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Partial-wave dispersion relations are presented which describe both 2 - 2 bound-state amplitudes,
2 - 3 breakup amplitudes, and 3 = 3 three-particle scattering amplitudes. The dispersion relations are
reduced to one-dimensional integral equations by absorbing the momentum dependence of the 2 > 3 and
3 - 3 amplitudes in the three-body phase-space factors. The momentum dependence is obtained by solving
final-state unitarity equations.- For S-wave nucleon-deuteron scattering the nature of this off-shell de-
pendence is described in detail. Dynamical singularities of the amplitudes which occur in the dispersion
relations are discussed, and the modifications of the dispersion relations due to the presence of anomalous
thresholds are written out explicitly. The physical importance of three-body unitarity for the bound-
state properties of three-body systems is reviewed and possible applications of the present theory to few-

nucleon and pionic systems are briefly discussed.

NUCLEAR REACTIONS Three-body equations. Partial-wave dispersion rela-
tions. Three-body unitarity. Final-state unitarity and zero-range approxima-
tions. Nucleon-deuteron scattering and breakup.

I. INTRODUCTION

Since 1960, when the N/D method was first used
in the realm of elementary particle physics,! 2
the method has been widely applied in the field of
few-body problems.®™*° The interest for this ap-
proach was based both on the (mathematical) sim-
plicity and physical transparency which one
thought inherent to the approach, and on the need
for a microscopic theory which could easily be
extended from the three- to the N-body case (N
>4), without the formal and interpretational diffi-
culties occurring in the extensions of the Faddeev
formulations.

Since the potential concept plays only a minor
role in the dispersion theoretic approach, one
could not expect that this method would be very
useful in determining the details of the two-par-
ticle interaction in comparison to e.g., the Fad-
deev approach in the three-nucleon system. On
the contrary, one of the motivations for using the
dispersion theory lay in the expectation that the
scattering properties of few-body systems would
be rather insensitive to the details of the two-nu-
cleon interaction, an expectation which since then
has been borne out by Faddeev calculations for
the three-nucleon system. In the‘language of dis-
persion relations this insensitivity would be re-
flected in the importance of nearby rescattering
singularities, and the relative unimportance of
far-away potential singularities. The dispersion
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method would also provide a framework for in-
cluding pionic degrees of freedom, which in a po-
tential approach such as the Faddeev equation can-
not be treated properly. In the three-nucleon sys-
tem the singularities of one pionic diagram lie
very close to the physical threshold, so that this
diagram is expected to be quite important for de-
termining the low energy properties of the system,
and therefore, even puts some doubt on the physi-
cal relevance of the usual potential approaches to
few-body systems.!! It is this flexibility in the
choice of diagrams and the simplicity of the cal-
culations (the kernel of the integral equations is
regular as long as one does not include breakup
explicitly) which provides enough incentive to go
along with the development of the method. The two
main problems in this development—especially
for the three-body system—are the study and im-
portance of higher order diagrams, and the effects
of three-particle unitarity. The most natural
framework for studying these problems and the
correctness of approximations made in their treat-
ment is the one-term separable model of the
three-nucleon system, usually known as the Amado
model. Using the exact phase-space factor ac-
counting for two- and three-particle unitarity,
Stelbovics and Dodd?® calculated S-wave scattering
phases and bound-state properties within this
model using different diagrams to represent the
left-hand cut. This analysis showed that the quart-
et phases (which mainly determine the experi-
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mental cross section) were quite insensitive to
the order of input, whereas the doublet phases
were more sensitive, and the bound-state proper-
ties were quite sensitive to the order of approxi-
mation. Other analyses using different prescrip-
tions for the phase-space factors® '° lead to simi-
lar conclusions. Although this indicates that the

criterion of the nearest singularities has a limited -

range of validity, it does not make the N/D ap-
proach obsolete since in the aforementioned stud-
ies the important pion-exchange diagram was not
taken into consideration, and the inclusion of such
a diagram may well render the higher order po-
tential diagrams less important (we hope to inves-
tigate this possibility in a forthcoming study).
Also, one can try to find suitable approximation
schemes for higher order terms, !° although the
necessity of calculating left-hand projections in
some of these schemes represents a serious draw-
back. Finally one can use some phenomenological
models for the higher order input,® an approach
which most likely will be necessary in N> 4 sys-
tems.

The second problem, the treatment of three-
particle unitarity, is the main topic of this paper.
Evidence for the importance of three-particle un-
itarity was found in an N/D calculation of the
three-nucleon system,® both in the case of scat-
tering and bound-state properties. Further indi-
cations for its importance come from qualitative
properties of the three-body system in some limit-
ing cases. When the range of the two-nucleon
force goes to zero, the Thomas theorem!? states
that the binding energy of the three-particle sys-
tem goes to infinity. However, if one only takes
into account two-particle unitarity, this theorem
does not apply. Another property of the three-
body system known as the Efimov effect!® states
that’the number of bound states becomes infinite,
and accumulate near E =0 if the two-body scatter-
ing length goes to infinity. This effect may also
be absent, if one represents the three-body sys-
tem by an inert two-body bound state plus a third
particle. .

In a treatment of three-particle unitarity neither
the approach of Stelbovics and Dodd,® where com-
plete Faddeev calculations have to be performed
for a series of energies in order to determine the
phase-space factors, nor the Frye-Warnock eq-
uations used in Ref. 5, where the phase-space
factor is determined from experimental absorp-
tion coefficients, is a serious candidate for giving
the N/D approach an independent status. Rather,
we need a method which also applies if there are
no full scattering calculations or detailed experi-
mental phase shifts available. Such was the ap-
proach taken in the quartet calculation of Ref. 5,

and in a subsequent paper dealing with the many-
channel case.!® One of the shortcomings of Ref.

10 was that three-particle channels were treated
as two-body bound-state channels by increasing
the binding in the two-particle subsystems. Fur-
thermore the off-shell behavior of the amplitudes
was neglected in the calculation of effective phase~
space factors, an approximation which—though
leading to good agreement with the exact results—
did not (yet) have a microscopic foundation.

In the present paper we will address both these
problems and will try to carry the program of the
implementation of three-body unitarity one step
further, while still keeping the equations in a

- tractable form. The first step towards an exact

treatment of three-body unitarity, especially with-
in the framework of the N/D method, was made by
Blankenbecler,'* and worked out in more detail
shortly afterwards.'® '® It was understood that
three kinds of amplitudes enter the unitarity eq-
uations [UE], describing respectively 2-- 2, 23,
and 3 - 3 processes. Partial-wave amplitudes
were defined which depend on the total energy,

and in the case of 2~ 3 and 3 -3 amplitudes also
on the subenergies o of the two-particle systems.
New N/D equations could be formulated which con-
tain additional integrations over the subenergies.
In order to reduce these new equations, to standard
one-dimensional integral equations, one can use
the isobar ansatz, so that the amplitudes taken at
certain resonance values of the subenergies can
be factorized out of the integrals. If there are no
two-body resonances one can still factorize out the
amplitudes at some effective value for o, or at
several such points, In this respect it is impor-
tant that Rubin, Sugar, and Tiktopoulos!” have
proved that the 2~ 3 and 3 -~ 3 amplitudes are an-
alytic in the energy plane if one keeps ¢ and o’
proportional to the full energy E. The remaining
dependence on ¢ and ¢’/ under the integrals can be
determined using discontinuity equations in ¢ and
o,

Unfortunately the papers'*~® missed some terms
in the discontinuity equations for E and 0. One of
these, the so-called exchange term, represents
the exchange of a particle in the intermediate three
free particles state. It was correctly given by
Freedman et al. in Ref. 18. Subsequently, various
derivations of all terms in the three~body UE
were presented both starting from the Faddeev
equations,'®~?! and from general S-matrix unitar-
ity.?® The three-body UE possess some special
features due to the occurrence of 5-function con-
tributions. In order to get rid of these contribu-
tions one introduces connected 3~ 3 amplitudes,
thereby introducing terms in the UE which are
linear or quadratic in the two-body ¢ matrix. By
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choosing the imaginary parts of the external sub-
energies in the UE as Imo =—Imo’ = —ie (¢>0) one
obtains quasi two-body amplitudes C(E,o,0’) or
A(E,0,0’), which satisfy UE which do not contain
terms linear in ¢ (Refs. 22 and 23) and therefore
obey the same type of equation as the bound-state
amplitudes do. The inhomogeneous term, which
is quadratic in ¢ (0) remains, however. After par-
tial-wave projection this term features a cut which
lies on the unitarity cut for 0,6’>0. Since this
term can be considered as the first-order input of
the 3 -3 amplitude, its cut can be considered as a
dynamical cut. The superposition of unitarity and
dynamical cuts can easily be built into the N/D
formalism, although the resulting equations are of
singular nature. It has been shown?*' 2° that the
equations can be regularized by using an exact
analytical solution. For o =0’=0 the cut of the
first-order term turns into a pole at E=0. In this
case the equations can be solved without difficulty
since the phase-space factor behaves at least like
E? at the breakup threshold. It is thus natural to
define the quasi two-body amplitudes at zero sub-
energies, especially if no resonances are present.
Consequently this is the choice made in our inves-
tigation of the three-nucleon system.

Information about the o and o’ dependence of the
amplitudes within the UE can be obtained by using
the discontinuity equations of these amplitudes in
o or o/, which we call final-state interaction (FSI)
equations. The FSI equations were discussed by
many authors, and their correspondence with
Faddeev type (off-shell dynamical) equations was
specifically noted in Refs. 26—-29. This corre-
spondence is not an equivalence, since the FSI
equations do not contain an inhomogeneous term
with dynamical singularities in ¢/, in contrast to
the Faddeev equations. The lack of a homogen-i
eous term implies that there exist an infinite
number of solutions of the FSI equations. This
arbitrariness can be removed by using the Skorn-
yakov-Ter Martirosian® equations, whose solutions
satisfy the FSI equations in the zero-range limit

and in the limit of infinite scattering length. These

equations provide a unique solution in the quartet
case for every angular momentum,®' and in the
doublet case for all I#0. Therefore the present
solution generalizes the one in Ref. 21 to nonzero
angular momentum. In the S-wave doublet case
the equations have a homogeneous solution, so that
there is no unique solution. Beloozerov resolves
this ambiguity by using further constraints on the
solution; however, since we think that these con-
straints are somewhat arbitrary, and in addition
lead to a solution with certain undesirable fea-
tures, we employ the homogeneous solution as a
sole indicator of the subenergy dependence of the

amplitudes. This solution of the S-wave FSI eq-
uations is the same as used in Ref. 21,

Using this prescription for the dependence on the
subenergies, we can now determine both the di-
rect and exchange part of the three-body phase-
space factor, which in turn can be used in the
N/D equations.

An important problem arises in the formulation
of these N/D equations in the presence of three-
body channels because of the occurrence of an-
omalous thresholds.’ Recently this problem has
been thoroughly reconsidered,®® and we use the re-
sults from that paper to formulate the modified
N/D equations for the present case.

The outline for this paper is as follows. In Sec.
II we review the full unitarity equations for the
2-2, 2-3, and 33 amplitudes. A separable
model for the two-particle interaction is used to
factorize out the evident f (¢) and ¢ (¢’) dependence
and the threshold behavior factor, leaving us with
a quasi two-body amplitude A;(E). The discon-
tinuity equations for this amplitude are investiga-
ted in Sec. III with the main emphasis on the ques-
tion: Which values of 0’ contribute to the unitarity
integrals? This investigation enables us to define
suitable “on-shell” amplitudes A(E), which are
taken outside the integrals. The remaining ¢ and
o’ dependence in the three-body phase-space fac-
tors is parametrized by so-called off-shell func-
tions. In Sec. IV the FSI equations and the corre-
sponding Skornyakov-Ter Martirosian equations
are studied. The solutions of the latter are given
for the quartet and doublet case (I+#0). The pro-
perties of the solutions are discussed, and numeri-
cal calculations of the off-shell amplitudes and
corresponding off-shell functions are given.

The analytic properties of the first- and second-
order dynamical inputs are discussed in Sec. V.
Our choice 0 =0’=0 leads to a very simple analytic
structure of the input: The first-order 3 - 3 input
has a pole at E=0. In Sec. VI we present the mod-
ified N/D equations. Section VII contains a discus-
sion of the physical importance of three-particle
unitarity. The emphasis is on bound-state proper-
ties, and the Thomas theorem and the Efimov ef-
fect are briefly discussed. Finally we comment
on the general applicability of the formalism to
few-nucleon and pionic systems.

II. THREE-BODY EQUATIONS AND UNITARITY

The three-body transition operator, containing
all the information about bound-state scattering,
breakup, and 3- 3 processes, can be separated
as follows®3: v

T =; T, +§Maﬂ . (2.1)



Here T, are the two-body { matrices in the three-
body space, and Mg are connected amplitudes for
the transition with the pair a interacting first and
the pair g interacting last. The contribution of the
bound-state poles to T can be explicitly written as
follows®3: 21;
sran . 8a@XDIFMEs 59 g5(a)*
@lMaB lq P > (E _pz/zna _Ea)(E _p/Z/an _EB)
+ ga(ﬁx-ﬁ 'RM(!B lalﬁl>
E-p?*/2n,-E,
LS@D|Mgp|D) £ @)*
E-p'2/2ng—E,4
+(GB| M| 5'D) - (2.2)
Here we have introduced the usual notations: P
and § are the channel and pair momentum, Ny 18
the channel reduced mass, and g,(4)/(¢%/2m,
- E,) is the bound—sEate wave function with energy
E,. The amplitude M has no pole contributions.
We can now consider ®*M,, as a connected transi-

tion operator whose matrix elements give the cor-
J
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rect physical 2— 3 amplitudes. The 3 -2 transi-
tion operator is defined analogously, whereas the
connected bound-state amplitude is given by the-
operator ®MZ,. For completeness we note that
the operators M, satisfy the equation®

Map=(1=06,5)ToGoTs+ 2, ToGoMys .  (2.3)
N 7#(!

Similar equations hold for the reduced amplitudes
EMyp, MEs, and *MEg if the appropriate T ma-
trices are replaced by the form factors g, (§).

The unitarity of the S matrix, $SS*=1, immedi-
ately implies corresponding expressions for the
discontinuity of 7', which is related to S by
S;;=1=2mi8(E; — E;)T. We need, however, more
detailed equations for the connected parts of the
amplitudes *M ¥, ®M, and M; to this end we use
Egs. (2.1), (2.2), and the on-shell conditions
E=q2/2my+p,2/2n, for the reduced amplitudes.
Our derivation here is similar to that of Ref. 21
and uses Eq. (7.31) of Ref. 33. We obtain the fol-
lowing equations:

disc *MEg(E) =—2mi ; EME, (B +i€)3(E - Hy) BME 4 (E - ic)

-2 ; Moy (E +1€)[6° (E = Ho) +6°(E = H)\M R (E - i€), (2.4)

discMEg(E) = -2m‘;M{,§y (E +i€)5(E - H, ) *M% 4 (E - i€)

- 21:1'; (M (E +i€) +0,, T, (E +i€)] [6*(E ~ H,) +6%(E — H)|M R, (E - i€) (2.5)

disc M, 4(E)=-2mi ;Mﬁy (E +i€)3(E ~ H, )RMYB(E —i€) =27i(1 = 8,5) T, (E +ie)T4(E ~ ic)5°(E — H,)

~2Wi ) Moy (E +i€)[6%(E — Hy) + 6° (E = H,)] T o(E — i)
Y

=20 ) To(E +i€)[0%(E = Hy) + 6°(E — H,) | M, (E — i)
: :

=270 3 Mo (B +i€)6* (E - Hy) +6° (E ~ H,)| M, 4(E —ic) . (2.8)

In-Eqgs. (2.4)-(2.6) we separated 5(E —H,) in a di-
rect [6*(E —H,)] and an exchange part [6°(E - H,)].
The different terms in (2.4)-(2.6) allow a simple
diagrammatic representation, as shown in Fig. 1.

The physical cross sections can now be expres-
sed in terms of the amplitudes M,;. In the three-
nucleon system the equations (2.3)-(2.6) can be »
simplified considerably because of the identity of
the particles. The relevant physical amplitude in
this case is a sum of direct and exchange terms

M=§Z;Ma8;Md+zMe. (2.7)
o

Equation (2.3) is now replaced by (T = T.,)
M=2TGST +2TGM , (2.8)

where we stressed the exchange nature of the in-
termediate Green’s functions. The unitarity eq-
uations for these symmetrized amplitudes have
the same structure as before; one simply omits
the partition indices and summations and mul-
tiplies the exchange 6 function with a factor 2. In
the nucleon-deuteron case one obtains the follow-
ing expression for the elastic cross section:
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FIG. 1. Unitarity equations for the amplitudes ®u E,
MR, and M. Parallel lines represent bound states
and dashed lines indicate on-shell § functions.

do

8772)21 R R(3/2) R /
- 1rg |RprR(3/2)12 ]VIR(lz)z
e . ¥ 2+ %

(2.9)

where the ®M * amplitudes are now defined in a
spin-isospin representation. The relation of the
various breakup cross sections to the amplitudes
®M is more complicated because of the spin al-
gebra involved. We refer the reader to Ref, 34,
in which the same normalization for the amplitude
is used and where expressions for the breakup
cross sections are given.

In the following we prefer to work with quasi

discgA g(E;0_,01)=— 21rz‘[ ZAay (E,;0.
Y

two-body scattering amplitudes instead of the
2~3 and 3 -3 amplitudes *7 and M. This can be
done very easily in the separable model. As-
suming that the two-particle system is always in
an S state,3® we have.the following expression for
the two-body ¢ matrix:

<§aﬁal T lﬁ&a&) 6(—5{1 - -ﬁ(x)t (E _pazy a.:x; a&) ’
tal#; 80 90) = 8alda)Tal2) 8ald0) (2.10)

so that the on-shell 3 «— 3 amplitude can be writ-
ten as

l-»,-—

<qp,MocB
= 2o @)Toa ) Ags (B B, B')T5(a" Dgsla’) . (2.11)

Similar expressions hold for ®*M,, and M %,
whereas ®*ME;=A,;. We can now insert (2.11) in
the UE (2.4)-(2.6), in order to get UE for A .4
(E;0,0’), where we changed to subenergy argu-
ments in view of the coming discussion. First we
note that the terms which are linear in 7 and are
multiplied with 6?(E - H,) disappear because they
also occur on the left. Next, by using amplitudes

A s(E;0 +i€,0’ — ie) with fixed imaginary parts

i€, we obtain UE for A which are free of terms
which are linear in 7, in accordance with Eq. (24)
in Ref. 22. In order to obtain a closed set of eq-
uations in which only one type of amplitude appears
we then have to perform an analytic continuation®®
in the arguments o and o’ to obtain a set of equa-
tions in terms of A 4(E; 0—-t¢, 0’ +i¢). The UE for
these amplitudes still contain terms which are
quadratic in 7; however, these can be regarded
as a dynamical input so that they will no longer
be considered as part of the UE. As a result the
amplitudes A satisfy the following UE:

OZ)G(E - H-y )AyB(E—;UZ1 0:-)

+Eyf Ay (Bi50.,07)7,(07)gy (@8 (E - H)gy (0)7, (0M)A, s (E_; ", o)

[ [ AayBii0n 0l @0 010 (6 ~ B, 020, 01A, 6 B0, 01) |

The integral signs represent integrations over the
intermediate momenta. In the following we will
use the momentum representation and denote the
amplitudes by A, z(E; D, D’), but we have to keep in
mind that they were defined with the aforemen-

tioned conventions for the subenergies.

(2.12)

III. UNITARITY EQUATIONS IN TERMS
OF ONE VARIABLE AMPLITUDES

In this section we rewrite the unitarity equations
in a form which enables us to apply N/D methods.
This means that we have to eliminate in some way
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the momentum dependence of the an:plitudes in the ‘Z

UE (2.12).. For particle-resonance amplitudes one 1

expects the region o =0, (=resonance energy) to \\

be important so that one can use an isobar ansatz 3 \\

for the amplitude at this energy. However, in the 4

three-nucleon system only bound states and anti- y

bound virtual states exist, and for this system, T

like many others, the choice for a “resonant” en-

ergy o, is not so obvious. In the present section N\ IZ

we investigate which region of the o space is most \Q

important in the UE, since this would suggest the 0 N# \

use of an isobar ansatz in that region of the space. —_ 3 1

The resulting UE would then contain quasi two- X 4

body amplitudes A at these subenergies, In prin- FIG. 2. Region of integration in the two-dimensional

ciple one can employ a set of resonant energies g, momentum space for the exchange contribution to three-

which would lead to equations similar to those particle phase-space factor (x=o/E, y=0'/E).

considered in Refs. 15 and 16; however, practical-

ity forces us to restrict the effective o, values E =-E,, which will occur if we compute the am-

to one or two. The remaining ¢ dependence plitudes A, ; approximately, is not expected to af-

under the integrals in the UE can be specified by fect the behavior of the amplitudes in the physical

the FSI equations and will be discussed in the next region very much, as long as —E, lies far to the

section, left. From now on we will restrict ourselves to
We start by expanding the amplitudes A in a p‘ar - the three-nucleon system and use symmetrized

tial-wave series: amplitudes. Therefore we can omit the partition

indices, and instead will employ channel indices

A 48(E;D, D) =41 ) P Y (B)ALB(E; D, D7) i,j, or k which characterize the spin state of the

tm two-particle subsystems. :

x 't Y,,,,(ﬁ’)/(E-ﬂ“Eo)l ) (3.1) Using the partial-wave expansion in Eq, (3.1)
one now gets the following expression for the di-
where the cutoff factor (E +E0)" has been intro- rect contribution to three-particle unitarity (cf.
duced, to guarantee convergence in the dispersion Refs. 5, 9, and 10; we omit the angular mo-
relations for 7#0. The resulting Zth-order pole at mentum label):
1 1
disc,A;(E; p, p')=~167% 3\/43— E? (% EfE(,) ; f dxx'2(1 = x)'* 12| 1, (Ex)g, (Ex)|?
o

XAu(E; 0,{$ EQ -0} ) AR (E;{ $EQ - %)} 172, p1).
(3.2)

In this expression x replaces the two-particle energy (0 =Ex). The exchange contribution can be written
in several ways. The most symmetric expression is (cf. Ref. 22)

4_E —Sixiy )

i . = 3.8 p2f 2 o V2(1 /2 1

disc, Ay, (5 p, p') = 161:ng(3E+Eo)g;nx,,mffdxdy(1 xf 21 ~y) P,((l_x)l/z(l_y)uz
A

X 7y (Ex)gs (ExX)T%(Ey)g 5EY) A (E; b, { & EQ =)/ 2)

x AX(E;{$ E(1L-y)}172, p), (3.3)

where the integration is over the two-particle energies x(=0/E) and y(=0’/E). The region of integration
is the ellipse shown in Fig. 2. It is defined by the requirement that the modulus of the argument of the
Legendre polynomial is less than one. Since the region is symmetric, the integral (3.3) will be real for
b=p', and i=j. The A, are spin-isospin factors which equal unity for spinless bosons.

Another repr-sentation for the exchange contribution, which is more similar to (3.2) and very conven-
ient for use in the low energy region and in actual calculations, was derived in Ref. 10:
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1
disc,A;(E; p, p')=—167% %-—E2 (4 E ) (-2)

3E+E,

1 [
% ,;Z:‘,, A f dxxl/z(l —x)FrD /e g (h )(3x)h/2(1 _x)(l-h)/zF;'.lzm.‘(x) , (3.4)
0

where

FR™(x)=} f " dcoso Py (cost)r, (Ex)gy (BX)TAEYEHEY)A B3 b, { 2B = 0} V2) A% (B3 { $ B = )2, )

-1

and

y=% =% x=[3x(1 -x)]"2cos

(3.5)

(3.6)

relates the two-particle energy of one pair to the two-particle energy of the other pair subject to the on-
shell condition, The summation over % can be performed and the equivalence with (3.3) is then easily
shown. Equation (3.4) allows a direct calculation of the zero energy behavior of the exchange contribution

in the one-channel case:

1
disc, Ay (E; p, p) =—167% 3‘?— Ez(é E ) (=2)"" xy;

3 E+E,

In the same limit the direct term is

z%(—_‘_l.—;‘)_i)_ IT(O)g(O)A“ (0,' p, 0)|2+0(E3 +l) A

(3.7)

4 (4 E )’ r(%r)z(i;)%)

; R - 3. 2 ra
disc,A;; (E; p, p) =—167% a5 B3 E+E,

which shows that the ratio of direct and exchange
term for zero energy is 5(~2)/);;. The spin
factor x;; equals —3 in the quartet case of nu-
cleon-deuteron scattering showing that direct and
exchange contributions are exactly opposite if

[ =0. For higher energies we expect the exchange
term to be less important since the kinematical
constraints, as illustrated in Fig. 2, prevent the
{ matrices of different pairs from becoming max-
imal simultaneously.

In the following we want to determine the part of
the integration region which contributes most to
the direct and exchange integrals, for different
values of / and E. For very low energies this
analysis is quite simple, at least for the direct
term. Computing the expectation value of x in
(3.2) for low energies by neglecting the x depend-
ence of 7, g, and A one finds

{x)=3/(21+6), E<<a? (3.9)

where a is the usual bound-state parameter («,2
=hinding energy of the deuteron). It is clear from
(3.9) that the low (two-particle) energy region
dominates, especially for high ! values. If the
energy becomes slightly larger, and the energy
dependence of the two-particle propagator is also
taken into account one obtains

(x)=(21+4)!, A®<EK (3.10)

IT(O)g(O)A“(O;p, 0)’2+O(E3+l) ) (308)

r

where B is the range parameter in the separable
model. For very high energies one obtains in
the S-wave case if one neglects the x dependence
of A

(0= (%§>lfz . (3.11)

For the exchange term the situation is more
complicated. For /=0 and small E we have the
same situation as before [use (3.4)]; however, for
1> 0 the expansion of (3.5) in E does not lead to a
simple expansion in x, from which we can infer
the value of {(x). However, by neglecting the x de-
pendence in 7, g, and A, and by deducing the ex~
pectation values of {x) =(y) from the remaining in-
tegrals we end up with the estimates

(xy=y)=0.5, 1=0,1, E<a?,
(3.12)
(x)=(y)=0.432, 1=2, E<a?,
whereas for higher energies the regioris
x)=0.75, (¥)=0,
E> a?] arbitrary, (3.13)
(x)=0, (y)=0.75

tend to be more important.
We could now define amplitudes for all the corres-
ponding momenta. For the set (3.13) this would



mean amplitudes A(E;p, (+E)'/?) and A(E;p,
(E/3)"?), for the set (3.9) A(E;p,[4E/(21+ 6)] /2).
The momenta p could then be chosen accordingly
to define a closed set of equations in these amp-
litudes. Since this procedure would lead to a
large set of coupled integral equations, especially
if there are more channels, it is more practical

to define just one on-shell amplitude and improve —

if possible—the calculation of the off-shell fac-
tors through final-state unitarity. Apart from
this, the choice A(E;p,(E/3)Y?) forbids itself
since this amplitude has a logarithmic singularity
for p=(4E/3) 2. -

The best choice seems to be A(E;p, (LE)'/?),
since this amplitude is important for the direct
contribution at higher [ values or higher energies,
and it is important in the exchange contribution
for high cnergies [although it is multiplied with the
amplitude A(E;p,(3E)/2) in the latter case]. It
also has a simple physical meaning as it corres-
ponds to two particles going out with zero rela-
tive energy (since 0=0), a final-state mechanism
which can be observed experimentally. A further
reduction of the set of equations occurs if one

- 1
Pis= 8112§6”6(E + )

[-;—(E+ ai2)11+1/2+ G(E)__‘/;E_ (%-E)ZH
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chooses the on-shell momentum in the triplet
three-body channel to be the bound-state momen-
tum p =[HE+,*)]/2, so that all 3~ 3 amplitudes
involving a triplet in or out state can be related to
the 2— 2 bound state or 2— 3 breakup amplitudes.
The unitarity equations have the following form in
terms of the amplitudes A, (E):

discA;(E)= ~2mi Z 4 G (E)py(BE)AL(E),

Rym

(3.14)

where we have used off-shell functions to express
the “half-shell” amplitudes in terms of the “on-
shell” amplitudes A4 ,,(E):

Au(B3p3,p )= Zk)Afk(E;p‘;“,p;“)ka<E,pm).
(3.15)

Other definitions of the off-shell function are also
possible, for example by including the ¢ depen-
dence of the propagator 7,(¢®) and the vertex func-
tion g,(¢®) in the off-shell functions. Introducing
the notation 3 for the set of all three-particle
channels we obtain

x 3 f St 21 —x P2 |1 (Bx)g ()| B LB (L =) D Sl B, SEE(L - 2)} )
V] .

mes3

—2+x+9
)1/2

+ OERGEN "m"f,,fdx ay(t -x)"0 "’)”21’*[(1 —x) 7RI -y

m,n,€3

x 7, (Ex)g n(EX)TXEY)g* (By)XinkE, (- (A-2)P 2 3B, ($E(1-y )}1/2)% e+ B

The unitarity equations (3.14) can be written in
the following form:

discA=-2miApA*, (3.17)
and hence

discé”: 2mip . (3.18)
The usual N/D decomposition

A=ND™ (3.19)

separates A into functions having only dynamical
singularities (N) and functions having only unitar-
ity singularities (D). Equation (3.18) can be writ-
ten as -

discD(E)= 2mipN . (3.20)

This equation can be used to write a dispersion
integral for D, which in turn can be used in der-
iving a closed set of integral equations for N.

(3.16)

These equations and the modifications therein due
to anomalous thresholds will be discussed in Sec.
VI.

IV. FINAL-STATE INTERACTION (FSI) EQUATIONS

In Sec. II we derived discontinuity equations for
the amplitudes in the variable E. In order to ob-
tain such equations for the 23 and 3 -~ 3 ampli-
tudes, we had to eliminate terms which were
linear in the two-body ¢ matrix. This elimination
was accomplished by equating such terms with
discontinuities of the amplitudes in the subener-
gies o and ¢o’. In the present section we will in-
vestigate these latter discontinuity equations in o
and o/ (FSI equations), and use them as a source
of information on the o and ¢’ dependence of the
amplitudes. As shown in the last section such
information is required to define the three-body
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phase-space factors.

As is usual in treatment of the FSI (Refs 15 and
22), one introduces amplitudes C which are re-
lated to the full on-shell amplitude M by

- -y 1 2~ Ay
(paanMaB |pé qp—m Z, (2l+ I)Pl(papé)ta(qa)
X CoolE; aos ap)ts(ap) -
4.1)

where the usual S-wave assumption for the two-
particle state is made. The relation of the new
amplitude C to A is

J

3

Aag (B par 03)= (ba b)) (B + Eo)'galg.)
XC 3o(E; a» 9625(a8) , “4.2)

where the separable approximation—necessary
for defining A—has been used. We will investi-
gate the momentum dependence of this function

C and relate this back to the off-shell dependence
of A and the off-shell functions y via (4.2) and

(3 15) The discontinuity of M, in the variable
o4=q? is equal to the exchange contribution in
the third term of Eq. (2.6). Using the expansion
(4.1) and introducing symmetrized amplitudes
with channel labels we obtain

1671 LN d - 12_ ”2
disc C,,(E+ze, o-1i€,0')=- zE kff (,’, CilE +i€; 0—i€, 0" +d€) t,(0” +i€)P, (_1_”1’_)

As usual the exchange contribution acquires a
factor 2 (absorbed in the constant —167%/3), since
there are two identical terms. The end points of
integration in (4.3) are determined by the condi-
tion that the modulus of the argument of the Le-
gendre function equals unity [i.e., 0,=%E — 30’
£(30’(E - 0”))*/2]. The discontinuity in (4.3) can
also be obtained by applying Cutcosky’s rules.?

Our next step is to simplify Eq. (4.3) by the pole
approximation:

1 1
21 gcotd,—iqg  27%4q ’

tlq)=- (4.4
which is valid if ¢ > a and g < 28/3 (as before, o
and B are the usual two-nucleon separable poten-
tial parameters, B=~3/7,, where 7, is the effective
range parameter). This approximation seems
reasonable for the two nucleon-system, where
B=6 |a|; however, for larger systems similar
range parameters g tend to become smaller so

p'p
(4.3)

—
that (4.4) may be less reliable. One can now show
that in the one-channel case the solution of the
Skornyakov-Ter Martirosian equations®®

E —p?—p’
CYE;q,9")= K"uQx(.fp—r')

d »
+ “7‘111‘ Ci(E;q,q9")

E_p”Z _p )
XQ!( P’P' (4-5)

satisfies Eq. (4.3) under the approximation (4.4).
In addition it gives the correct superposition of
the solutions of Eq. (4.3) by specifying the inhomo-
geneous term. The normalization « is unimpor-
tant for our purposes. The equations (4.5) have
been formally solved by Beloozerov.3! General-
izing his solution to the many-channel case one

can write for negative E and positive-momenta

CY(E; q,¢") = K(sinhg) *(sinhx)*/2 [ ar 7 simh(rm) [P+ 1+ i7) |2
. ‘

X PP1/2(coshp)P;it/2(cosh x)(l - —J%-(—l)'L,(T)A) -15_ (=1)'L,(7),

(4.6)

where sinhg= p/(~%E)'/2 and sinhy =p’/(~ $E)*/2. As usual p and ¢ are related by the on-shell condition

q®+ 3p*=E. The function L () is defined by

Ly(71)=(sin8)*/2 | DI+ 1+ im) |2P:1/2(0)P742 /2(cos ) ,

4.7)

where #=7/6 is introduced for convenience. The special Legendre functions are defined in the Appendix.
Unfortunately, in the doublet S-wave case the integrand has a pole at the integration interval, which makes
the solution undefined since the pole corresponds to a solution of the homogeneous equation. We will re-
turn to, this problem later on in this section. In order to extend Eq. (4.6) to positive energies one first re-
writes the integrand in terms of positive and negative frequency parts:
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sh(n7) |[T(1+ 1+ i7) |2P7# /2(coshe ) = (-1)'[Q i;_‘l/fz(cosh¢) - QUE/2, (coshg)], 4.8)

where Qi;i{% essentially behaves like e™*" and therefore goes to zero if ImT — —co, Using Cauchy’s the-
orem we can now express the integral (4.6) in four sums over the residues of the integrand at the poles
on the positive or negative imaginary axis. After collecting similar terms and using symmetry proper-

ties in 7 one obtains in the one-channel case

CH(B; 0,4V =21k 3 7, @i Ta(coshg)P iz 3leosh)

7§50

where we introduce reduced Legendre functions
Qi1 /2(coshg) = Q;F2/%(coshg)(sinhg) /2. (4.10)

For p’>p the roles of @ and P are interchanged.
This does not mean that C(E; g, ¢’) has a singulari-

ty in p’ for p’=p; it simply means that as an ana-

lytic function of q”, C(E;q, q") has different pole
representations in the region p =>p” and p’>p. We
can now continue C(E;q, q’) to positive energies,
keeping ¢? and ¢’? negative in order to avoid the
singularities at g=0 or ¢’=0. We have for ImE>0

p=G +In{pGE 24 [p*/GE) 1117}, E<ipP.
(4.11)

Next we continue to E > 3p%, hence to positive val=
ues of the subenergy o (Ref. 36)

p=isin[pGE)*/2], Imo>0 (4.12a)

p=im—isin[p&E)/?], Imv 70, E=3p°.
(4.12b)

The two different expressions correspond to dif-
ferent branches- of the second square root function
in (4.11). Since the “off-shell” subenergy o”

(4.3) has a positive imaginary part, the off-shell
dependence will be described through relation
(4.12a). The negative imaginary part in the “on-
shell” subenergy o in (4.3) is not operative, as
the on-shell value is either zero (¢°=0) or nega-
tive (g®= —a?) so that the on-shell dependence is
described through (4.11). For ¢>0 we can con-
tinue the expression (4.9) straightforwardly into
the whole region 0<¢’<E using (4.12a); however,
if 0=0 the function C! has a logarithmic singularity
for p’ =3p, which manifests itself in a divergence
of the sum in (4.9). For p’<3p, the right-hand
side of (4.9) represents the first branch of the
multivalued function C’.

If 0>0 the logarithmic singularity originally
located at p’ =%p opens up iuto two singularities.
These logarithmic branch points locate the region
where the 3 -3 one-particle exchange process is
physical, i.e., they represent physical thresholds.
They are usually considered as singularities in
the full energy E, and will be discussed briefly
in the next section. With the present choice of our

8 (cqy ¥k,
\/—(1)

e

= (4.9)

-1
] , p=Ep’
T=ir;

r

on-shell momenta we succeeded in an almost com-
plete separation of these logarithmic singularities
from the square root singularities in the subenergies.
For p’ -0, P;j:{ﬁ(coshx) ~p’™! which appears to
guarantee the required threshold behavior of the
function C' for p’ -0. However, as we will see
shortly one is not always allowed to take the limit
for p’ -0 under the summation sign, so that the
proof of this analytic property is not completely
trivial. '

Before studying the off-shell behavior of C*?
quantitatively let us make two remarks. First,
the functions P":i /%(coshy) are solutions of Eq.
(4.3) for all j; the appropriate linear combination
of these in (4.9) is determined by the inhomogen-
eous term in Eq. (4.5). Second, the unitarity
equations (2.11) contain two amplitudes: A (E +i¢;
0—ie, 0’ +ic)and A, (E — ie; 0’ — i, 0+i¢). Since
these amplitudes are each other’s complex conju-
gates, we find the off-shell function for the second
amplitude simply by complex conjugation of the off-
shell function of the first amplitude, in accordance
with Eq. (3.16).

In the quartet case (A= ~3) we have to solve the
following equation:

Ly(ir;))=-(-1)'V3/4. (4.13)

Since the influence of three-particle unitarity is
expected to be largest in the S-wave case we con-
centrate on this case, so that

1 sin(mv,/6) V3

7; cos(mr;/2) 4’

which has roots 7;=2,2.16622,5.12735, ... for
j=0,1,2,... . For large j one can show that

(4.14)

r;=2j+1+ n_a\/%_j +0(j),
where a;=2 for j#3h+1, and a;=—4 for j=3h+1.
In our actual calculations of 7; we have used an
expression up to order j°*. We warn the potential
user of these formulas that there are some tricky
convergence problems in determining the amp-
litude near p’=0.
In Fig. 3 we show the results of a calculation of
the off-shell amplitude for ¢=0 [p= ¢E)'/?] and

(4.15)
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FIG. 3. Behavior of the S-wave quartet half-shell amplitudes for ¢°®=0 and ¢°*=i«. The number of poles
included in this calculation is 40. The amplitudes were calculated for a lab energy of 14.4 MeV.

q=1ia, where o® represents the deuteron binding
energy. Only the p’ dependence in the region
0<p’ < (4E/3)'/? enters the unitarity equations,
but we have shown a larger region to illustrate
the behavior of the amplitude near the square root
singularity at p’ = (4E/3)*/2. In Fig. 4 we show the
off-shell function calculated from this amplitude
for g=ia and g=0. The energy (E) dependence of
the off-shell function only enters via the on-shell

value of p®=[H(E+a?)]’?, i.e., it only determines -

the (complex) normalization of the off-shell func-
tion. The off-shell functions have been deter-
mined by replacing the form factors g(p) in Eq.
(4.2) by constants, in accordance with the zero-
range approximation (4.4). The use of Yama-

guchi form factors would slightly decrease the
magnitude of y, especially for p’=0 and large E.
If E~x, p°*/(GE)*/2~1, and we get the off-shell
function shown in Fig. 4(a). In Sec. III we found
that for high energies the main contribution to the
exchange part of the phase-space integral (3.7b)
comes from the product A;;(E; p, (4E/3)'/2)A¥(E;
p, (E/3)*/?), assuming that the amplitude is not
strongly varying over the region of integration.
Now we see that the corresponding amplitude A

in Fig. 3(a) is enhanced near the momentum p’
=(E/3)'/2 due to the logarithmic singularity, so
that the dominance of this region is even more
pronounced. It therefore seems to be a very good
approximation to replace the exchange integral
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IMAGINARY PART OFF-SHELL FACTOR
IMAGINARY PART OFF-SHELL FACTOR

0.5 o 05 1 15 2 3 4 5
REAL PART OFF-SHELL FACTOR REAL PART OFF-SHELL FACTOR

FIG. 4. Quartet off-shell functions corresponding to
the half-shell amplitudes in Fig. 3. The numbers along
the curve represent the value of p’ in units of (4 E/ 3yt/z,

for higher energies by a sum of two terms near
these momenta and to neglect the remainder of
the integral. The logarithmic singularity does
not invalidate this procedure since we can easily
integrate it. We can then replace the full unknown
off-shell behavior by one unknown (energy-depen-
dent) coefficient of the logarithmic singularity
which again can be calculated in terms of a zero-
range model. Alternatively, we could introduce
this coefficient as an unknown in the N/D equa-
tions, although this requires modifications in these
equations because of the logarithmic singularities
in the physical region.

The present analysis favors an off-shell function
whose magnitude varies between 4 and 7 [Fig.
4(b)]. This is much larger than the unit off-shell
function which.gave good results in Ref. 10. In
order to check whether this magnitude’ is typical
for a larger class of interactions, we also ana-
lyzed amplitudes obtained by Bruinsma in a break-
up calculation of the three-nucleon system at 14.1
MeV, in which he used a one term separable po-
tential with charge dependent parameters. The
two calculations agree in the sense that the amp-
litudes are fairly constant in the region 0<p’ <(E/
3)t/2, but for (E/3)'/2<p’ <(4E/3)!/2 our ampli-
tudes decrease slowly, whereas in Bruinsma’s
calculation they increase slowly. The main dif-
ference occurs, however, if we consider the off-
shell function, since in Bruinsma’s calculation
the amplitude increases sharply if p> (4E/3)1/2.
As a result off-shell functions computed from his
amplitudes never exceed 0.25, and therefore do
not agree at all with our results. Other quartet
Faddeev calculations have to be analyzed in order
to determine whether this difference is due to the

inadequacy of the zero-range approximation, or
to the sensitivity of the off-shell behavior of the
scattering amplitudes to the assumption of charge
dependence. We return to this question in the
doublet case. In any case it seemsnecessary toin-
troduce a second “on-shell” momentum at ¢ =0, in
order to avoid the uncertain extrapolation to the
on-shell momentum g =i,

In the doublet case the integrand has poles for
7, satisfying Eq. (4.13) and the following equation:

Ly(1;)=(-1)"V3/8. (4.16)

This latter condition is the same as we would have
had in the spinless case. In the S -wave case the
purely imaginary solutions 7;=i7; of (4.16) are
7; =4, 4.46529, 6.81836, ... . For large j the
behavior of 7; is given by Eq. (4.15), witha, =8
for j=3r+1, and a; = -4 for j#3k+1. There is
one real solution to (4.16), namely 7 ,=1.006238,
This solution is the source of the ambiguity in
the S -wave zero-range problem, since it cor-
responds to a solution of the homogeneous integral
equation. B eloozerov® uses Danilov’s®” procedure
to resolve this ambiguity. The procedure essen-
tially determines the coefficient of the homogen-
eous solution by requiring that the asymptotic be-
havior of the total solution for p’~=. is the same
as that of the solution of a set of finite range equa-
tions in which terms linear in the range param-
eters are kept and in which the triton binding en-
ergy acts as a parameter determined by experi-
ment. This procedure seems to be rather ad koc,
and therefore it is of interest to investigate re-
cent attempts to formulate unambiguous zero-
range theories.®

Apart from the ad hoc nature of the solution of
this ambiguity, the doublet solution of Beloozerov
has some severe defects. First, the solution does
not have a pole at the triton binding energy despite
the fact that the triton binding energy has been
used as an input parameter. Second, the solution
of Beloozerov appears to be singular in p=p’ for
positive energy. The presence of this singularity
might indicate that the sum, representing the
amplitude, has been extended to a region where it
is no longer valid. Since the present state of the
art, therefore, does not allow us‘'to obtain a
satisfactory, unambiguous full solution of the
Skornyakov-Ter Martirosian equations, we have
used only the homogeneous solution of the equa-
tions. We expect this choice to be quite reason-
able, since on the one hand the homogeneous solu-
tion seems to dominate the momentum depen-
dence of the amplitude inthe case considered by
Beloozerov, whereas on the other hand the solu-
tion satisfies the FSI equations, and has the re-
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quired analytical properties for p’ -0 and p’

- (5E)2, The absence of the logarithmic singu-
larities in this amplitude does not seem to be

tco serious, since even for Beloozerov’s solution
the singularity hardly shows up; in addition the
singularity will be further washed out in the off-
shell functions which also depend on the other
amplitudes which are free of these singularities.
The resulting off-shell matrix is diagonal, and
the elements are given by

_pPsin(Te¢,)gi (B~ 2p,?)
ij ijin(To ?n)gj[E_%(pjon)Z] ’

(4.17)

where ¢; is given by Eq. (4.12a), and ¢$" is rela-
ted to p3* by Eq. (4.11). In Fig. 5 we show the form
of this off-shell function for j=1 and j=2. We do
not show the amplitude itself since we do not known
the (complex) normalization of the homogeneous
solution, and a plot of the real and imaginary part
of the amplitude requires the knowledge of the
phase of this coefficient. If one accepts the dia-
gonal nature of the off-shell function as a good
approximation then one can calculate this function
from a single off-shell amplitude since A,-;(E;pj)

Xij(E§pj)=6
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F¥IG. 5. S-wave doublet off-shell factors at a lab
energy of 14.4 MeV. The meaning of the numbers in
Fig. 5(a) is the same as in Fig. 4. The second off-
shell factor x, is real [Fig. 5(b)].
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=A,;;(E; p$)X ;; (E; p;). In that case we can com-
pare our calculation of the triplet off-shell func-
tion X,;, with the calculations of Bruinsma and
Brady and Sloan.?® The off-shell function derived
from Bruinsma’s amplitudes has approximately a
constant phase as ours does [Fig. 5(a)], however
its magnitude is smallier by roughly a factor 6.
Using the amplitudes of Brady and Sloan we find
the opposite, the phase varies between —45° and
45°, and the magnitude is about a factor 4 larger
than ours, i.e., a factor 24 larger than Bruins-
ma’s.

The major uncertainty in the off-shell function
seems to originate from the extrapolation from
physical momenta g to the on-shell momentum ¢
=4, This uncertainty would be eliminated if a
second triplet “on-shell” amplitude is introduced

‘at ¢=0 this amplitude and the singlet amplitude

will have the same off-shell function for the zero-
range model (4.17).

The singlet amplitudes cannot easily be compared
with Bruinsma’s calculation as he uses the on-
shell value g=7a. If one ignores this difference,
one finds in both cases that the single off-shell
function drops sharply near p’=(4E/3)'/2, How-
ever, the behavior for p’—0 is quite different as
Bruinsma’s off-shell function levels off to a value
of —-0.4 in the np-singlet case, and -1 in the pp-
singlet case, whereas we found 0.4 [Fig. 5(b)].

Even if one introduces the “on-shell” amplitude
at ¢=0, the present analysis shows strong dif-
ferences in off-shell function originating from dif-
ferent models. Therefore, it may even be necess-
ary (and further calculations have to show this) to
introduce another “on-shell” amplitude, and the
high energy analysis of the previous section has
shown that p=(E/3)}2 ig the most obvious choice.

A more radical procedure would be to param-
etrize the three-body phase-space factor directly
using its asymptotic behavior near E£=0 (~E®) and
the mild behavior for larger energies (cf. Ref.

10). The parameters in such a model could

both come from microscopic sources as in the
previous sections and from experimental informa-
tion.

V. DYNAMICAL SINGULARITIES OF THE AMPLITUDES

The left-hand or dynamical singularities of the
bound-state three-body amplitudes have been dis-
cussed before,'° and therefore we will concentrate
on the 2—3 and 3—- 3 amplitudes in the present
section. The lowest order exchange graph is
pictured in Fig. 6. It has the general form

A{P(E;cosb)~ 2,8, B’ +3D)
X(E - p* —p' — pp’ cosb)"!
X gB+29", (5.1)
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FIG. 6. One-nucleon exchange graph.

where A;; is the spin- 1sosp1n recoupling coef-
ficient, and cosf=p+p’. The factor 2 is due to
the presence of two such diagrams. For the 3—3
amplitude the “on-shell” momenta are given by
p=p'=(4E/3)*/2  so that the E dependence in the
propagator in A{} factorizes, and the amplitude
has a pole for E=0. The pole can be considered
as a contraction of the left-hand cut of the bound-
state amplitude in the limit @ -0, or, alternat-
ively, as the contraction of the positive energy cut
of the 3~ 3 amplitude between -‘;- o and 40, when

AP (E,cos6)~) fa'f)”g, ®” +zp)
7

Aps
E_pnz_prz_‘f) P

X

where S, is the dressed propagator of the inter-
mediate three-particle state. The Amado model
allows a simple analytical expression for this
propagator. For A> 3 systems, this propagator
becomes a complicated convolution of several
propagators (cf. Fonseca* for a calculation in the
A =4 system). Neglecting for the moment the
form factors (i.e., by letting 8 —~*) and by putting
the momenta on-shell one obtains for the I/th

partial-wave 3- 3 amplitude
[ ( -1 —4x2\2
=)'

(E+E)}
xXS(E(1-%%) , (5.3)

At(z)( E)~ ST Z f

where we factored out the main E dependence by
setting p"%= % Ex®. Apparently A, (E) is less
singular at the origin than the first-order ampli-
tude, since it has a square root singularity for
1=0. In order to obtain the left-hand projection

of the second-order amplitude one subtracts the
right-hand projection of (5.3). The right-hand
singularities are due to the propagator S,

X (E(1 - x?)). If one of the intermediate two-particle
states supports a bound state then the correspond-
ing S, has a pole singularity which leads to a very
simple discontinuity. The three-particle cut of
S,, however, leads to a more complex discontin-
uity, and to subtract out this contribution a two-

>‘ik
E - p" —p® —pp”
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P > ry

FIG. 7. Repeated one-nucleon exchange graph.

o—~0. Since this pole term is much easier to
handle than the logarithmic branch points, our
choice for the “on-shell” momenta reduces the
complexity of the calculation of the input con-
siderably. The E™' singularity of the amplitude
does not endanger our N/D description since it
is compensated by the E* behavior of the phase-
space factor near E=0.

The second-order amplitude has the following
structure (see Fig. 7):

£ B+, (E - 35" g, (B +57)

7= B+ ), (5.2

r
dimensional integral has to be evaluated. The
method for doing this is essentially the same as
in the bound-state case and has been described
before.'®

The third-order Born term does not have a left-
hand cut due to the propagators. Therefore, the
only additional singularities are due to the form
factors and combinations of them with the propa-
gators. All these singularities lie far to the left,
as their position is scaled by B2

The nondiagonal 2- 3 amplitudes do -not have the
simple pole or square root singularities at E=0,
but have the usual left-hand cut which runs from
the physical to the unphysical sheet (see Fig. 8).
The position of the branch points is E= —% a2,
These nondiagonal amplitudes will require a de-
formation of the integration contour if they occur
in integrals running from E= —«? to ©, This occurs
for example in the right-hand projection of the

~ second-order amplitude (5.3) if # represents an

intermediate two-body state (e.g. the nucleon-
deuteron state). Deformations are also necessary

-3Q -Q
X———
Koo mmmm = 7

FIG. 8. Anomalous cut of the 2— 3 amplitude.
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in the N/D equations, as we will discuss in the
next section.

VI. MODIFIED MULTICHANNEL N/D EQUATIONS

In the N/D equations external two- and three-
particle channels play a different role because the
analytic structure of the 2-~2, 2-~3, and 3~ 3
amplitudes is quite different. In order to retain
the elegant matrix formulation of the multichannel
equations we will, however, use the same notation
for the two kinds of channels, and indicate the
difference by referring either to the channel set 2
or 3. We will assume that the kinematic conditions
are such that no anomalous thresholds arise from
nondiagonal bound-state amplitudes. This seems
to cover a fair number of cases, for example the
A=3 and 4 systems can be described this way (at
least if the occurring binding energies are close
to the experimental values). Nondiagonal 2 - 3
amplitudes necessarily give rise to anomalous
thresholds. We treat these with the same methods
as used earlier in the case of two-body bound-
state channels (cf. Ref. 32). It is necessary to use
numerator functions N;; which for i € 2 are dis-
continuous at a characteristic point I?’. These

functions are finite at the two-body thresholds E;, -

so that all the following integrals are well de-
fined.

Generalizing the formulation of Ref. 32 to the
case of more than two channels and nondiagonal
phase-space matrices we obtain the following set
of equations:

N;{E)=BJ;(E)

- g_‘": ) dE'K,(E, E")p,(EN, (E")
(6.1)
where
B, (E)=B$(E) - L;,(E) =M, (E)+J ,(E).  (6.2)
The extra functions in (6.2) are integrals over the

various anomalous intervals:

L;(E)= f dE'K‘k(E, E"p,(E"A B, (E"),
rE2 k)

je3 (6.3)
where
KB, 5= 2al B =BulE) (6

and AB,, is the discontinuity of B,; over the
anomalous cut

)
dE'AB,,(E') Eﬂ

. IR
= 4
My (B)= k;z ‘L‘k) —& BulE),
i€3 (6.5)
and
, (k) (E)
gy (B)= 3 E%B(EﬁJ%T—LMMW,

i,j€3. (6.6)

In the last integral L,,(E’) has no singularities at
the anomalous interval since k€ 2, so that the
kernel in Eq. (6.3) is regular.

The functions B,,(E) and consequently the
kernels K, (E, E’) are discontinuous at E=1 ¢
provided € 2 and je 3. The superscript * red”
in Eq. (6.2) only pertains to second-order input
functions B2} withi, j €3, and k2. These re-
duced ampitudes are defmed as the average of the
two possible continuations of Bf2) from the normal
to the anomalous case. This implies that B3
does not involve integrals over the product AB ABy;.
The introduction of “reduced,” and discontinuous
input functions is necessary to invoke certain can-
cellations in the anomalous N/D equations rig-
orously, so that the resulting integral equations
can be solved numerically. For a detailed de-
scription of the analytic continuation of the N/D
equations from the normal to the anomalous case
we again refer the reader to Ref. 32.

The kernel in Eq. (6.1) can be expressed in
terms of the modified input functions B, (E)
through the equation

BT, (E) - BT, (E")

KidE, B)= =gt —
, (M, (B) - B, (B)H, (B - {F ==
E E' ’
(6.7)

where j runs over the set 2, The function H;,(E)
is defined by
)

IR pE"AB, (E")
s PAL )BD )
ij(E)— jl‘(.l dE’ E —E ’
>

je2, k3. (6.8)

The functions L, H, and M satisfy the followmg
relationship for E >E;:

L,(E)=-)_ By, (E)H,,(E) + M (E),
[]

j€3. (6.9)
The anomalous integrals and the kernels are real
in the region of interest. Equations (6.1) are,
however, complex since the off-diagonal three-
body phase-space factors p,, are complex in gen-
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eral, Since the three-body phase-space factors
satisfy

Pin(E) = P (E)

the amplitudes A;; are still real analytic as is
easily inferred from Eq. (3.14) by using time re-
versal invariance. The complex nature of the N/D
equations can be treated exactly, or in an itera-
tive way if the imaginary part of the three-body
phase-space factor is small with respect to the
real part. Once we have solved for the numera-
tor function N;; in Eq. (6.1) we can determine the
analytic continuation of N;,(E) below E=1{’ for

i € 2 through the relation N/ (E) =N, (E) + AN, (E)
(AC=analytical continuation) where

(6.10)

AN;(E)= ) AB;,(E)D,(E), ic2. (6.11)
RES '

The D functions are determined through a simple

quadrature formula:

P;x(E’)
D;(E)=08;;+ A NAC(EY)
iJ ij ; k, E' _E ki

o (6.12)

E ?
+f Cap BUED) AN (e,
3
where the last term only occurs if i € 2, The time
reversal and reality properties of the resulting
amplitude give us a means of checking the numer-
ical accuracy of the solution.
If a two-body channel gives rise to a bound-

state amplitude with an anomalous threshold singu-
larity (for example if the two-body channel con-
tains a loosely bound particle) then the summations
in Egs. (6.3)~(6.6) should include this channel, in
other words the channel is effectively a three-body
channel. In writing down Eqgs. (6.1)-(6.7) we as-
sumed that the functions B;,(E), i, j€ 2 are non-
singular at the anomalous intervals where they
have to be evaluated. We can generalize the form-
alism so as to allow for functions which do not
have this property. However, since we think that
these singularities are not very important, while
they complicate the formalism considerably, we
suggest circumventing these singularities in a
way similar to the method used by Rinat and Stingl®
for “removing” the anomalous threshold in the
five-body problem. Instead of the unsubtracted
equations presented here, one can also employ
subtracted equations as in Ref. 32. CDD poles can
also be included. The problem with CDD poles is
that there is now a straightforward way to deter-
‘mine whether they should be included, and if so
what their positions and residues are. Recent
calculations® for doublet nucleon-deuteron scatter-
ing have shown that a CDD pole can be necessary
in a one-channel N/D description of this system in

order to reproduce the zero in the amplitude just
above threshold. - This special situation is due to
the effective range anomaly in the doublet case,
and we do not expect similar situations for other
few-body systems. The effect of this CDD pole
seems to be small both in the negative energy
region and the positive energy region (where it
only gives rise to an extra jump in the phase
shift). Like other studies on CDD poles, this
study* concludes that CDD poles canarise by neg-
lecting important channels, and in fact can be
shown to be absent in the two-channel approach to
the three-nucleon system which has been investi-
gated here.

VII. DISCUSSION

The inclusion of three-body unitarity within a
dispersionlike description of three-body systems
has an important impact on various properties of
the system. For example in the zero-range limit
we see the breakdown of the Thomas theorem?!?
if the three-body system is described as an inert
bound state plus a third particle. In fact, one
can even show that the inclusion of the exchange
part of the three-particle unitarity contribution
does not suffice to produce the Thomas theory,
since the relevant integral equations remain well
defined. From recent studies we know'® also
that the number of bound states of the three-part-
icle system becomes infinite if the scattering
length of the two-body system goes to infinity.
Again it seems that this so-called Efimov effect
is absent if one includes only two-particle uni-
tarity, and describes the input by a second-order
box graph. Further investigations of these quali-
tative properties of the three-body system are
currently performed and may shed more light on
the role of three-body unitarity.

We know from various calculations'®**? that three-
particle intermediate states are very important in
determining the binding energy of the triton. For
example the binding energy of the three-boson
system considered by Aaron, Amado, and Yam*?re-
duces from 25.5 to 4.5 MeV if one neglects three-
body intermediate states. Using two-body unitarity
in the N/D equations for this system with pole and
triangle input (neglecting intermediate three-body
states), one also gets 4.5 MeV binding.*® Inthe more
realistic doublet calculations of Ref. 10 we found
binding energies of respectively '7.340 and 2.227
MeV, the latter one only a few keV below the
dueteron threshold. However, from the latter cal-
culations it is clear that the increase in the bind-
ing energy comes nearly exclusively from the
inclusion of the intermediate three-body states in
the input. Still, it seems to be more consistent to
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treat the unitarity equations and the input to the
same order, and therefore include three-particle
unitarity in such calculations. It is also clear
from the calculations in Ref. 10 that three-body
unitarity has an important effect on the positive
energy behavior of the amplitudes, especially on
the absorption coefficients.

In Sec. IV we analyzed the off-shell functions
which play such an important role in the micro-
scopic calculation of the three-body contribution
to the phase-space factor. It was hard to make
simple and reliable calculations of these functions
as they appeared to be quite sensitive to the de-
tails of the potentials used in the three-nucleon
calculation. It therefore appears to be necessary
to introduce “on-shell” amplitudes at ¢=0 for
every channel. “On-shell” amplitudes at.p=(E/3)Y?
would help to further reduce the remaining un-
certainty in the off-shell function although they
require (standard) regularization schemes to
handle the logarithmic singularities on the physical
axis. We also mentioned a semiphenomenological
approach in which one parametrizes the three-
body phase-space factor directly. The latter ap-
proach was essentially taken by Bower,'” and
simplifies the calculations considerably, espec-
ially if the number of channels increases and the
calculation of off-shell amplitudes—even in a
zero-range approximation—becomes too messy.
This approach is also more in the spirit of the
dispersion method, which tries to concentrate on "
the physical mechanism and the dynamical aspects
of the reaction, without going into details of the
underlying potentials. Further numerical appli-
cations of the N/D method have to show whether
such a semiphenomenological approachis success-
ful. The three-nucleon system would still be the
most obvious test system. Cases in which the N/D
approach may be more useful than conventional po-
tential approaches are the three-nucleon system,
if one includes certain pionic diagrams, and few-
body systems with N =4, for which Faddeev cal-
culations are still very complicated. The gen-
eral framework developed in this paper seems
equally well applicable to few-nucleon systems
with N = 4. The analysis of Secs. IIland IV has tobe
modified slightly, since the mass ratios and
therefore the position of various singularities is
different. For example, the angle 6 introduced in
Eq. (4.7) will equal sin™ (1/¥3) in the four-body
system.

The formalism in this paper was nonrelativistic,
because we had in mind the application to the
three-nucleon system. The generalization of N/D
theory to the relativistic case is possible and was
performed in the framework of the helicity form-
alism for aribtrary spins in a paper by Polikar-

pov.** The only important change occurs in the
form of the relativistic phase-space factors. Un-
til now practically all investigations of relativistic

" three-body systems have been confined to reso-

nance-particle systems of a quasi-two-body type
(cf. Refs. 15, 16, 23, and 44), with the exception

" of a recent schematic investigation of Brayshaw.*

One of the most important applications of the
relativistic N/D method—rd scattering in the reso-
nance region—can be done in the present formal-
ism with a minor change in the three-body phase-
space factor due to relativistic pion kinematics.
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APPENDIX: PROPERTIES OF SPECIAL LEGENDRE
FUNCTIONS

In Sec. IV we encountered special Legendre func-
tions of the type

P;i1/2(2) and Q7111/3(z) .

We only need explicit expressions for 1=0 and 1
(Ref. 46, 8.6.8-8.6.11):

1/2
P}/2 ,,(coshf) = (%) cos(7 6) sinh™"/2, - (A1)
' 2 1/2
P;ﬂf,z (coshb) =( ;) sin(76) sinh81/2 | (A2)

1/2 .
QL2 /x(coshb) = <g) ie'™ sinh61/2 . (A3)

1/2 X
Q343 teosho)=~(7) " Lo sune/z (a0

where |Im6 |< 7 and |Im(sinh6)|<7. For -1<z<1
one uses Eqs. 8.6.12-8.6.14 in Ref. 46, From the
recursion relations (Ref. 47, 8-733-3 and 8-731-3)

(1 + 7% P17}/ 3(cos®) = P13 (cosb)
’ —(21 —1) cotOP;:L/2 (cosh) ,
(A5)
(2 +72) ;,’_Il,/zz(coshe) = ~P; 3 2(coshb) +(21 - 1)
x coth0P;t%Y/ 2 (coshf) ,
(A6)



which also hold for the ’s, one can now derive the

Legendre functions for any I value.
For example, it is easy to derive that

1
(22+72)(4%2+72) - (N?+ T2
1/2

x<g) 1 smh(m) y
T T 2

PlEn0) =
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and

1
(1+78)(3%2+7) (2n =-1)%+T7?)

2\1/2 ™
X(;> cosh (7> s
which functions are required in the evaluation of
L,(7).

P (0)=
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