(r) can essentially compensate as far as they
predict the reaction cross section. However, this

is not the case if in addition one considers the
elastic scattering as can be seen for the values of
8y/4 in Fig. 4. The parameter set from Ball et ul.
with ar =0.45 gives increasingly larger values of
O, y4 with decreasing energy. The set with ar
=0.60 fits mell for E& 90 MeV but for & 90 MeV
gives values of 8,g4 that are too small. Their best
fit at 129.5 MeV did require a stronger real poten-
tial than at 192 MeV. This trend is consistent
with the systematic deviation pattern we show in
Fig. 4.

We conclude that a pararnetrization which starts
by fits to elastic scattering at high energies will
not necessarily fit the scattering of low energies.
Also such a parametrization should not be expected
to be a good predictor of fusion cross sections at
low energies. Here, of course, we assume that
the generally used model of complete fusion is applic-
able. Namely, we assign to fusion those-impacts that
lead to friction free traversal of the real potential
maximum(E ~EP'") Furth. ermore, we identify such
traversals in quantum mechanics with the plateau in
Fig. 3 ~ Another model of the fusion process could,
of course, lead to different results and conclus-
ions. For example, as pointed out by Birkelund
and Huizenga, ' frictional energy loss could occur
before the collision partners arrive at the radius
corresponding to the real potential maximum. If
this situation obtains then the empirical fusion
barrier mill demand an even stronger real poten-
tial than we or others'"' have heretofore
adopted. In turn this would call for weaker ab-
sorptive potentials in the surface in order to main-

TABLE IV. Calculated and experimental cross sections for fusion &,f (mb) and all reactions
a„(mb).

E lab

(Mev)

a
~exp
All

reactions

b
cr+

ABACUS-'3

rl = 1.30

Og

ABACUS-3

&q = 1.30

a
~exp

Fusion d~cf
e

&cf

cd g

Abacus-3

acf ~ ~l =1.02

80
83
88
90
96

102

100+10
237 +21
572 441
578 +56

1157+94

98
230
482
577
835

1061

107
249
504
599
858

1085

36+ 4
108+10
350+ 40
377 +50
685 ~70
844+ 90

10
99

331
417
652
855

11
104
341
430
671
881

134
376
466
711
924

18
117
354
442
681
889

37
250
333
555
737

Experimental data from Ref. 9.
CalculatedwithABACUS-3 with the proximity potential (b =0.85 fm, &R =+0.358 fm, &y=-0.0354

MeVfm and +'p=10 MeV, r1=1.30 fm, and a&=0.499 fm). Ep ~75.36 MeV, Rp~=11.89 fm.
Calculated with ABAcUs-3 with proximity potential (b = 0.81 fm, &R =+0.429 fm, &y =-0.040

MeVfm 2 and +'p=10 MeV, &1=1.30 fm and aI=0.50 fm). Ep ~74 84 MeV Rp =11.99 fm.
Calculated with Kqs. (4)-(10) with. the proximity potential (b =1.0 fm, &R =+0.238 fm, &y

=-0.028 MeVfm ). Ep =75.39 MeV, Rp =11.69 fm.
Calculated with Eqs. {4)-{10)with real potentia' of footnote b.
Calculated with Eqs. (4)-{10)with real potential of footnote c.

g Calculated with ABAcus-3with the proximity potential of footnote b and S'p =10 Me V, ~1= 1.02 fm,
ar= 0.499 fm.

CalculatedwithABAcUs-3with Woods-Saxon real potential from Ref. 10, footnote f Table III.
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tain the fit to O, g4 from the elastic scattering
(see Fig. 4).¹teadded in Proof. Calculations based on a

one-body friction model have just been published. "
The results for E ~E, are very similar to those
from Sec. IIB Eqs. (4)-(10).
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E~ 83 MeV whi1e potential (a) retains a good fit
to (Tgf (Table IV, column 7), potential (b) (Table IV,
Column 8) slightly overestimates the measured cr,f
by 4-20%.
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