Resonance neutron capture in ⁵⁸Fe, ⁵⁶Fe, and ⁵⁴Fe

J. C. Wells, Jr.*

Physics Department, Tennessee Technological University, Cookeville, Tennessee 38501

S. Raman and G. G. Slaughter Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (Received 14 May 1978)

Neutron capture γ -ray measurements following resonance capture have been performed upon enriched samples of ⁵⁴ Fe and ⁵⁸ Fe, and upon a natural Fe (91.7% ⁵⁶ Fe) sample. Twenty-eight γ rays were observed from two resonances of the⁵⁸ Fe(*n*, γ) reaction, and nineteen were incorporated into a level scheme for ⁵⁹ Fe. Thirty-seven γ rays were observed from the 1.167-keV resonance of the ⁵⁶ Fe(*n*, γ) reaction, and twenty-eight were incorporated into a level scheme for ⁵⁷ Fe. Two γ rays were observed from four resonances of the ⁵⁴ Fe(*n*, γ) reaction. The neutron separation energy for ⁵⁹ Fe was determined to be 6580.8 ± 1.0 keV.

> NUCLEAR REACTIONS ^{54,56}Fe (n, γ) , E = 1-50 keV, ⁵⁸Fe (n, γ) , E = 0.1-11 keV; measured E_{γ} , I_{γ} . ⁵⁵Fe deduced resonances. ^{57,59}Fe deduced resonances, levels. ⁵⁹Fe deduced neutron separation energy. Enriched targets.

I. INTRODUCTION

We have carried out a series of (n,γ) measurements following resonance neutron capture on all stable iron isotopes. The present paper describes such measurements carried out on enriched ⁵⁸Fe and ⁵⁴Fe targets and on a natural Fe (91.7% ⁵⁶Fe) sample. The ⁵⁷Fe(n,γ) measurements will be reported in a future publication.

Previous experimental investigations of the level structure of ⁵⁹Fe have been carried out primarily

by the ${}^{57}\text{Fe}(t,p)$ and ${}^{58}\text{Fe}(d,p)$ stripping reactions¹⁻³ and by the ${}^{58}\text{Fe}(n,\gamma)$ reaction with thermal neutrons.⁴ We have observed 28 γ rays (8 primary, 20 secondary) from the present ${}^{58}\text{Fe}(n,\gamma)$ reaction study. Nineteen of these have been incorporated into a level scheme which includes many of the previously reported levels.¹⁻⁵

We have also observed 37 γ rays (14 primary, 23 secondary) in the ${}^{56}\text{Fe}(n,\gamma)$ reaction at the 1.167-keV neutron resonance. A similar measurement has been reported by Chrien *et al.*⁶ Twenty-eight of

FIG. 1. Counting rate for all γ -ray events above 100 keV versus neutron time-of-flight for the enriched 58 Fe target. Resonances in 56 Fe and 58 Fe are identified.

18 707

© 1978 The American Physical Society

FIG. 2. The γ -ray spectra (without off-resonance background corrections) for the 230-eV and 359-eV neutron resonances in ⁵⁸Fe. All γ -ray energies are in keV. Only selected peaks are labelled.

Other w		Present work						
Thermal (n,γ) measurements			Resonance (η,γ) measurements 230 eV 359 eV resonance resonance					s eV nce
E_{γ} (keV)	I _γ (%)		E_{γ} (keV)) ^b	I ¢		I _Y ^c	
6582	2.3		6580.5	30	<0.4		0.99	30
6295	51.0		6294.5	20	3.7	4	0.96	32
		No	6108.2^{d}		<0.4		<0.3	
			6010.4	30	<0.4		0.78	28
5854	16.8		5854.7	20	0.81	31	3.4	5
5420	2.5		5418.7	20	2.4	5	1.01	33
			5369.9	30	0.59	35	0.90	31
4660	9.1		4661.6	30	<0.5		0.54	38
4618	4.2	No	4618		<0.5	. .	<0.5	
4137	4.2		4133.5	30	<0.5		1.4	5

TABLE I. Relative photon intensities of the primary γ rays from the $^{58}\text{Fe}(\textit{n},\gamma)\,^{59}\text{Fe}$ reactions

 $^{\it q}Ref.$ 4. The $\gamma\text{-ray}$ energies have quoted accuracies of \pm 3-6

keV. In our notation, $6580.5 \ 30 \equiv 6580.5 \pm 3.0$, etc. The γ -ray energies correspond to thermal neutron capture. Relative photon intensity based on a value of 100 for the result of the Ce(Li) detector counts between 2.3 and 3.5 MeV.

sum of the Ge(Li) detector counts between 2.3 and 3.5 MeV. *d*In our notation, $3.7 \ 4 \equiv 3.7 \pm 0.4$, etc. *d*The 6108.2-keV transition represents a possible transition to the 472.6-keV (5/2⁻) final state.

FIG. 3. Level scheme for $^{59}\mbox{Fe}$ from the present experiment. All energies are in keV. Spins and parities are from Ref. 5. In our notation for level energy, $287.8 \ g \equiv 287.8 \pm 0.9$, etc.

the 37 γ rays have been incorporated into a level scheme involving 14 excited states. Time-of-flight data obtained with an enriched ^{54}Fe target revealed four resonances. However, no high-energy, primary γ rays were observed from these resonances.

TABLE II. Secondary γ rays from the ⁵⁸Fe (n, γ) ⁵⁹Fe reaction

E_{γ} (keV) ^{α}		E_{γ} (keV) ^a	E_{γ} (keV) ^{α}
288.0	10	1402.6 ^b 15	2779.2 ^b 20
472.6	10	1642.2^{b} 15	3016.0 ^b 20
570.4	10	1747.3 15	3107.7 ^b 20
725.8	10	1916.3 15	3185.3 ^b 20
1022.3	10	1962.0 15	3359.8 ^b 20
1163.7	20	2157.5 15	3410.9 ^b 20
1210.3	10	2702.3 ^b 20	

^{*a*}_{*k*}In our notation, 288.0 10 \equiv 288.0 \pm 1.0, etc. ^bNot placed in level scheme.

TABLE III. Energy levels in ⁵⁹Fe

Other w E_{γ} (k	orks ^a eV)	Present work E_{γ} (keV)			
			0.0		
287	6		287.8	9	
473	6		472.6	10	
574	16		570.4	10	
728	6		725.8	10	
1026	6	н 1	1022.3	10	
1081	16				
1162	6		1162.8	15	
1214	10		1210.6	10	
1517	10				
1572	10				
1648	10				
1749	10		1747.3	15	
1922	6		1917.3	15	
1964	10		1962.0	15	
•••			•••		
2442 ^b	10		2446,0	15	
•••			•••		
•••			• • •		
6582 ^{<i>c</i>}	3		6580.8	10	

^{*a*}Mainly from (d,p), (t,p) - Ref. 3. Above 2 MeV excitation, this column is not complete; see, for example, Ref. 1. In our notation, 287 & \equiv 287 \pm ^b6, etc. From (d,p) - Ref. 1

"Neutron separation energy from Ref. 4.

II. EXPERIMENTAL PROCEDURE

The Oak Ridge Electron Linear Accelerator (ORELA) facility was used to provide pulsed beams (30-nsec bursts at a pulse repetition rate of 500 Hz or 12bursts at a pulse repetition factor for our fille nsec bursts at 800 Hz) of neutrons for capture studies of 40 g, 82% enriched ⁵⁸Fe; 60 g of natural Fe (91.7% ⁵⁶Fe); and 27 g, 98% enriched ⁵⁴Fe. The neutrons were produced by a beam of 140-MeV elec-trons which were stopped in a water-cooled Ta target. The resulting bremsstrahlung produced neutrons via the (γ, xn) reaction. The neutrons were moderated by a 3.2 cm thick water moderator of 15 cm diameter which surrounded the Ta target. The (n, γ) measurements were carried out at a 10.45 m station. The quoted neutron energies in this paper are considered accurate to ±0.5%. Each sample was placed in the beam for a running time of approximately two weeks with a shielded 37 cm³ Ge(Li) detector located 20 cm below the sample. The γ -ray intensity values given in this paper are based on data obtained at 90°. Overlap neutrons were suppressed by a ^{10}B filter in the beam. Two stainless steel shadow bars totalling 1.5 m and a Pb filter 5 cm thick were inserted in the beam in order to shield the sample from fast neutrons and from the γ flash.

The Ge(Li) detector was enclosed in a copper screen housing to shield out electromagnetic interference from the accelerator. The detector preamplifier provided both timing and analog signal outputs. The timing of the events was carried out with a filter amplifier and a constant fraction discriminator, and the resulting outputs were transmitted to a data acquisition center. The event times were digitized by a 10-nsec clock. The analog signs1s were digitized by a 4096channel, 100-MHz analog to digital converter, The digitizers were interfaced together so as to maintain correct correlation between times and pulse heights for each event.

III. RESULTS

A. The ${}^{58}\text{Fe}(n_{,\gamma}){}^{59}\text{Fe}$ reaction

Fig. 1 shows a spectrum of all neutron capture γ -ray events *versus* neutron flight time. Based on these data, appropriate gates were selected both on-resonance and off-resonance. Useful spectroscopic data were obtained only from the 230- and 359-eV resonances (see Fig. 2).

A listing of the primary γ -ray energies and relative intensities is given in Table I. Also shown for comparison are the γ rays from thermal neutron capture.⁴ Secondary γ rays are listed in Table II. The level scheme based on the present data is shown in Fig. 3. The energy levels from the present work and those from a recent evaluation⁵ are given in Table III. The spin and parity (J^{π}) assignments are from Ref. 3. The neutron separation energy, S_n , was determined to be 6580.8 ± 1.0 keV.

The 230- and 359-eV resonances are known to be pwave resonances based on a lack of interference between resonance and potential scattering in the curve of neutron transmission *versus* neutron energy.⁷ Therefore, these resonances have $\mathcal{J}^{\Pi} = 1/2^-$ or $3/2^-$. Since the seven primary γ rays above 4.5 MeV shown in Fig. 3 lead to $1/2^-$, $3/2^-$ or $5/2^-$ levels, these γ rays are most probably *M1* transitions. The partial radiation widths for these transitions are not known at this time.

In the (n,γ) reaction with low-energy neutrons, the partial radiation widths from adjacent resonances are almost always uncorrelated with each other. However, in a recent study of the ${}^{35}C\ell(n,\gamma){}^{36}C\ell$ reaction, Chrien and Kopecký⁸ found similar γ -ray spectra from neighboring capture states of opposite parity. Expressed as a linear correlation coefficient, these authors found r =

+0.84 $^{+0.06}_{-0.10}$ for a set of 14 transitions seen in both *s*-wave thermal capture and *p*-wave, 398-eV resonance capture in ^{35}Cl .

710

FIG. 5. Level scheme for 57 Fe from the present experiment. All energies are in keV. Spins and parities are from Ref. 12. In our notation for level energy, 14.7 $10 \equiv 14.7 \pm 1.0$, etc.

We have observed a similar E1 - M1 role reversal in the case of the ${}^{58}\text{Fe}(n,\gamma)$ reaction. For the nine transitions observed in thermal and resonance capture (see Table I), we obtain r = ${}^{+0.77} \, {}^{+0.12}_{-0.22}$, a strong positive correlation, in the case of thermal and 230-eV resonance capture. We also obtain $r = {}^{+0.18} \, {}^{+0.35}_{-0.40}$, negligible correlation,

primary γ rays from the ${}^{56}\text{Fe}(n,\gamma){}^{57}\text{Fe}$ reaction for the neutron resonance at 1.167 keV							
Other work ^a Present work							
E_{γ} (keV)	Ιγ ^b			E_{γ} (ke	V)°	I _Y ^b	
7645.4	51	3		7645.5	20	41	4
7631.0	100	4		7631.7	20	100	4
7511.4	7.0	14		7508.8	20	5.2	8
7279.2	2.2	8		7279.6	30	1.9	7
6507.0	2.6	5	No	6507		<1.0	
6382.2	37	1		6381.8	20	35	5
6020.0	3.6	8		6017.8	30	1.1	5
5922.0	7.8	11		5920.8	30	5.6	13
			No	5193 ^d		<1.2	
4950.8	5.9	10		4950.1	20	5.0	14
4811.7	<0.5			4810.0	30	1.5	10
4676.4 ^e	1.5	6	No	4676		<1.4	
			No	4589 ^d		<1.0	•
4463	5.8	11		4463.5	20	5.5	10
4408	1.7	٣		4408.0	30	1.3	8
			No	4400 ^d		<1.0	
4276.8	1.4	7		4276.5	30	1.7	8
4220.0	1.4	7		4217.9	25	1.2	8
4014.2 ^e	<0.5		No	4014		<1.0	
3856.6	1.3	9		3854.3	35	1.9	11

TABLE IV. Relative photon intensities of the

^{*a*}Ref. 6. The energies have quoted accuracies of <1 keV for 6.5 < E_{γ} <8.0 MeV and <2 keV for E_{γ} , <6.5 MeV, except for the weaker lines. ^{*b*}Relative intensity normalized to 100 for the in-

^DRelative intensity normalized to 100 for the intensity of the 7631-keV γ ray. In our notation, 51 $3 \equiv 51 \pm 3$, etc.

In our notation, 7645.5 $20 \equiv 7645.5 \pm 2.0$, etc. The γ -ray energies correspond to thermal neutron _capture.

capture. dThe 5193-, 4589-, and 4400-keV transitions represent possible transitions to 1/2⁺ final states at 2454-, 3057.6-, and 3247-keV, respectively. Not primary transitions.

in the case of thermal and 359-eV resonance capture. The error limits represent rms errors deduced by the use of Fisher's transformation⁹ and reflect the smallness of the sample size. The error due to experimental uncertainties in the intensity values is much smaller and hence not included. McLean *et al.*³ have made a detailed comparison

McLean *et al.*³ have made a detailed comparison between the experimental level scheme (and spectroscopic factors) with those obtained from rotational model calculations.^{10,11} They have shown that the experimental data provide strong support for the existence in ⁵⁹Fe of a rotational band structure. [The ground state, the 473-keV level and the 1022-keV level comprise the $K = 3/2^-$ (312) band, the 288-keV and the 726-keV levels comprise the $K = 1/2^-$ (310) band, etc.].

Secondary γ rays from the ${}^{56}\text{Fe}(n,\gamma){}^{57}\text{Fe}$ TABLE V. reaction

E_{γ} (keV) ^a		ε _γ (keV) ^a	E_{γ} (keV) ^a		
352.5	10 ·	1357.7	10	2683.5	20	
367.4	10	1460.3^{b}	10	2697.4	20	
572.0	10	1613.4	20	2971.1 ^b	20	
692.2	10	1672.2^{b}	20	3152.1 ^b	20	
898.7	10	1725.5	20	3169.6	20	
1019.6	10	1954.2^{b}	20	3574.8^{b}	20	
1250.8	10	2362.4 ^b	20	3666.6 ^b	20	
1263.7 ⁰	20	2539.3^{b}	20			

^{*a*} In our notation, 352.5 $10 \equiv 352.5 \pm 1.0$, etc. ^{*b*} Not placed in level scheme.

^cProbable doublet.

B. The ${}^{56}\text{Fe}(n,\gamma){}^{57}\text{Fe}$ reaction

Below 20 keV, the only known neutron resonance in ^{56}Fe occurs at 1.167 keV. The $\gamma\text{-ray}$ spectrum from this resonance is shown in Fig. 4. A listing of the primary γ -ray energies and relative intensities is given in Table IV. These are compared with the results obtained by Chrien $et al.^6$ We find good overall agreement. However, we did not observe a γ ray at 6507 keV. Secondary γ rays observed in the present study are listed in Table V. The level scheme based on our data is shown in Fig. 5. The $J^{\rm T}$ assignments are from the Nuclear Data Sheets. 12

The 1.167 keV resonance has been shown to be a pwave resonance by transmission 1^{3} and scattering measurements. Furthermore, this resonance has been shown to be $1/2^{-}$ from angular distribution measurements (90° and 135°) involving the 7645- and 7632-keV transitions.⁶ The 135-keV level has a definite 5/2⁻ assignment based on Coulomb excitation and lifetime measurements.¹⁵ Therefore, the 7509-keV primary transition is an E2 transition. Highenergy primary γ transitions in the (n, γ) reactions are predominantly E1 or M1; primary E2 transitions are extremely rare. The 7509-keV transition in 57 Fe joins a select group of eight other transitions which are known to be primary E2 transitions in the (n,γ) reactions.¹⁶

A strong correlation exists between the intensities of primary transitions from s-wave, thermal neutron capture¹⁷ and from p-wave, 1.167-keV resonance neutron capture. We obtain r = +0.84 + 0.06 - 0.09This remarkable correlation has also been cited in Ref. 8.

*Supported in part by the Oak Ridge National Laboratory.

- ¹A. Sperduto and W. W. Buechner, Phys. Rev. <u>134</u>, B142 (1964).
- ²E. D. Klema, L. L. Lee, Jr. and J. P. Schiffer,
- ¹ Phys. Rev. <u>161</u>, 1134 (1967).
 ³K. C. McLean, S. M. Dalgliesh, S. S. Ipson and G. Brown, Nucl. Phys. <u>A191</u>, 417 (1972).
 ⁴A. P. Bogdanov, V. A. Knat'ko, A. V. Soroka and V. N. Tadéush, Yad. Fiz. <u>14</u>, 909 (1971) [transl.:

FIG. 6. Counting rate for all γ -ray events above 100 keV versus neutron time-of-flight for the enriched 54 Fe target. Resonances in 54 Fe are identified.

C. The ⁵⁴Fe (n,γ) ⁵⁵Fe reaction

An attempt was made to study the ${}^{54}\text{Fe}(n,\gamma)$ reaction. The time-of-flight spectrum is shown in Fig. 6. In a run lasting 2 weeks, the γ -ray spectra (not included here) from the four labelled resonances showed the presence of the 411- and 931keV transitions known to de-excite the first and second excited states in ⁵⁵Fe (Ref. 18). However, no high-energy primary γ rays in ^{55}Fe were observed. We ascribe our inability to a combination of factors, including the smallness of our sample, low values for the radiation widths and the fact that the resonances lie at relatively high neutron energies.

IV. ACKNOWLEDGEMENTS

This research was sponsored by the Division of Basic Sciences, U.S. Department of Energy, under contract W-7405-eng-26 with the Union Carbide Corporation. We thank the ORELA operating staff for their cooperation.

- Sov. J. Nucl. Phys. <u>14</u>, 509 (1972)]. ⁵H. J. Kim, Nucl. Data Sheets <u>17</u>, 485 (1976). ⁶R. E. Chrien, M. R. Bhat and O. A. Wasson, Phys. Rev. C <u>1</u>, 973 (1970). ⁷J. P. Carge S. Jain and J. A. Wasson, Phys.
- ⁷J. B. Garg, S. Jain and J. A. Harvey, private communication.
- ⁸R. E. Chrien and J. Kopecký, Phys. Rev. Lett. <u>39</u>, 911 (1977).
- ⁹M. G. Kendall and A. Stuart, The Advanced Theory of Statistics, (Charles Griffin and Co., London,

- 1967) Vol. I, p. 390; Vol. II, p. 292.
 ¹⁰P. C. Sood, Phys. Rev. <u>179</u>, 1100 (1969).
 ¹¹S. G. Nilsson, Mat. Fys. Medd. Dan. Vid. Selsk., 29, no. 16 (1955).
 ¹²R. L. Auble, Nuclear Data Sheets 20, 327 (1977).
 ¹³R. C. Block, Phys. Lett. <u>13</u>, 234 (1964).
 ¹⁴A. Asami, M. C. Moxon and W. E. Stein, Phys. Lett. <u>28B</u>, 656 (1969).

- ¹⁵A. T. G. Ferguson, M. A. Grace and J. O. Newton, Nucl. Phys. 17, 9 (1960).
 ¹⁶S. Raman, M. Mizumoto, G. G. Slaughter and R. L. Macklin, Phys. Rev. Lett. 40, 1306 (1978).
 ¹⁷V. J. Orphan, N. C. Rasmussen and T. L. Harper, Gulf General Atomic Report No. GA-10248 (1970), insultiable unpublished. ¹⁸D. C. Kocher, Nuclear Data Sheets <u>18</u>, 463 (1976).