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The determination of reduced normalizations by measuring (d,p) reactions in the energy region of sub-

Coulomb and quasi-Coulomb stripping with an experimental accuracy which has not been attained in former
investigations allows reasonable comparisons with corresponding reduced normalizations of analog states
obtained by elastic proton scattering via isobaric analog resonances. This comparison includes 38 states with
known spins and parities formed by adding a further nucleon to the nuclei ' Sn, ' Te, ' Ba, ' Ce, ' Nd,
and ' 'Pb. The reduced normalizations of the proton analog states are based on the experimental partial
widths given by other authors and on own calculations according to two difFerent shell model theories of
isobaric analog resonances. The uncertainties still remaining in the theoretical description of some effects
inherent in the direct reaction mechanism of transfer reactions as well as in the shell model reaction theories
do not permit a unique decision concerning the validity of the different theoretical approaches in determining
the decay widths of single particle states.

NUCLEAH REACTIONS 124sn, 130Te, f38Ba, 140Ce, 142Nd, 208Pb(d, P), (p,p) cal
culated reduced normalizations of 38 parent and analog states, respectively,
based on experimental data as well as on DWBA and two shell model reaction ap-

px;oaches; comparison and discussion of results.

I. INTRODUCTION

The spectroscopic factors (SF) defined for the
bound neutron states and the proton analog scat-
tering states should be equal in those cases where
the isospin is a good quantum number. " This is
still a good assumption for the low-lying states
of medium heavy and heavy nuclei with a high sin-
gle particle fraction. But numerous comparisons
especially of SF attained from (d,p) reactions and
from elastic proton scattering via isobaric analog
resonances provided results differing to a con-
siderable amount. ' ' These discrepancies are
caused not only by experimental errors but also
by theoretical uncertainties in the description of
the reaction mechanisms involved.

In recent years the extraction of SF from trans-
fer reactions performed in the sub-Coulomb and
quasi-Coulomb energy region became more im-
portant, because in this case the theoretical un-
certainties of the scattering wave functions need-
ed in the distorted-wave Born approximation
(DWBA) formalism could be reduced significantly.
Moreover, with the definition of the reduced nor-
malizations (RN) the unsatisfactory dependence of
the SF on the parameters of the single particle
bound state potential was overcome. ' "

Clarkson et a/.""have shown that in the analy
sis of the elastic proton scattering at isobaric
analog resonances a corresponding RN can be
defined which also depends much less on the sin-

gle particle potential chosen than the SF of the
particular state. However, the RN obtained are
still based on the theoretical assumptions in cal-
culating the single particle decay widths and still
depend on the parameters of the optical potentials
determining the scattering wave functions of en-
trance and exit channels. Because the channel en-
ergies of the resonant proton scattering are fixed,
it is impossible to reduce the influence of the nu-
clear potentials by decreasing the incident energy
as in the case of (d,p) reactions (see e.g. Ref. 12).

The objective of this work was to recognize sys-
tematic deviations of the results of (d,p) measure-
ments from those of elastic proton scattering. The
measurements of (d,p) reactions in the energy re-
gion of sub-Coulomb and quasi-Coulomb stripping
provided RN of the parent states in "'Sn, "'Te,
'"Ba, ' Ce, '"Nd, and '"Pb with an accuracy
which has not been attained in former analysis. "

The spectroscopic quantities of the analog pro-
ton states in "Sb, I, La, Pr, Pm, and
'"Bi are based on the experimental partial widths
reported by other authors' """and on own cal-
culations of the theoretical decay widths with the
shell model reaction approaches of Zaidi, Darmod-
jo, and Harney (ZDH theory)'"'" and of Mekjian
and MacDonald (MM theory)" according to the in-
terpretations and methods given by Harney and
Weidenmuller" and by Clarkson et a/. "' The
comparisons are restricted to the states with
known j"values and with sufficiently large single
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particle fractions. Up to now, comparisons of
this kind only exist for low-lying parent states in
nuclei near mass numbers 90 and 140 (Refs. 34
and 35). But because of the high accuracy of the
RN extracted from own (d,p) measurements, "it
is worthwhile to continue and to extend these com-
parisons.

In the next section the fundamental formulas for
the determination of the SF and RN in the ease of
elastic proton scattering at isobaric analog reso-
nances are given. Section III provides the results
of numerical calculations for the states of inter- .

est. The comparison with the neutron RN obtained
from (d,p) reactions in the sub-Coulomb and qua-
si-Coulomb region is performed in Sec. IV. Fi-
nally, the results and conclusions are discussed
in regarding particularly the theoretical uncer-
tainties still remaining.

exp(2ig„)F „=2' y»'.
Generally, y» depends on the isospin violating
parts of the Hamiltonian operator

(2)

action and the statistical distribution, of the decay
widths of the more complicated states in the she'1
model reaction theory have been discussed in de-
tail by Barney and Weidenmuller" and by Ma-
haux. ~

The nonresonant background is described either
by an appropriate optical potential or in a model
independent way using simply a. polynomial. In
both cases the parameters are extracted by fitting
the theoretical distribution to the experimental
data.

The relevant spectroscopic quantity is the par-
tial width F» F., &

and P„.are defined by the com-
plex transition amplitude y» between the analog
state and the continuum state g~, z

II. THEORY ~„=(s., „Ilier, T-]I@), (3)
A summary of the theoretical basis for the analy-

sis ofi(d, p) reactions in the energy region of sub-
Coulomb and quasi-Coulomb stripping and the def-
initions of the, neutron SF S"„.and the neutron RN

A,",. (according to Refs. 7-11) were given in a for-
mer payer. ' There the advantages of the neutron
RN were demonstrated extensively.

Clarkson et al.""have shown that it is possi-
ble to define a corresponding proton RN in order
to describe the single particle fraction of isobaiic
analog states. It seems useful to present a short
survey on the essential formulas leading to the
definition of the proton RN in order to understand
the difficulties discussed later on.

The analysis of the elastic proton scattering at
isobaric analog resonances is commonly based on
an energy averaged S-matrix element. Indepen-
dent of the applied reaction theory, i.e., the 8-
matrix theory, "'"the shell model theory, "'"or
the projection method, "'"the S-matrix element
for the elastic proton scattering through an iso-
lated analog resonance superimposed on a smooth
background is, taking into account certain assump-
tions, given by

S„„=e x[p. (i2. „5q„)j-.
. exp(2ig„)F&,

(1)~E —E„-iF/2

where exp(2i5» —2q, ,) describes the nonresonant,
weakly energy dependent scattering term, P„. is
the resonance mixing phase, I"» is the partial
width including the absorptive part exp(-2q„.), E
is the incident energy, E~ the resonance energy,
and I' the total width of the resonance.

The assumptions referring to the residual inter-

(r) V,(r) y„(.r)r'&r, . (4)

where g~, , (r) is the radial part of the proton scat-
tering wave function whI. ch is orthogonal to the
analog state g", y„.(r) is the radial part of the sin-
gle particle neutron wave function, and V,(r) is the
average Coulomb potential of the proton in the
analog state.

In this work the theoretical widths are defined
in a way that allows a direct comparison with the
widths extracted from experimental data, i.e. , the
factor exp(-2q, ,) is included in the given FP..

Even though the neutron of the parent state is
coupled to a IO' core nucleus, this state is actual-
ly not a pure single particle state due to the in-
fluence of the residual interaction. This fact is
taken into account by introducing the spectroscop-
ic factor S~. for the proton decay width of the iso-
baric analog state into Eq. (4):

where the parent state (~s is a solution of the ei-
genvalue equation Hg,"=E,g, . T.he co.ntinuum wave
function g~ „.is assumed to be orthogonal to the
wave function of the analog state g". The transi-
tion amplitude y» may be split into a direct part
y„. and an amplitude describing the interaction
via a compound nucleus y",,. '. Auerbach et al, "
have shown that in most cases the assumption
y gj™~c y f g

is justified. Then the interaction poten-
tial in (3) iS dominated by the Coulomb potential.

Regarding the parent state as formed by a sin-
gle particle coupled to a 0' core one obtains the
single particle decay width I",'~,

(Fsy)&/2 ( +
~

~~I j
42''1)
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x q~ „(r). V,(r)y„(r).r'dr.

Because the experimental partial width F,'"jP should
be equal to this F.j. the SF S„.is simply given by
the relation

(6)= I exP (li }P
lj lj 1j '

Barney and %'eidenmuller" have shown that in
the framework of the ZDH theory Eq. (4) is equiv-
alent to

1/2

(I'„)"=I2T 1
l "(e,, „lV"-V'- IVIV;&,

l,2T+ 1)

while the method of MM in considering the terms
of the absorptive potential to the first order yields

+ V,(r)+ VP(r)
l(l+1)

2 Pl~ A'

+ ixi(i }-xi}i(} (i } e ((}}

where m, is the reduced mass of the system (p
+target), V,(r) is the Coulomb potential, VP(r) is
the real part of the optical scattering potential
consisting of a volume and a spin-orbit term, W(r)
is the imaginary part of the optical potential, and
E~ is the proton energy in the elastic channel spec-
ified by the quantum numbers (l,j).

y»(r) is the radial solution of the Schrodinger
equation of the bound system (n+ residual nucleus):

+ }'"(i}+e}ie„.(i}=0,lf ' d l(l+ 1)
2 pplp

(I }&)'~'=IL2~',
1 I

e
'

"(y~,},l
v"- v'lv},& (6)

In Eqs. (7) and (8) the scattering wave function
}1}~„is the solution of the radial Schrodinger equa-
tion

where 6 is the Coulomb energy difference be-
tween the parent state and the ana1. og state.

In both methods, i.e., according to the approaches
of ZDH and MM, respectively, the results of nu-
merical calculations depend on the parameters of
the potentials used. Unfortunately, these parame-
ters cannot be determined uniquely. But Clarkson
et al.""have shown that the dependences on the
potential parameters can be reduced if one re-
stricts the calculations to asymptotic quantities.

For the scattering wave the phase shift 0„.+ig„.
is the most important asymptotic quantity, while
the bound neutron wave function may be approxi-
mated in the asymptotic region by the Hankel func-
tion of the first order. The latter approximation
permits a factorization of the width I',j in the re-
duced single particle normalization A,'pj and the re-
duced matrix element G,'p,

P&P AsP GsPlj lj Ej ~

The reduced normalization of the actual proton
analog state is defined as

A' =A' Slj fj lj

and corresponds to the reduced pormalization A"„.

of the parent state which may be e.g. extracted
from sub-Coulomb and quasi-Coulomb transfer
l cacti oIls.

The RN AP„. are determined according to Eqs. (6)
and (13) by using the experimental partial widths
I","j and the theoretical values of 1","j and A,'",. which
are calculated according to a particular theory.

The dependence of the A~„. on the parameters of
the bound state potential is not reduced as drasti-
cally as in the case of (d,p) stripping because the
energy of the incident proton is fixed and is in
most cases near but above the Coulomb barrier.
But there is still an advantage using the RN. This
is demonstrated in investigating the dependence
of the spectroscopic quantities on the single par-
ticle potential at the five low-lying analog states
in '"I.a (see Sec. III).

where m„ is the reduced mass of the system (n
+ residual nucleus), V"('r) is the real nuclear po-
tential consisting of a volume and a spin-orbit
term, E~ is the binding energy of the neutron in
the state (l,j).

The proton scattering wave function |I}~,, is not
orthogonal to the analog state mave function. For
that reason the form equivalent to the ZDH matrix
element is not only Eq. (7) but also

III. REDUCED NORMAI. IZATIONS FROM ELASTIC
PROTON SCATTERING THROUGH ISOBARIC ANALOG

RESONANCES

The experimental partial widths used in this
work have been reported by other authors, ' '*" "
mhile the appropriate single particle decay widths
F~. mere obtained by calculations with the com-
puter code BETTING" according to the shell model
theories of ZDH and MM, using Eqs. (11) and (8),
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respectively. The same program provides the re-
duced single particle normalizations A,",

The potentials needed in these calculations for
the determination of the wave functions as well as
the interaction potentials are given in the following
subsection. Then the results are presented and
finally the dependence of the SF and RN on the ra-
dius of the single particle bound state potential is
studied.

A. Potentials

( Ze'
8-~ —~, »-R.

2Rc (Rci
V,(») =

) x&Rc
Coulomb potential,

with

V~»(E~, ») = U~~(E~)f(», R», a») volume potential,

V»(E„») = U»(E„)f(», R», a») volume potential,

-1 d
V (») = U' ~, ~

(a" I)——f(», R, a )

spin-orbit potential,

and

U', (E,) = U', —~U,E, ,

Uw«p) = Uw- ~UwEp

where U~, U~, and U ~ are the potential depths, E~
is the proton energy, AU~ and hU~ are the slopes
of U„and U~ with respect to E~, f(», R„,a„) =

[1+exp(R —R,(a,)] ' determines the Woods-Saxon
form of the potentials, R, =x A' ' are the radii,
and a„ the diffusenesses of the various potentials.
Z is the charge number, A is the mass number,
(o 1) is the scalar product of the spin operator
with the orbital angular momentum operator, and
nz, is the pion mass.

The free choice of the parameters is restricted
by two conditions in order to reduce the number
of parameters:

(a) R» = R~,

&»=aw=+s ~

The application of an average proton scattering
potential as reported by Percy and Percy" or

The nuclear potentials required in the formulas
of Sec. II are chosen to have the following form:

V~'"(E~ „,r) = V~~ "(E~ „,r)+ V, (r) .real potential,

8'(E„») = 4a ~ U~(E,)—f(», R „a~)
d

p dh

imaginary potential, (14)

Becchetti and Greenlees" cannot be recommended.
Using this kind of a potential to describe the back-
ground of the reaction '"Ce(p, p,) in the whole en-
ergy region from 9.5 to 12.5 MeV, Schulze-Do-
bold" obtained deviations in the order of 5-30%
directed to lower cross sections as compared to
the experimental data. Therefore, we applied
specific potentials which were fitted by other au-
thors or by our own calculations to the data de-
scribing the nonresonant part of reaction cross
sections in the particular energy region of analog
resonances.

In the analysis of the data of elastic proton scat-
tering at "'Sn, '"Ba, and "'Pb by Darmodjo et
al. ' the radii of the real and the imaginary part and
the diffusenesses of the various real potential
parts have been set equal, respectively. As the
differences in the diffusenesses of the real and
the imaginary potentials describing the reactions
'"Ba(p,p,) and '"Pb(p, p,) are very small, they
were set equal according to condition (b). In the
case of "'Sn the diffusenesses given in Ref. 4 de-
viate significantly from each other and the fit is
unsatisfactory at lab angle g = 90 . Therefore,
we extracted a new scattering potential taking in-
to account the conditions (a) and (b) by fitting the
potential parameters of Eq. (14) to the background
scattering data of Ref. 4 with the parameter search
code MOM3. " This code provides more reliable
potential parameters since it permits the simulta-
neous fitting of energy and angular distributions of
the experimental data.

The potential given by Hiddleston et a/. ' for the
elastic proton scattering at '"Te satisfies the con-
dition (b), but with respect to the radii R» and R~
there exists a slight difference. In this work R~
was sqt equal to the other radii causing a negligi-
ble inaccuracy.

. The optical potentials of the reactions '"Ce(p, p,)
and ' Nd(p, p,) were obtained by fitting the poten-
tial parameters of Eq. (14) to the background cross
sections reported by Ma, rquardt et al."and by
Grosse et al. ,

"respectively, using the code
MoM3. " A compilation of the potential parameters
used in this work is given in Table I.

The parameters of the single particle neutron po-
tentials were taken from the appropriate proton
scattering potentials with the exception of the
depths of the volume terms which were adjusted
according to the binding energy condition. Hence,
the interaction potential in Eq. (8) is approximately
of volume type.

The Coulomb energy difference 6„, required in
the calculation of the- single particle width in the
ZDH theory [see Eq. (11)]is the sum of the neutron
binding energy and the proton resonance energy.
The Coulomb potential in Eq. (11) was used in the
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TABLE I. Parameters of the optical potentials according to Eq. (14) as used in this work for describing

elastic proton scattering. It is assumed that hU& = 0 and a& = a& = a& = a„.

Uv
Target U~ [E in r v, r~ a„Ug rq U~ r

Nucleus (MeV) (MeV)] (fm) (fm) (MeV) (fm) (Me V) (fm)

Energy range,
of fitting

(Me,V) Refs.

0.6 1.245 0.700 8.5 1.245 13.2 1.210 8.0-11.0 This work,
Data from
Ref. 4

Te 63.0 0.5 1.220 0.670 7.5 1.220 11.0 -1.250 7.8-12.0 Ref. 5

63.4 0.4 1 230 0650 5 8 1 230 100 1 230 9.5-12.5 Ref. 4

Ce 64.1 0.6 1.230 0.680 4.4 1.230 8.7 1.230 9.8-11.2 This work,
Data from

Ref. 2

Nd 64.1 0.6 1,230 0.650 3.6 1.230 7. 1 1.200 ' 9.5-11.1 This work,
Data from
Ref. 27

Pb 6635 04 1.190 0.750 5.8 1.190 10.2 1.190 14.5-18.0 Ref. 4

same form as in the scattering potential, i.e., as
the potential of a homogeneous charged sphere.

The Coulomb energy condition given by Clarkson
et al.""was not used to determine the radius B~
of the Coulomb potential. For this method one re-
quires good knowledge of the neutron bound state
potential radius which is unfortunately the most
uncertain parameter.

B. Results

The resonance energies, j' values of resonances,
mean values of experimental partial widths as
well as the results of our calculations, i.e. , the
reduced single particle normalizations, single par-

ticle partial widths, spectroscopic factors, and re-
duced normalizations, are presented in Table II.
The calculations have been performed using the
computer code BETTINA.

The SF and RN were determined according to
Eqs. (6) and (13), respectively. The experimental
partial widths given are the arithmetic means of
those ones published in the literature. Because of
the known difficulties in extracting partial widths
from the elastic proton scattering data, their total
error is in the order of 10 to 30%. This error may
be reduced by taking into account the results of in-
elastic proton scattering or of polarization exper-
iments, as has been done e.g. in the works of Refs.
20, 22, and 25.

TABLE II. Spectroscopic information for elastic proton scattering on target nuclei ' Sn, ' Te, ' Ba,
'" Ce, '" Nd, and Pb via isobaric analog resonances and analysis according to shell model theories of
MM and ZDH (see text).

E lab
R

(MeV)

C

p CXP
I p

(keV)

( ) " S (p, p )

I'I, (keV)
MM ZDH

SFI/
MM ZDH MM

PAI.
ZDH

7.944

8.130

7.6

12.7

145.2

755.3

14.9

41.8

25.7

71.7

0.51

0.30

0.30

0.18

74.3

229.3

42.9

133.8

10.670 23.0 5.027 15.5 49.2 1.49 0.47 7.47 2.35

' Reference 4.
References 15 and 16.

' Mean values according to Refs. 4, 15, and 16.
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TABLE II. (Continued)

E lab I &a . b

R
(MeV)

C
~exp

P
(keV)

(b) i 30Te (p p )

I'i. (keV)
MM ZDH

SFi~

MM ZDH MM
A,",.

ZDH

8.039

8.346

10.288

10.538

6.17 151.1

10.1 720.8

17.4 9.17

5.48 138.9

17.1

54.9

17.8

23.9

23.5

76.1

36.9

70.5

0.36

0.18

0.98

0.23

0.26

0.13

0.47

0.078

54.5

132.6

8.96

31.8

39.7

95.7

4.32

10.8

10,581 3
2 13.1 134.7 24.5 71,3 ~ 0.53 0.18 72.0 24.7

10.989 17.8 92.4 15.8 1.13 0.27 104.1 24.5

' Reference 5.
References 18 and 20.

'Mean values according to Refs. 5, 18, 19, and 20.

E lab
R

(MeV)

~ eb ~exp
C

P
(keV)

( ) '"B (p, po)

(keV}
MM ZDH

SFij
MM ZDH MM

PAi.
ZDH

10.004 16.3 25.5 19.1 29.2 0.85 0.56 21.8 14.2

10.631 3
2 26.3 236.1 46.6 82.8 0.56 0.32 133.2 75.1

11.088

11.315

11.427

11.717

21.9

1.40

9.88

6.05

161.7 42.7

5.58 25.0

4.07 28.9

0.0268 1.88

83.1

2.57

44.6

50.1

0.51

0.74

0.39

0.21

0.26

0.54

0.22

0.12

82.9

0.0200

2.20

0.853

42.6

0.0146

1.24

0.492

' Reference 4.
References 4, 21, and 22.

'Mean values according to Refs. 4, 6, 21, and 22.

E lab
R

(MeV)

b
I p exp C

P
(keV)

(d) '"Ce(p, p, )

I
i,

P (keV)
MM ZDH

SFi".

MM ZDH MM

PAi.
ZDH

9.751 7
2 11.3 48.9 13.3 21.9 0.85 0.52 41.6 25.2

10.405

10.882

11.135

23.7

18.9

1.19

402.6 35.5

282.8 33.2

0.0769 1.64

70.4

72.9

2,29

0.67

0.57

0.72

0.34

0.26

0.52

135.5

73.3

0.0557 0.0400

11.251 5
2 8.08 12.0 20.8 39.9 0.39 0.20 4.65 2.42

11.5.36 4.38 10.9 38.3 57.2 0.11 0.077 1.24 0.833

11.911 5
2 3.50 6.37 29.3 52.3 0.12 0.067 0.762 0.427
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TABLE II. (Continued)

E lab

(MeV)

C

p exp
P

{keV)

(d) (Continued )

I . (keV)
MM ZDH

SF
MM ZDH MM

PAi.
ZDH

12.172 3
2 11.7 113.5 65.7 108,1 0.18 0.11 20.2 12.3

12.217 1-
2 9.55 108.0 54.0 98.4 0.18 0.097 19.1 10.5

' References'22, 24, and 25.
References 22, 23, and 25.

'Mean values according to Refs. 22-25.

E lab

(MeV)

b
J

c
p exp

P
(keV)

(e) '"2Nd {p,p )

I'i. (keV)
MM ZDH

SFi~

MM ZDH MM

PAi.
ZDH

9.495 7
2 10.5 77.0 11.3 16.3

1

0.93 0.64 71.5 49.6

10.228

10.797

10.922

23.5

22.7

0.78

569.1

389.0

0.175

37.3

39.1

1.48

65.1

72.0

1.78

0.63

0.58

0.53

0.36

0.32

0.44

358.5 205.4

252.8 122.6

0.0922 0.0767

11.051 5
2 5.96 21,0 23,3 36, 1 0.26 0.17 5,37 3.47

11.395 3
2 4.60 281.2 61.0 94.5 0.075 0.049 21.2 13.7

11.448 7.30 15.4 28.6 43.5 0.26 0.17 3.92 2.58

'References 25 and 27.
References 25 and 26.

'Mean values according to Refs. 25 and 27.

E lab
R

(MeV)

~exp'

(keV)

(f) '"Pb(s, u, )

I'i. (k V)
MM ZDH

SFi".

MM ZDH MM
A,",.

ZDH

14.96 9+
2 20.8 5.41 16.3 28.7 1.28 0.72 6.92 3.89

15.72 11+
2 1.95 3.56 X 10 1,25 2.09 1.56 0.93 5.55 X 10 3.32 X 10

16.34 15-
2 0.3 63.9 X 10~ 0.246 0.988 1.22 0.30 77.9 X 10~ 19.4 X 10

16.51

16.96

5+
2

1+
2

44.4

45.2

35.9

140.0

36.8

37.2

68.3

70.6

1.21

1.22

0,65

0.64

43.3

170.1

23.3

89.6

17.44 7+
2 29.6 59.0 X 10-' 21.9 44. 1 1.35 0,67 79,7 X 10 39.6 X 10

17.52 3+
2 38.9 7.97 32.5 65.6 1.20 0.59 9.54 4.73

' Reference 4.
"Reference 28.
'Mean values according to Refs. 4, 28, and 29.
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SFSF" g-
2
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9
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2
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FIG. 1. Dependence of spectroscopic factors SF~&, and reduced normalizations A~» for low-lying states in La with

j=L —
~ on the bound state potential radius r „while all the other parameters were held constant to those values given

in Table I. Index 0 denotes results according to x„=1.230 fm used in this work. (a) MM theory, (b) ZDH theory.

C. Dependence of spectroscopic factors and reduced
normalizations on the radius of the single particle potential

The dependence of the SF and of the RN on the
various potential parameters determining directly
or indirectly the spectroscopic quantities derived
is studied for the single particle potential only.
This restriction is reasonable because the proton
scattering potentials are reliable within the limits
of the known general uncertainties.

Since in the calculation of the single particle
bound state wave function the depth and the radius
of the potential are correlated, it is sufficient to
vary only one of these parameters. Here the vari-
ations of the SF and RN with the potential radius
are investigated for the five low-lying analog states
in '"La. The results (cf. Figs. 1 and 2) are given
as ratios related to the values Sp and A, which are
obtained with the potential used in the calculations
of Sec. IIIB [cf. Eg. (14) and Table Ij.

Both shell model theories provide strong depen-
dences of the SF on the neutron potential radius.
As compared to this, besides the unimportant in-
version of the slopes, the variations of the RN with
the radius parameter are much smaller. The re-

ductions become more important with increasing
orbital momentum quantum number /. This result
is similar to the one in the case of (d,p) stripping
in the energy region of sub-Coulomb and quasi-
Coulomb stripping (see e.g. Ref. 12). Therefore,
the RN are considered to be the proper quantities
for comparing the single particle fractions of an-
alog states. This seems to be valid as long as the
neutron potential parameters are not fixed either
by crucial experiments or by convincing a,rgu-
ments.

IV. COMPARISONS OF REDUCED NORMALIZATIONS

FROM (d,p) AND (p,p ) REACTIONS

Comparisons are presented for those analog
states whose parent states were investigated re-
cently via (d,p) reactions in the sub-Coulomb and
quasi-Coulomb energy region for ' Sn, ' Te,
'"Ba, '"Ce, ' Nd, and '"I'b." Especially the
nuclei with magic neutron numbers are well suited
to study the agreement expected between results
according to the analog resonance approa, ches of
MM and ZDH, respectively, with the results of the
DWBA analysis of transfer reactions.
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0.8- 0.8—

0.6— 06-
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FIG. 2. Dependence of spectroscopic factors SF, , and re~ed normalizations A ~» for low-lying states in ~La with
j= l+ 2 on the bound state potential radius x„while all the other parameters were held constant to those values given in
Table I. Index 0 denotes results according to ~„=1.230 fm used in this work. (a) MM theory, (b) ZDH theory.

Besides the absolute values of the RN, Table III
gives the ratios A~„/A» of. analog states which as
well as the graphical representations in Fig. 3
allow an easier comparison and stress systematic
deviations.

For the neutron RN the specific errors are quot-
ed as previously reported, ' while the errors of
the proton RN are assumed to be 15/p on the aver-
age. The latter ones are only indicated in Fig. 3.
In contrast to expectations we had in the beginning,

TABLE III. Comparison of the reduced normalizations A&. and A&. of low-lying analog states formed bylj lj
(d, p) and(p, p ) reactionsatthenuclei' Sn, ' Te, ' Ba, ' Ce, '" Nd, and "Pb

I

E„
(MeV)

n
Ai. MM

PAi. A)) /A(.
MM ZDH

0,029

0.219

3+
2 77.2. + 5.3

243.1

(a)

74.3

229.3

42.9

133.8

0.96

0.94

0.56

2.788 7
2 261 + 0.16 7.47 2.35 0.90

0.0 55.5 + 4.1

(b) Te and

54.5 0.98 0.72

0.296 1+
2 167.4 + 15.1 132.6 95.7 0.79 0.57

2.279 552 + 0 39 8.96 4.32 1.62 0.78



80 8. STEINMETZ et, al.

TABLE III. (Continued)

a
E7l

(MeV)
na

AI. ZDH

2.S15 8.99 + 0.65

(b) (Continued)

31.8 10.8

2.585

3.005

3"
2

1
2

41.0 + 2.7

26.0 +

72.0

104.1

(c} " Ba and '"La

24.7

24.5

0.0

0.626

7"
2 22.3 + 1.6

123 2 + 8, 1

21.8

133.2

14.2

75.1

1.081 684 + 53 82.9 42.6

1.283

1.419

9-
2 0,0167+ 0.0017

1.58 + 0.13

0.020O

2.20

0.0146

1.24

1.697 5
2 0.678 + 0.074 0.853 0.492

(d) 1 (.c agd P1.

0.0 42 7 + 3.3 41.7 25.2

0.666

1.144

1.357

1.505

3
2

1
2

9-
2

5
2

199.9 + 13.8

116.1 + 8.9

0.0437 + 0.0039

3.13 + 0 25

269.1

161.1

0.0557

4.65

135.5

733

0.0400

2.42

1.748

2.129

2.421

2.438

7"
2

5-
2

3-
2

1"
2

1.07 + 0.09

0.620 + 0.051

12.4 + 0.95

23.6 + 1.8

1.24

0.762

20.2

19.1

0,833

0.427

12.3

10.5

0.0

0.740

7
2

3"
'2

65.6 + 5.5

288.0 + 23.6

(C) 143Nd»d 143pm

71.5

358.5

49.6

205.4

1.300 1.-
2 172.4 + 12.9 225.8 122.6

1.402 0.103 + 0.010 0.0922 0.0767

1.549 4.81 + 0.43 5.37 3.47

1.845 3
2 28.4 + 2,2 21.2 13.7

1.903 5
2 344 + 030 3.92 2.58
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TABLE III. (Continued)

E
(MeV)

n
AI. MM ZDH

AI'~AI
MM ZDH

(f)»9Pb»d 209B&

0.0

0.781

9 +
2 656 + 048

5.59 X 10 + 0.41 X 10

6.92

5.55 X 10 3

3.89 1.05

3.32 X 10 0.99

0-.59

0.59

1.427 15
2 75.9 X 10~ + 6.5 X 10~ 77.9 X 10~ 194 X 10~ 1.03 0.26

1.570

2.036

5 +
2

1 +
2

38.7

145.6

+ 23

+ 9.1

43.3

170.1

23.3

89.6

1.12

1.17

0.60

0.62

2.496

2.541

7 +
2

3+
2

75.0 X 10 + 4.7 X 10

881 + 055

79.7 X 10 3

9.54

39.6 X 10 3

4.73

1.06

1.08

0.53

0.54

' Reference 12.
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FIG. 3. Comparison of reduced normalizations A
& &

and A~&& as resulting from (d,p) reactions and elastic proton
scattering via isobaric analog states, respectively. k= A» extracted from (d,p) reactions in the sub-Coulomb and
quasi-Coulomb energy region according to Ref. 12, 0= A~» analyzed according to MM theory, ~ = A~» analyzed according
to ZDH theory. (a) ' ~Sn and 5Sb (b) Te and '3 I, (c) 3~Ha and '39La, (d) ~43Nd and ~ Pm, (e) ' Ce and Pr (f)
and Bi.
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the comparisons do not permit a unique conclusion
concerning the validity of one of the shell model
approaches discussed. Nevertheless, the results
may be summarized by three points:

For nuclei with unclosed neutron shells, as
"'Sn(N= 74) and "Te(N= VS), the A~, (MM) of states
with even parity agree well with the corresponding
A"„., while the Af& (ZDH) are too small as com-
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pared to the corresponding neutron RN. For states
mith odd parity the results according to MM theo-
ry tend systematically to larger values, while the
A~» (ZDH) agree well with the (d,p) results.

2. The A~& (MM) of nuclei with a closed neutron
shell at %= 82 are in good agreement with the (d,p)
results for low-lying states with a sufficiently
large single particle fraction. The A~„. (ZDH) de-
viate in this region systematically to smaller val-
ues as compared to the corresponding A"„.. Proton
resonances at higher energies which have smaller
SF and are partly overlapping do not show any
tendency.

3. For the double magic core nucleus, '"Pb aQ
the states investigated show very good agreement
between the A~„. (MM) and the corresponding A"„.,
while the A~„. (ZDH) are too small by about 40%.

The arithmetic means and corresponding stan-
dard deviations of the ratios A~, /A» of the 38
states studied in this work are according to the
MM theory 1.34+ 0.11 and according to the ZDH

theory 0.69+ 0.03, respectively. The distinctly
smaller deviation of the results according to the
ZDH approach from the mean value indicates that
there might be a systematic theoretical uncertain-
ty which has so far not been taken into account
(see Sec. V).

V. DISCUSSION

Though introducing reduced nor malizations as
spectroscopic quantities is somewhat disadvan-
tageous because the single particle fractions of
the states in question cannot be recognized di-
rectly, the comparison with results of neutron
transfer reactions is more reasonable even in
those cases where calculations are performed with
different single particle potenti;als. The remaining
theoretical uncertainties of the RN A",

&
were es-

timated to be about 15% and were directed more
probably to lower values. ' The theoretical accu-
racy of the A„ is also limited to a certain amount
which mill be discussed and quantified in this sec-
tion.

The equivalence of Eqs. (4) and (ll), which allows
the calculation of single particle decay widths, was
examined by orthogonalizing the proton scattering
wave function g'~' to the neutron wave function

Using the ansatz

0 = 0"' —~i,&e"'
I ~i;&, (15)

one obtains

&~II'.Iw, & =&0"'ll'.I~a)

Because of the normalization condition &q&„. I y»& =1,

TABLE IV. Single particle widths of scattering states formed

by the reactions ' 8 Ba (p, p ) and '4 Nd (p, p ) as calculated

with code BETTINA (Ref. 42) in using orthogonalized proton
scattering wave functions [according to Eq. (4)] and normal

optical potential scattering wave functions [according to Eq.
(11)],respectively.

138Ba (p p ) 142Nd (p p )

SP
FZDH

(keV)

SP
orth

(keV) .

SP
ZDH

(keV)

SP
orth

(keV)

29.2 28.4 7
2 16.3 16.4

3
2 80.6 3-

2 65.1 68.3

1
2 83.1 80.7 72.0 76.4

9-
2

5
2

.2.57

44.6

2.53

43.6 5
2

1.78

36.1

1.77

36.8

5
2 50.1 48.6 3

2 94.5 99.7

5
2 43.5 44.4

the wave functions g and y„. fulfill the equation

The numerical determination of the single parti-
cle widths I",,. with the computer code BETTINA
was changed according to Eq. (16). As an exam-
ple, resulting widths are presented for some states
in '"La and '"Pm in Table IV. They prove that
single particle widths according to Eq. (4) are
approximately equivalent to the widths according
to the ZDH matrix element (11).

Corrections which might be necessary for theo-
retical predictions of widths were discussed ex-
tensively by Auerbach et al." Therefrom, the
most important uncertainties are due to the charge
exchange caused by Coulomb forces, the finite pro-
ton size, and the charge dependence as well as
charge asymmetry of the nuclear forces. Their
whole contribution mas estimated and calculated to
be in the order of some percent for nuclei in the
mass region of A&100. The influence of "re-
arrangement effects" which incr eases with de-
creasing SF is estimated less accurately and may
also be in the order of some percent.

The most significant uncertainty is due to the
coupling of the analog state to the continuum states
via compound states. The statistical assumption
of a neglectability of the contributions on the av-
erage is not justified generally.

There are states with simple structures similar
to the ones of the analog state in question which
influence the. decay considerably by the isospin
mixing. Primarily, the existence of those "door-
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way states" has been claimed in order to reduce
the discrepancies between the experimental and
theoretical total widths of the analog states. "

Doorway states are the so-called configuration
states which have the same spatial configuration
as the analog state but the isospin quantum num-
ber 7 Tp ——,

' and the collective monopole state
which also is characterized by an isospin quan-
tum number one unit lower than the one of the
analog state. "'" Though the experimental in-
formation concerning the excitation energies and
the widths of these states is rare, some general
assumptions lead to satisfying agreement between
theoretical and experimental total widths in var-
ious cases."

The dependence of the decay widths on the door-
way states varies in the region of mean to heavy
nuclei with the mass number A. in a different way.
Contributions due to the configuration states are
in the order of some percent and decrease with
increasing A,"while the values of the partial
widths become smaller by about 10-20% with in-

creasing 8 by the influence of the monopole state.
The total uncertainty implied is about 15-30%

and is directed mainly to smaller theoretical sin-
gle particle widths and, hence, to greater proton
reduced normalizations A~„. As the neutron RN
might be smaller by about 15% at most, the ratios
A~„./A,",. could be larger by about 30—45% as com-
pared to the ratios given in this work. This un-
certainty exceeds by far experimental errors of
these ratios which are reduced significantly by
the procedure of averaging over numerous states
of various nuclei. Therefore, one cannot decide
between the two shell model theories of MM and
ZDH until the theoretical assumptions possible are
verified or refused.
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