Resonance neutron capture in ${}^{58}Fe$, ${}^{56}Fe$, and ${}^{54}Fe$

J. C. Wells, Jr.*

Physics Department, Tennessee Technological University, Cookeville, Tennessee 38501

S. Raman and G. G. Slaughter Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (Received 14 May 1978)

Neutron capture y-ray measurements following resonance capture have been performed upon enriched samples of ⁵⁴ Fe and ⁵⁸ Fe, and upon a natural Fe (91.7% ⁵⁶ Fe) sample. Twenty-eight γ rays were observed from two resonances of the⁵⁸Fe(n, γ) reaction, and nineteen were incorporated into a level scheme for ⁵⁹Fe. Thirty-seven γ rays were observed from the 1.167-keV resonance of the ⁵⁶ Fe(n, γ) reaction, and twenty-eight were incorporated into a level scheme for ⁵⁷ Fe. Two γ rays were observed from four resonances of the ⁵⁴ Fe(n, γ) reaction. The neutron separation energy for ⁵⁹ Fe was determined to be 6580.8 \pm 1.0 keV.

> NUCLEAR REACTIONS 54,56 Fe(n, γ), E =1-50 keV, 58 Fe (n, γ), E =0.1-11 keV; measured E_{γ} , I_{γ} . ⁵⁵Fe deduced resonances, ^{57,59}Fe deduced resonances, levels. ⁵⁹Fe deduced neutron separation energy. Enriched targets.

I. INTRODUCTION

We have carried out a series of (n, γ) measurements following resonance neutron capture on all stable iron isotopes. The present paper describes such measurements carried out on enriched ⁵⁸Fe and
⁵⁴Fe targets and on a natural Fe (91.7% ⁵⁶Fe) sample. The $57Fe(n,\gamma)$ measurements will be reporte in a future publication.

Previous experimental investigations of the level structure of ⁵⁹Fe have been carried out primaril

by the ⁵⁷Fe(t , p) and ⁵⁸Fe(d , p) stripping reac-
tions¹⁻³ and by the ⁵⁸Fe(n , γ) reaction with therma
neutrons." We have observed 28 γ rays (8 primary, 20 secondary) from the present $58Fe(n, \gamma)$ reaction study. Nineteen of these have been incorporated into a level scheme which includes many of the previously reported levels.¹⁻⁵

We have also observed 37γ rays (14 primary, 23 secondary) in the 5^6 Fe(n, γ) reaction at the 1.167keV neutron resonance. ^A similar measurement has been reported by Chrien et a^2 . ⁶ Twenty-eight of

FIG. 1. Counting rate for all γ -ray events above 100 keV versus neutron time-of-flight or the enriched 58 Fe target. Resonances in 56 Fe and 58 Fe are identified.

18 707 021978 The American Physical Society

FIG. 2. The γ -ray spectra (without off-resonance background corrections) for the 230-eV and 359-eV neutron resonances in $58Fe$. All γ -ray energies are in keV. Only selected peaks are labelled.

Other work ^{a}			Present work						
Thermal (n,γ) measurements		Resonance (n, γ) measurements 230 eV 359 eV resonance resonance							
(keV) E_{γ}	I_{γ} (%)		E_{γ} (keV) ^{<i>b</i>}		I_γ				
6582	2.3		6580.5 30		< 0.4	0.99	30		
6295	51.0		6294.5	20	3.74	0.96	32		
			No 6108.2^d		0.4	< 0.3			
			6010.4	30	< 0.4	0.78	28		
5854	16.8		5854.7	- 20	0.8131	3.4	5		
5420	2.5		5418.7	20	$2.4 - 5$	1.01	33		
			5369.9	30	0.59.35	0.90	31		
4660	9.1		4661.6	30	0.5	0.54	38		
4618	4.2		No 4618		~ 200 < 0.5 \sim \sim	< 0.5			
4137	4, 2		4133.5	30	< 0.5	1.4	5		

TABLE I. Relative photon intensities of the primary γ rays from the ⁵⁸Fe (n, γ) ⁵⁹Fe reactions

 4 Ref. 4. The γ -ray energies have quoted accuracies of \pm 3-6

bev.

The our notation, 6580.5 30 = 6580.5 ± 3.0, etc. The γ -ray

In our notation, 6580.5 30 = 6580.5 ± 3.0, etc. The γ -ray

energies correspond to thermal neutron capture.

Relative photon intensity based on a valu

sum of the Ge(Li) detector counts between 2.3 and 3.5 MeV.

In our notation, 3.7 $4 \equiv 3.7 \pm 0.4$, etc.

The 6108.2-keV transition represents a possible transition

to the 472.6-keV (5/2⁻) final state.

FIG. 3. Level scheme for ⁵⁹Fe from the present experiment. All energies are in keV. Spins and parities are from Ref. 5. In our notation for level energy, 287.8 $\theta = 287.8 \pm 0.9$, etc.

 \mathcal{A}

the 37 γ rays have been incorporated into a level
scheme involving 14 excited states. Time-of-flight
data obtained with an enriched 54Fe target reveal-
ed four resonances. However, no high-energy, primary γ rays were observed from these resonances.

TABLE II. Secondary γ rays from the ⁵⁸Fe(n, γ) $59Fe$ reaction

E_{γ} (keV) ^{α}		E_{γ} (keV) ^{α}	E_{γ} (keV) ^{α}
288.0	<i>10</i>	1402.6^{b} 75	2779.2^{b} 20
472.6	<i>10</i>	1642.2 b 15	3016.0^{b} 20
570.4	10	1747.3 15	3107.7^{b} 20
725.8	<i>10</i>	1916.3 15	3185.3^{b} 20
1022.3	<i>10</i>	1962.0 75	3359.8 b 20
1163.7	20	2157.5 15	3410.9 b 20
1210.3	10	2702.3^{b} 20	

 a_b In our notation, 288.0 10 = 288.0 ± 1.0, etc.
Not placed in level scheme.

 \mathcal{L}

^{*a*}Mainly from (d, p) , (t, p) - Ref. 3. Above 2 MeV
excitation, this column is not complete; see, for
example, Ref. 1. In our notation, 287 $\delta = 287 \pm$ b_6 , etc.
From (d, p) - Ref. 1

 c_{Neutron} separation energy from Ref. 4.

FIG. 4. The γ -ray spectrum (without off-resonance background corrections) from the 1.167- keV neutron resonance in $56Fe$. All γ -ray energies are in keV. Only selected peaks are labelled.

^II. EXPERIMENTAL PROCEDURE

The Oak Ridge Electron Linear Accelerator (ORELA) facility was used to provide pulsed beams (30-nsec bursts at a pulse repetition rate of 500 Hz or 12 nsec bursts at 800 Hz) of neutrons for captur studies of 40 g, 82% enriched $58Fe$; 60 g of natural Fe (91.7% $56Fe$); and 27 g, 98% enriched $54Fe$. The neutrons were produced by a beam of 140-MeV electrons which were stopped in a water-cooled Ta target. The resulting bremsstrahlung produced neutrons via the (γ, xn) reaction. The neutrons were moderated by a 3.² cm thick water moderator of 15 cm diameter which surrounded the Ta target. The (n, γ) measurements were carried out at a 10.45 m station. The quoted neutron energies in this paper are considered accurate to ±0.5%. Each sample was placed in the beam for a running time of approximately two weeks with a shielded 37 $cm³$ Ge(Li) detector located 20 cm below the sample. The γ -ray intensity values given in this paper are based on
data obtained at 90°. Overlap neutrons were suppressed by $a^{-10}B$ filter in the beam. Two stainles steel shadow bars totalling 1.⁵ ^m and ^a Pb filter 5 cm thick were inserted in the beam in order to shield the sample from fast, neutrons and from the ^y flash.

The Ge(Li) detector was enclosed in a copper screen housing to shield out electromagnetic interference from the accelerator. The detector preamplifier provided both timing and analog signal outputs. The timing of the events was carried out with a filter amplifier and a constant fraction discriminator, and the resulting outputs, were transmitted to a data acquisition center. The event times were digitized by a 10-nsec clock. The analog signsls were digitized by a 4096 channel, 100-MHz analog to digital converter. The digitizers were interfaced together so as to maintain correct correlation between times and pulse heights for each event.

III. RESULTS

A. The ${}^{58}Fe(n, \gamma)$ ⁵⁹Fe reaction

Fig. 1 shows a spectrum of all neutron capture γ ray events versus neutron flight time. Based on these data, appropriate gates were selected both on-resonance and off-resonance. Useful spectroscopic data were obtained only from the 230- and 359-eV resonances (see Fig. 2) .

^A listing of the primary y-ray energies and relative intensities is given in Table I. Also shown for comparison are the γ rays from thermal neutron capture.⁴ Secondary γ rays are listed in Table II. The 1evel scheme based on the present data is shown in Fig, 3. The energy levels from the present work and those from a recent evaluation⁵ are given in Table III. The spin and parity (J^{π}) assignments are from Ref. 3. The neutron separation energy, S_n , was determined to be 6580.8 \pm 1.0 keV.

The 230- and 359-eV resonances are known to be p wave resonances based on a lack of interference between resonance and potential scattering in the curve of neutron transmission versus neutron energy.
 $7^{\prime\prime}$ Therefore, these resonances have $J^{\prime\prime} = 1/2^-$ or $3/2^-$. Since the seven primary γ rays above 4.5 MeV shown in Fig. 3 lead to $1/2$, $3/2$ or $5/2$ levels these γ rays are most probably $M1$ transitions. The partial radiation widths for these transitions are not known at this time.

In the (n, γ) reaction with low-energy neutrons, the partial radiation widths from adjacent resonances are almost always uncorrelated with each other. However, in a recent study of the $35C\ell(n,\gamma)$ 36Cl reaction, Chrien and Kopecky⁸ found s imilar γ -ray spectra from neighboring capture states of opposite parity. Expressed as a linear correlation coefficient, these authors found $r =$

 $+0.84$ $+0.06$ for a set of 14 transitions seen in +0.84 $+0.10$ both *s*-wave thermal capture and *p*-wave, 398-eV resonance capture in $35Ck$.

710

FIG. 5. Level scheme for 57 Fe from the present experiment. All energies are in keV. Spins and experiment. All energies are in keV. Spins and parities are from Ref. 12. In our notation for level energy, $14.7 \text{ } 10 = 14.7 \pm 1.0$, etc.

We have observed a similar $E1 - M1$ role reversal in the case of the ${}^{58}Fe(n, \gamma)$ reaction. For the nine transitions observed in thermal and reso-
nance capture (see Table I), we obtain $r =$ +0.77 $^{+0.12}_{-0.22}$, a strong positive correlation, in the case of thermal and 230-eV resonance capture. We also obtain $r = +0.18 \begin{array}{l} +0.35 \\ -0.40 \end{array}$ negligible correlation

TABLE IV. Relative photon intensities of the

Ref. 6. The energies have quoted accuracies of x1 keV for 6.5 $\times E_y \times 8.0$ MeV and $\times2$ keV for $E_y \times 6.5$ MeV, except for the weaker lines.

Relative intensity normalized to 100 for the intensity of the 7631-keV γ ray. In our notation, Relative intensity
tensity of the 7631
51 $3 = 51 \pm 3$, etc.
In aux prior 76 tensity of the 7631-keV γ ray. In our notation
51 3 = 51 ± 3, etc.
In our notation, 7645.5 20 = 7645.5 ± 2.0, etc.
The strain is the meal poutre

The γ -ray energies correspond to thermal neutron

capture. he 5193-, 4589-, and 4400-keV transitions represent possible transitions to $1/2^+$ final states at 2454-, 3057.6-, and 3247-keV, respectively. eNot primary transitions.

in the case of thermal and 359-eV resonance capture. The error limits represent rms errors deduced by the use of Fisher's transformation⁹ and reflect the smallness of the sample size. The error due to experimental uncertainties in the intensity va1ues

is much smaller and hence not included.
McLein et a_l , have made a detailed comparison between the experimental level scheme (and spectroscopic factors) with those obtained from rotational model calculations. $10, 11$ They have shown that the experimental data provide strong suppor
for the existence in ⁵⁹Fe of a rotational band structure. [The ground state, the 473-keV level and the 1022-keV level comprise the $K = 3/2^-$ (312) band, the 288-keV and the 726-keV levels comprise the $K = 1/2^-$ (310) band, etc.].

TABLE V. Secondary γ rays from the ⁵⁶Fe(n, γ)⁵⁷Fe reaction

$(kev)^{\alpha}$ E_{γ}		E_{γ} (keV) ^{a}		E_{γ} (keV) ^{α}		
352.5	<i>10</i>	1357.7	<i>10</i>	2683.5	20	
367,4	10	1460.3^{b}	10	2697.4	20	
572.0	10	1613.4	20	2971.1^{b}	20	
692.2	<i>10</i>	1672.2^{b}	20	3152.1^{b}	20	
898,7	10	1725.5	20	3169.6	20	
1019.6	<i>10</i>	1954.2 b	20	3574.8^{b}	20	
1250.8	10	2362.4^{b}	20	3666.6^{b}	20	
1263.7^{c}	20	2539.3^{b}	20			

 $^{a}_{b}$ In our notation, 352.5 10 = 352.5 ± 1.0, etc. Not placed in level scheme.
Probable doublet. S00

B. The ${}^{56}Fe(n, \gamma) {}^{57}Fe$ reaction

Below 20 keV, the only known neutron resonance in 56 Fe occurs at 1.167 keV. The γ -ray spectrum from this resonance is shown in Fig. 4. ^A listing of the primary γ -ray energies and relative intensities is given in Table IV. These are compared with the results obtained by Chrien $et\ at\ 1.6$ We find good overall agreement. However, we did not observe a
 γ ray at 6507 keV. Secondary γ rays observed in

the present study are listed in Table V. The level scheme based on our data is shown in Fig. 5. The J^{π} assignments are from the *Nuclear Data Sheets*, 12

The 1.167 keV resonance has been shown to be a p wave resonance by transmission¹³ and scattering¹⁴
measurements. Furthermore, this resonance has been shown to be 1/2⁻ from angular distribution measure
ments (90° and 135°) involving the 7645- and 7632keV transitions. 6 The 135-keV level has a definit 5/2⁻ assignment based on Coulomb excitation and
lifetime measurements.¹⁵ Therefore, the 7509-keV primary transition is an E2 transition. Highenergy primary γ transitions in the (n, γ) reactions are predominantly *E1* or *M1*; primary *E2*
transitions are extremely rare. The 7509-keV transition in &7Fe joins a select group of eight other transitions which are known to be primary E2 transitions in the (n, γ) reactions.¹⁶

^A 'strong correlation exists between the intensities of primary transitions from *e*-wave, thermal
neutron capture¹⁷ and from *p*-wave, 1.167-keV resonance neutron capture, We obtain $r = +0.84 \begin{array}{l} +0.06 \\ -0.09 \end{array}$. This remarkable correlation has also been cited in Ref. 8.

"Supported in part by the Oak Ridge National Laboratory.

- ¹A. Sperduto and W. W. Buechner, Phys. Rev. 134, B142 (1964) .
- ^{2}E . D. Klema, L. L. Lee, Jr. and J. P. Schiffer,
- Phys. Rev. 161, 1134 (1967).
 ${}^{3}K$. C. McLean, S. M. Dalgliesh, S. S. Ipson and G.

Brown, Nucl. Phys. A191, 417 (1972).

"A. P. Bogdanov, V. A. Knat'ko, A. V. Soroka and

V. N. Tadéush, Yad. Fiz. 14, 909 (1971) [trans
-
-
-

FIG. 6. Counting rate for all γ -ray events above 100 keV versus neutron time-of-flight for the enriched ⁵⁴Fe target. Resonances in ⁵⁴Fe are identified.

C. The $^{54}Fe(n, \gamma)$ ⁵⁵Fe reaction

An attempt was made to study the $54Fe(n, \gamma)$ reaction. The time-of-flight spectrum is shown in Fig. 5. In a run lasting 2 weeks, the γ-ray spectra (not included here) from the four labelled resonances showed the presence of the 411- and 931keV transitions known to de-excite the first and second excited states in $55Fe$ (Ref. 18). However, no high-energy primary γ rays in $55Fe$ were observed. We ascribe our inability to a combination of factors, including the smallness of our sample, low values for the radiation widths and the fact that the resonances lie at relatively high neutron energies.

IV. ACKNOWLEDGEMENTS

This research was sponsored by the Division of Basic Sciences, U.S. Department of Energy, under contract W-7405-eng-26 with the Union Carbide Corporation. We thank the ORELA operating staff for their cooperation.

- Sov. J. Nucl. Phys. 14, 509 (1972)].
- Sov. J. Nucl. Phys. 14 , 509 (1972)].

⁵H. J. Kim, Nucl. Data Sheets 17, 485 (1976).

⁶R. E. Chrien, M. R. Bhat and $\overline{0}$. A. Wasson, Phys.
-
- Rev. C 1, 973 (1970).
J. B. Garg, S. Jain and J. A. Harvey, privat $7J$, B. Garg, S. Jain and J. A. Harvey, private communication.
- ${}^{8}R$. E. Chrien and J. Kopecký, Phys. Rev. Lett. 39 , 911 (1977).
- ⁹M. G. Kendall and A. Stuart, The Advanced Theory of Statistics, (Charles Griffin and Co., London,

1967) Vol. I, p. 390; Vol. II, p. 292. ~OP. C. Sood, Phys. Rev. 179, 1100 (1969).

-
-
-
-
-
- ¹¹S. G. Nilsson, Mat. Fys. Medd. Dan. Vid. Selsk., 29, no. 16 (1955).
¹²R. L. Auble, Nuclear Data Sheets 20, 327 (1977).
¹³R. C. Block, Phys. Lett. 13, 234 (1964).
¹⁴A. Asami, M. C. Moxon and W. E. Stein, Phys. Le
- 15A. T. G. Ferguson, M. A. Grace and J. O. Newton
Nucl. Phys. 17, 9 (1960).
- 16S. Raman, M. Mizumoto, G. G. Slaughter and R. L.
- Macklin, Phys. Rev. Lett. 40, 1306 (1978).
¹⁷V. J. Orphan, N. C. Rasmussen and T. L. Harper,
Gulf General Atomic Report No. GA-10248 (1970),
- umpublished.
¹⁸D. C. Kocher, Nuclear Data Sheets <u>18</u>, 463 (1976).