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An optical potential appropriate to elastic scattering of neutrons by oxygen is calculated with the starting
point being the basic nucleon-nucleon interaction. A soft core force is employed so that matrix elements are
finite and perturbation expansions are (apparently) convergent. All terms up to second order in the
interaction are retained including correlation effects previously ignored. The calculations are carried out in a
space large enough to minimize truncation effects. The resulting nonlocal energy dependent complex optical
potential is used to calculate low energy s-wave phase shifts. These are compared with the results generated

by an empirically fitted optical potential and with the results of previous calculations. The scattering length
and effective range parameter are also calculated. Given the nature of the calculation, the results are quite
encouraging.

NUCLEAR REACTIONS + -' 0, optical potentt, al, approximate many-body scat-
tering theoiy.

I. INTRODUCTION

The problem of describing the scattering of a
nucleon from a nucleus is one of the central prob-
lems in nuclear physics. Although there has been
much effort and progress in the formulations and
solution of models to describe the process, little
progress has been made towards a complete ab
initio description. This is not to say that there
have not been advances made inthe formal solu-
tion of the problem. Watson' more than 20 years
ago showed how an optical potential, which de-
scribes nucleon-nucleus scattering, could be
derived from the nucleon-nucleon interaction.
The derivation begins with the construction of
the two-body t matrix, or scattering operator,
and the result, before approximations, is a set
of coupled integral equations which can be treated
in a number of ways. ' Various perturbation ex-
pansions and different groupings of the different
types of terms occurring in the infinite series
have been developed which emphasize different
aspects of the complicated process. Although
these schemes are formally elegant, they do not
permit one to proceed simply from the nucleon-
nucleon force to an optical potential without nu-
merous approximations. Not the least of the
difficulties involves an adequate description of
the target nucleus. The hard core nature of the
two-body interaction also leads to considerable
technical difficulties.

As a consequence of these difficulties many

model calculations have been performed which
contain drastic, simplifying assumptions. One
approach consists of using an effective inter-
action, fitted to bound state properties with a
single determinantal wave function, for the scat-
tering calculation. ' lt is then asserted that be-
cause certain complexities have been incorporated
into the force, only the lowest order terms in the
optical potential expansion are sensible. Many
other phenomenological models have been em-
ployed, such as using an effective local potential
folded with an experimental density. ' In another
model the nucleons are considered to form an
inert core, as in the shell model, except for one
active particle. The core, active particle and
projectile are then treated as a three-body sys-
tem. '

The approach taken here is to begin with a "re-
alistic" potential, whose matrix elements in some
convenient basis are all finite, and face the full
complexity of the formal expansion of the optical
potential. A similar appraoch has previously
been taken by MacKellar et al. and by Sinha' uti-
lizing rather extreme approximations. Here every
effort will be made to limit the approximations
to the necessary truncation of the infinite per-
turbative series.

In the following section, the formulation of the
scattering problem developed by Villars' will be
reviewed. Here complete antisymmetrization is
retained throughout. The expansion for the optical
potential in terms of the two body interaction will
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be obtained and the terms evaluated, including all
second order contributions, in the harmonic os-
cillator representation. The angular momentum
algebra will then be performed for the special
case of neutron scattering from a doubly closed
shell nucleus "0 and the method used for the
numerical computation of the matrix elements
of the optical potential summarized. Finally, the
phase shifts resulting from this complex, non-
local, energy dependent potential will be compared
with those obtained from a phenomenological po-
tential whose parameters have been fitted to the
data and to the results of .other calculations.

This comparison, for s-wave scattering, is
sufficiently encouraging to warrant an extension
to higher partial waves and heavier nuclei. These
calculations are in progress.

II. VILLARS FORMULATION

In the second quantized representation the Ham-
iltonian is

H= +&i If Ij) at, a&+ —g&ij IvIkl&ata~za, a~,
ig tgkl

where t is the one-body, kinetic energy operator
and V is the two body nucleon-nucleon interaction.
The states i,j are completely arbitrary and the
creation and destruction operators g are defined
relative to the true vacuum. Assuming that the
nucleon-nucleon potential chosen does not have
a hard core, one may carry out a Hartree-Fock
calculation, thus determining a discrete set of
single particle states, &f&~, and energies e~. The
Schrodinger equation can be solved with the re-
sulting Hartree-Fock potential, thus generating
a set of continuum wave functions which, together
with the bound Q~, form a complete set. The
operators which create (or destroy) these states
will be designated by at(k') [or a(k')], the k' indi-
cating a solution with out-going boundary con-
ditions and energy k'k'/2m =e„.

It is then convenient to use, as the vacuum, the
Hartree-Pock determinant and define creation
(and destruction) operators relative to this vac-
uum. We then define

50 Q~ for 6fM ~ EFER~

clio for 6
fif

+ 6'PER~ ~

Using the usual "dot" notation to represent normal
products in terms of the b's wq then have

1H=E„F+ g e, :ata:+—~ &np IvI&5&:atat~a, a„:.
c ~6

Here

E„=g&XIt IX&+ 2 pp. p, IV„I&p&,

e = &n (t I n&+ Q&nz ( V„(nz&

(4)

J (k") = g &P I V„ Ik'6& at a~t a, : .

It then follows that

[a,a'(k')] IN„&
= e„a'(k') IN„) +z'(k') IN„& (io)

and since, directly,

[Z, a'(k')] N„& = (a Z„)a'(k') IN/

we have

(a Z„e,) a'(k-') IN„)-=Z'(k') IN„) . (ll)
This equation is inverted to yield an equation for
at(k') IN„) to which an (appropriate) amount of
the solution of the homogeneous equation (7) is
added:

at(k ) IN„&
= IN„,k'&+, „.„~'(k")IN„&

A

with the sums restricted to occupied levels.
The following notation is then introduced: N„&

represents the bound states of the A-particle
system. They are exact solutions of the total
Hamiltonian H and satisfy

(5)

with N„being the appropriate set of quantum
numbers; We can obtain a state which, in addition
to the A, bound particles contains a particle in a
scattering state (from the Hartree-Fock poten-
tial), with outgoing (or incoming) boundary con-
ditions.

at(k') N„) or at(k ) N„&.

Such states should be distinguished from the true
scattering states which will be designated by
IN„, k't'&„. These contain, in addition to the in-
coming wave incident on the target, an outgoing
scattered wave. They are solutions to the full
B with

(a z„- e)I N„, k&'&=0.

In order to express these states in terms of the
states IN„& the operators J are introduced:

[a,at(k')] = e, at(k') +J (k'),

[a,a(k')] = e,a(k') -Z(k')

so that

or, upon rearrangement,
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IN„, k&'» =a'(k') IN„&+ . .. z'(k') IN„&.
A

(12)

J'(k" ') =g(k'P IVly6&:a a, a„.
Bra

(19)

This is, essentially, the desired result. The
total scattering solution is expressed, in the sec-
ond quantized representation, in terms of the
bound state of the target and well-defined oper-
ators. (Note that the incoming wave represeriting
the incident particle is contained in the first term
even though-the scattered part of that term has
outgoing boundary conditions. ) The expression
for the S matrix then follows directly, after some
manipulation:

&N'k'ls I»& =-&N'k" 'I» "&

=(k ls lk&6&r ar-2&ri6(&ar +ea -Es-ea)
&&(¹

I
J(k' ') Nk +'&. (l3)

Here (O' Is Ik) is the one particle S matrix for
scattering from the Hartree-Fock potential. In
terms of the single particle t matrix this is

(k slk&=6(k' k)-2~i6(e, , -e,)(k'It k). (14)

Then, since

&N k Is INk& =&k' Ik& 6„,„
2&rib(EN-+ e„-E&r, —er, i) (N'k'

I
T INk&

(16)

we finally obtain

(N'k' 7 INk) = (k' t k) 6&r&&r, +(N' Z(k" ') Nk&' &.

(16)

From this point, to obtain a general expression
for the optical potential, Villars invokes the Leh-
mann-Zimmermann-Symanzik formalism and a
linked-cluster expansion. A more directMhough
far less elegant —procedure will be followed in
the next section.

HI. OP'ICAL POTENTIAL FOR ELASTIC SCATTERING

%e wish to obtain an expression for the optical
potential U, which will reduce the many-body
problem of the elastic scattering of a nucleon
from a nucleus to the one-body problem of scat-
tering from V. In other words we are looking for
a U such that

while the present result is

&»'IT IN»=(k'Itl»+&Nlz(k" '&INk& » (is)

with

Nk& »=at(k) N&+ . Z'(k") N).1
EN+ C~ -H+ sg

(20)

Bather than trying to obtain a general expression
for U, we will assume that an expansion of U in
powers of V is rapidly convergent and obtain an
expression for U which retains all terms up to
third order. To this end we develop the pertur-
bation expansion for the state N&, assumed to be
the ground state of the target. The convergence
of the perturbation expansion for the ground state
has been demonstrated for the type of interaction
to be utilized here. '

The Hamiltonian can be divided into two pieces,
Bo and H» with

Z, =Z„,+ g c.:a'.a.: (21)

1
H, = —~ (&&&p Vly6):at at~a6a„:

oB16
(22)

&HF EHF + ~l —~«~ +HF + ~1+ (24)

In terms of these states, the solution of the Schro-
dinger equation with the total Hamiltonian H is
given by

IN) =(1+C,) Hg

b, b, b, b, lHF&, (26)
«a I&J Cr+CJ—

where C, is determined by normalization. In-
serting this expression for IN) into (20) and (18)
leads to first-order terms, containing

(HF I
a', a, a„a'(k') IHF&

and two types of second order terms. One type
of term comes from the second part of INk"&
taken with the HF component of (N~ and the other type
comes from the first part of

~

Nk'&) taken with atwo-
particle-two-hole part for (N~.

(26)

The eigenstates of H, are simply the Hartree- Fock '

determinant and all multiparticle, multihole states
that can be obtained from it. In terms of the b op-
erators these states are

IHF), b', O', HF&, b', b', b', b', HF), etc. , (23)

where i refers to a state below the Fermi level
and I to one above. The corresponding eigenvalues
are
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The first order term (26) gives no contribution
because there must be an equal number of 5's and
bt's to go from the "vacuum" back to the "vacuum. "
Thus the normal product has to contain two de-
struction operators and, since there is only one
creation operator to the right, the result is zero.

The first kind of second order term arise from
the excitations of the target during the scattering
process, i.e., from the term

(HF lZ(k"-') . P(k&") lHF) . (27)

(HF l:atka, a„::at at a:
l
HF) .

In order to contribute we must have

(28)

g
&fFERMz, and fg, c~, ~~, f p & fp

in which case the factor becomes

Inserting the expressions for J and J'~, and
using the fact that the states created by having
a's and a 's act on the vacuum are eigenstates
of H„ leads to the factor

(Note that to this order it is sufficient to replace
H by Hp in the p ropa gato r and that, to the same
approximation E„may be replaced by EHF. )

The contribution from these terms can then be
written as

(29)

—2 2 &k'0lv, lrb&&v~lvl»&
8x

... . lHF&
l g (k'~lv. lyb&(»lvJkp)

EHF + fy Hp+ &g 2 gs„cg+ c~ —cy —&6+ zg
(30)

The diagrammatic representation of these terms
is given in Fig. 1.

This result may be written in the desired form
by defining U'" by

is an unoccupied state and thus a„=b,. The sec-
ond type of factor, (28), yields zero unless P is
above the Fermi. level and 6 and y are below.
Thus

2 k~k kk + Ck —Ey —Ck +EFJ'(31)
(H F

l b~ b; b~ b~: ak ak a„:at(k')
l
HF)

ik jy fy Jk) ( IB Jk 1k Js) '

It is this contribution to the optical potential which
was calculated, in an approximate way, by Mac-
Kellar, Reading, and Kerman. '

There are other second order terms, however,
arising from the two-particle-two-hoj. e com-
ponents of lN), i.e., from the correlations. These
contain the factor

Thus, to the second order, the "correlation" con-
tribution is

-'p7 p&k plv„lyb)

(5) 5~„—5( 5~ )(6 5 „—6 5 k)

~I+ Cg f

(HF l: aktana„: a~(k") b~zb~~ b~ b~ lHF) (32) x(1,rlv„l q)

or the factor

(HF lb, b& bz bi. aktaka„: a. (k") lHF) . (33)

The first kind give zero contribution because k'

l p, (kPlv„ly6&&yb lv„lkP&
2 8~k ck+ek —e„—ek

with the prime on the sum indicating that the
sum is restricted to states such that

~g ~ ~FERMI a d 1 ~& fFERMz '

{Direct} {Exchange)

FIG. 1. The process leading to 0~. Here the incoming
particle excites the target into a two-particle —one-hole
state.

, ('e . )&

By6 E~-Cg -4„—C6

(36)

The diagrammatic representation of these terms

We may also write this result in the desired form
by defining U"' via
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Hartree-Fock potential. This is the desired ex-
pression.

( Direct) (Exchange)

IV. A CALCULABLE FORM

FOR THE OPTICAL POTENTIAL

FIG. 2. The process leading to U ~~. Here the
incoming particle interacts with a two-particle-two-
hole component of the target's wave function.

is given in Fig. 2.
With these definitions Eq. (18) can now be writ-

ten, up to second order, as

&»' IT I»& = &k'lf I»+&k' IU"'+ U'*I»

=&O'lf+U' '+U'xlk),

where, again, t is the scattering matrix for the

l~& = g e,"lnfjmr. ) . (37)

In this representation U'" has the form

The expression obtained for the second order
optical potential is not readily amenable to cal-
culation. To obtain a more suitable form it is
convenient to work in the harmonic oscillator
representation. The basis states lz) are then
characterized by the quantum numbers n, l, j,
m, and 7,. For spherical nuclei, which are the
only ones considered here, the occupied orbitals
have sharp values of l, j, m, and 7', and thus an
occupied state lx) is given by

& IU "lj&=Z
d'k
(2m)'

d'k~ &iX I V„lk,kz) &k,k, ( V„ IjX)
(2t) ed+6), —e~ —c~+z7/

(38)

where k„k~ are scattering states from the Har-
tree-Fock potential with outgoing boundary con-
ditions and energies E„c~. The subscript k on
U'" is used to indicate that the scattering energy-
is (k'k'/2m). (Bound, but unoccupied, levels are
implicitly included in the integrals on k„kz). Only
one such state exists for the nucleus considered
and it, being at almost zero energy, has been
incorporated into the conti. nuum.

The continuum states should, in principle, be
obtained numerically for each scattering energy.
In coordinate space they are given by

&r lk) = Q 4zri'e"ri+'R„(k, z)Y, . (k)~J,q„(z)
Palms

x &lm, —,
' m,

I
jm)r„ (39)

where

)f,~ (z ) = Q'&lm, ~ m, ljm) Y, (r))t,),„.
m )ms

The functions B,~(k, z') are the source of the dif-
ficulty being the solutions of the radial part of
the Schrodinger equation with the Hartree-Fock
potential. In order to reduce the calculation to a
realistic sizeit is necessary to approximate these
functions by something simpler. A viable approx-

It „(k,z ) = pa„(k)X„(k)y„(z), (40)

where the function Q„(z') is the radial part of an
eigenfunction of the Hartree-Fock matrix. The
D's are energy dependent expansion coefficients
and N is a normalization factor.

The resulting expression for the states k„k,
can be substituted into U'* and the integrations

'A

over the angles k, and k, can readily be per-
formed. Sums on magnetic quantum numbers of
products of Clebsch-Gordan coefficients can also
be easily carried out, further simplifying the
quantity to be calculated. Since all the states
are now expressed in terms of harmonic os-
cillator states, the calculation of U'" consists
merely of summing products of readily calcu-
lable matrix elements multiplied by functions
of the Hartree-Fock expansion coefficients and

energies. Specif ically,

imation scheme has been developed' in which the
functions R are expanded in terms of the discrete
set of orbitals obtained by diagonalizing the Har-
tree-Fock matrix in some truncated, harmonic
oscillator basis. This expansion has been shown
to be quite accurate for those values of r which
are significant for integrals containing the po-
tential. According to this approximation
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(t ~U'"
~
j) = Z k', dk, k~dk~F, (p, ,p,k,)F,(p, p, k ) (4l)

F,(p, ,y, ,k, ) =D„,(k,)N, ,~,(k,)D„,(k,)N, ,~,(k,),

F,(p, p, XiZT) = P C„"~C„"~C ~(n, l,j,, nl~j~ V„n,l,j„n,l,jg~T.
n~n2n

In a similar way one may obtain a simplified expression for the correlation contribution to the optical
potential,

(42)

where the summation is over the occupied orbitals X, all the Hartree-Fock states p, , and a coupled angular
momentum and isospin, J and T. The functions F, and F, are given by

(2T + l)(2&+l), G, (v,Xpi ZT) G, (v,Xp t'OT)'
(43)

r

where

G, (v„k.) =D, (k,)N,„,(k,)

G,(v Xpi JT)= g C~~C"'C"
nyn2tt

x (nial( j nlrb ji I ~~ lnihj~~ n2t. jgzT ~

(44)

These two expressions, U' and U'", con-
stitute the starting point for the present calcu-
lation.

V. DETAILS OF THE CALCULATION

The present calculation utilizes the Hartree-
Fock results" obtained for "0using the Tabakin
nucleon-nucleon interaction. " Although this in-
teraction has certain deficiencies it does contain
all of the qualitative features of the forces which
give better fits to the two-body data. It has the
virtue that, not having a hard core, one may cal-
culate its matrix elements and thus avoid a 6-
matrix calculation. Further, the Tabakin inter-
action has been used in perturbation t:al,culations"
which apparently converge quite rapidly to a rea-
sonable binding energy for "0.

Since the space of harmonic oscillator st;ates
used in the Hartree-Fock calculation contains
six s states, only a 6 x 6 Hartree-Fock potential
is available for s-wave scattering and, therefore,
(i(U'"( j) and (i(U'

( j) will be limited to 6x 6
matrices for this case. A second truncation is
necessary in the expansion of the scattering
states, k~, in terms of partial waves. In this
calculation only the s,~» p~&» p3y» d,y» and d3/Q con-
tributions will be considered —the error due to
neglecting higher partial waves will be small for
a number of reasons, including the relative size

of the corresponding two-body matrix elements
for s-wave scattering and their small amplitude
at modest energies.

Even with these truncations the calculation of
U'" and U'" require rather sophisticated com-
puter programming. For example, the F, array
which enters into the calculation of U'" has just
under 200000 entries and each entry requires the
calculation of about 200 matrix elements of the
potential. A large number of these matrix ele-
ments are trivially zero by parity or angular
momentum considerations but, nonetheless, the
number of necessary matrix elements is ex-
tremely large.

In addition to the difficulties associated with
the. large numbers of calculations, care must also
be taken in the integration on k, and k~ because
the denominator in U" can vanish. The denom-
inator in U'" cannot vanish because a„and a„are
negative and therefore U'" is totally real. U'",
however, has a real and imaginary part. This
problem is treated by using Simpson's rule for
the integration and choosing the points so that
the poles are at mesh points. In the evaluation
one then tests whether the denominator is zero
and, if so, there is no contribution to the integral
from this point. In addition the contributions
from the immediately preceding and following
points are multiplied by 1.5. This properly takes
care of the residue of the integral if it is linear
in the region of a pole. Further accuracy, al-
though possible, was not found to be necessary.
In this way, the integrals were found to converge
if the number of points considered was 22-24 for
each variable. The calculation of the imaginary
part of U'" is straightforward, being only a single
integration with no singularities.

Thus the calculation of (i ~U'"+U"
~
j) is reduced

to takj.ng a matrix product of rather large ma-
trices and integrating the result using Simpson's
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rule. Because a large space was used to min-
imize truncation effects the calculations still are
quite time consuming. Given the matrix elements
of the two-body interaction, stored in a partic-
ularly convenient way, the calculation of the
36 complex elements of &i

I
U~" + U~" Ij), «»

single energy, takes about 12 minutes on an )BM
370.

MacKellar et al.' circumvented most of the dif-
ficulty, in calculating U'" by making some rather
extreme approximations. In the expression (38),
C~ was replaced by a constant 4, independent of
the state X. Also the states k„k, were replaced
by plane wave states and thus a„cb by the ap-
propriate k'k'/2m. The integrals on k, and k,
can then be performed directly. 'The resulting
U'" is purely real and somewhat devoid of struc-
ture but, nonetheless, it was the success of these
calculations which helped to motivate the present
work.

VI. CALCULATION OF PHASE SHIFTS

The optical potential obtained in the preceding
section is energy dependent, complex, and non-
local. Having obtained the matrix elements in
only a finite dimensional, harmonic oscillator
representation the potential is'automatically in
the form of a sum over a small number of sep-
arable terms, i.e.,

&r IU"tlr)= Z &rli&&ilU.. Ij&&jlr &,

where

&rli&=y„.„(r)R„,(r) .

One can thus obtain the phase shifts exactly by ma-
trix inversion of an X by N matrix rather than
solving an integrodifferential equation by some nu-
merical approximation.

Briefly, one begins with the T-matrix equation,

&kl&(E) Ik'& = &kIU.ptlk'&—
3

2, , &I IU" I4&&tll(II. -E -in) 'lti&&ilT(E) Ii '&, (46)

where II0 is the kinetic energy operator and spin indices have been suppressed. Writing

&klan(E)

Ik'& =2 T&;(» k' E)2 pig (k)~gg*;,.(k')

and substituting this, and the Fourier transform of &rlU, p& I
r ), into (46) leads to

T, (k, k', E) =Q R„,(k)&nljlUp, In'lj&R„, (k) ———Z —,R„,(k)&nljlU. pt In'lj&R„, (q)g, (q, E)T„(q, O', E),
nn' 4m „„I 2n'

(47)

(48)

where

g, (q, E) = -E —iq
5 Q

D„„~(ljE)= 5„,

R„,(k) = 4m r'drj, (kr)R„, (r) .
0

One then defines E„, (k, E) vianl
g

(50)
+- Z &nfj IU.„ln"Ij&

g dg'
2„, R.-, (q)Z. (q, E)R„,(q) .

(53)

r„(k, k', E) = QR„,(k)E„„(k',E)

and substituting into (48) leads to the matrix equa-
tion

F„„(k',E) = g D„„-'(fjE)&n'Iq IU.ptl "Ij&R„",(k'),
n'n"

The problem of determining T then reduces to
that of inverting the N&&N matrix D. The phase
shifts then follow from the relation

5'k'
2m 2mk

(54)
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FIG. 3. 8-wave phase shifts. The dotted line is the
experimentally fitted phase shift and the solid line
is the phase shift resulting from the total optical
potential calculated here. At these energies the optical
potential, and thus the phase shift, are calculated to be
purely real.

VII. RESULTS

The s-wave phase shifts for low energy neutrons,
elastically scattered from Q", are shown in Fig.
3. The experimentally determined phase shifts are
given by the dotted curve" and the results of the
present calculation are the solid curve. The the-
oretical results are determined, to a large extent,
by the Hartree-Fock potential itself, as shown in
Fig. 4. The dashed curve is the result using only
the Hartree-Fock potential and the solid curves
are obtained with the full U,~t. Since U'" and U'"
are of opposite signs, they tend to cancel and since
they are of the same order of magnitude, the net
effect on the phase shifts is small. It had been
previously stated' that part of the "large difference
between the first- and second-order calculations is
consistent with the fact that the second order has
the 1s and 2s states bound in approximately the
right place, whereas the first order has the 2s un-
bound. " In fact, as has beeri discussed elsewhere, "
the 2s state is bound already in the Hartree-Fock
field. Thus the dashed curve must also start at 2II
for zero energy, in order to satisfy Levinson's
theorem, if 5(E-~)=0.

In Fig. 5 the results of the present calculation
are compared with the results of previous calcula-
tions. In these calculations the oxygen target is
assumed to remain in its Hartree-Fock determi-
nantal state, which is obtained using some effective
interaction. The curve labeled DKB is obtained us-
ing the Nestor potential" and those labeled 8 use
two versions of the Skyrme" interaction. It should
be emphasized that the previous calculations are
quite different from the the present one in that

0 10 20 30 40 50 60 70 80 90 '100

E {MeV)

FIG. 4. Effect of the second order correction. The
dashed curve is obtained by solving the scattering
problem with just the Hartree-Fock potential. The
result when the total optical potential is used is a
complex phase shift whose real and imaginary pa.rts
are shown. Note the imaginary part has been multiplied
by a large factor for display purposes. These phase
shifts are not intended to be meaningful over such a
wide energy region but are shown just to illustrate the
second order contribution.
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FIG. 5. Results of previous calculations. The curves
labeled Sk-I, Sk-II, and DEB are obtained by scattering
from the Hartree-Pock potentials alone, using various
effective interactions. The parameters of these
interactions are fitted to many-body properties, such as
ground state energy and rms radius. The present
calculation use's an interaction which is fitted to
two-body data and more general a wave function.

their ansatz is that the wave function is a single
determinant and an interaction is employed whose
parameters are fitted to many-body properties. In
the present calculation the interaction is fitted to
two-body data arid the wave function is not re-
stricted.

Another measure of the effect of the higher order
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a cote = + —,'r, k' .
0

This parameter is not determined experimentally,
because of the complexity of the low energy cross
section as a function of energy. , It may, however,
be calculated using the various calculated phase
shifts. For the Hartree-Fock potential alone, the
effective range is calculated to be 8 fm. If U'" is

. included one finds r0 = 6 fm and if the full optical
potential is used, x0 = 6.6 fm.

It is of some interest to consider the energy de-
pendt;nce of the various components of the optical
potential responsible for these results. Since the
potentials are nonlocal they are not amenable to
simple graphical representation. Thus, to illus-

-8.0-

-6.0-

Vl

~ -40-
V)

X~
'

/

l ex
REAL

corrections on scattering phenomena is the scat-
tering length and effective range. One defines the
scattering length a0 by

1 = lim k cot5 .
a0

Evaluating this for the Hartree-Fock potential alone
yields a0=33.66 fm. If one used, instead, the op-
tical potential including U'", but not U"', the result
is 11.95 fm. Using the full optical potential yields
a, =15.48 fm. The experimental value of a0 obtained
from the coherent scattering of thermal neutrons
is about 5.8 fm." Given the sensitivity of a0 to
small changes in the potential, the theoretical val-
ue is quite reasonable.

One may also define the effective range param-
eter r0 by the expansion

trate the energy dependence, the diagonal matrix
element corresponding the lowest s state is shown,
in Fig. 6, as a function of energy. (This is always
the largest matrix eleinent. ) The solid line is
(1s U '~ls), the dashed line is the real part of
(1s U'")1s), and the dotted line is its imaginary
part.

VIII. CONCLUSIONS

The results reported here are the product of an
attempt at a totally microscopic description of the
nucleon-nucleus scattering process. Beginning
with a soft-core, nucleon-nucleon potential which
is fitted, albeit rather poorly, to two-body scat-
terjng data, one proceeds to solve the quantum me-
chanical, many-body problem with the appropriate
boundary conditions. The only assumptions have to
do with the truncation of spaces, which can be
checked by increasing the size of the basis, and the
convergence of the perturbation expansion, which
can be checked by calculating higher order terms.

Because the nucleon-nucleon potential does not
quantitatively agree with experimental predictions
it is not expected to fit all aspects of the scattering
data. Certain aspects of the data, on the other
hand, should be correctly represented because the
quantum mechanical treatment is correct.

The results are quite encouraging. Although the
experiments indicate the presence of a "compound
elastic resonance" in the s-wave phase shifts which
the calculations do not reproduce, the other features
of this phase shift, as a function of energy, are
given quite well. (This failure to produce a reso-
nance is not due to the nucleon-nucleon potential
.but rather to the cutoff of the perturbation expan-
sion since, presumably, the incoming neutron
shares its energy with the entire "0 nucleus at
this energy. )

In subsequent. calculations the higher partial
wave phase shifts for n-"Q will be considered so
that the total elastic cross section can be com-
puted. Also being undertaken is a study of the sen-
sitivity of the results to the details of the nucleon-
nucleon interaction,

-2 0-

Uex
Im. '

Ucol'

I I I I l I I I '
I

0 10 20 30 40 50 60 70 80 90 100

E (MeY)

FIG. 6. Illustration of energy dependence. Because
the second order contributions to the optica'l potential
are nonlocal, the dependence on energy is illustrated
by simply the largest matrix element. Of particular
importance is the fact that U and U ~ are of opposite
sign and nearly equal magnitude at low energies.
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