Comment on a search for a $0^- \rightarrow 0^+$ pair transition in ${}^{16}O^+$

David E. Alburger

Brookhaven National Laboratory, Upton, New York 11973 (Received 9 February 1978)

The possible $0^- \rightarrow 0^+$ ground-state pair decay of the ¹⁶O 10.95- MeV 0⁻ state was reinvestigated using the ¹⁹F(p, α)¹⁶O reaction at $E_p = 5.4-5.7$ MeV and a magnetic pair spectrometer. A previously reported pair peak of 3.84 MeV due to the 10.952 \rightarrow 7.117-MeV transition was not observed. The data indicate a much smaller relative population of the 10.95-MeV state in this reaction than reported previously and this places doubt on the upper limit derived earlier for the $0^- \rightarrow 0^+$ ground-state pair decay. In a test of the ¹⁴N(³He, p)¹⁶O reaction at $E_{3He} = 4$ MeV the yield was too low to study the 10.95-MeV state. Using the ¹³C(d, p)¹⁴C reaction at $E_d = 4.5$ MeV the $0^- \rightarrow 0^+$ ground-state branch from the 6.90-MeV 0⁻ state of ¹⁴C was found to be $<1.1 \times 10^{-4}$ via pair decay. The corresponding lifetime limit, $\tau(0^- \rightarrow 0^+)_{e^+e^-} > 3 \times 10^{-10}$ sec, is not considered significant. It is concluded that a sensitive search for M0 pair transitions remains to be made.

NUCLEAR STRUCTURE ¹⁶O, ¹⁴C: measured ¹⁹F(p, σ) and ¹³C(d, p) pair spectra; previous results on ¹⁶O 10.95-MeV $\tau(M0)_{e^+e^-}$ not confirmed; deduced lower limit on ¹⁴C 6.90-MeV $\tau(M0)_{e^+e^-}$.

Nuclear transitions between states of spin-parities 0⁻ and 0⁺ are not expected to occur by positron-electron pair emission or *K*-electron conversion unless there is a parity admixture in the initial and/or final states or a nonelectromagnetic coupling of the nucleus to the atomic electrons.¹⁻³ Presumably a 0⁻ \rightarrow 0⁺ decay could proceed by twophoton emission, i.e., *E1* plus *M1* transitions, with an expected probability somewhat less than in the case of 0⁺ \rightarrow 0⁺ decay, i.e., two *E1* transitions. As an example the 0⁺ \rightarrow 0⁺ two-photon branch for the 6.05-MeV state of ¹⁶O has been found⁴ to be only 2.5 × 10⁻⁴ as strong as the corresponding *E0* pair decay and was very difficult to detect.

There appears to have been only one search reported in the literature for a $0^- - 0^+$ (M0) transition proceeding by positron-electron pair decay. Eklund and Bent⁵ (EB) used the ${}^{19}F(p, \alpha){}^{16}O$ reaction at $E_p = 5.43$ MeV in order to populate the known⁶ 0⁻ state of ¹⁶O at 10.95 MeV and they measured the positron-electron pairs with a magnetic spectrometer. As evidence that the 10.95-MeV state was being formed they found a peak corresponding to a 3.84-MeV transition which was attributed to the known^{6,7} 10.952 - 7.117-MeV 100% γ -ray branching (0⁻ \rightarrow 1⁻) of the 10.95-MeV state. The upper limit on the intensity of a possible 10.95-MeV pair line together with the 3.84-MeV peak intensity, after corrections for efficiencies, led to an upper limit on the 10.95-MeV ground-state pair branch of 2×10^{-5} . Since the lifetime of the 10.95-MeV state was not known an estimate of 4×10^{-13} sec was assumed from which a lower limit of τ $> 2 \times 10^{-8}$ sec was derived for the partial lifetime

of the 10.95-MeV $0^{-} \rightarrow 0^{+}$ pair transition. However, the lifetime of the ¹⁶O 10.95-MeV state has now been measured⁸ as $(8 \pm 5) \times 10^{-15}$ sec, a factor of 50 shorter than the estimate of EB.

From Fig. 1 of EB the relative (p, α) populations of the various ¹⁶O states can be calculated since the pair spectrometer efficiencies are known accurately,⁹ as are the γ -ray branching ratios of the ¹⁶O states. Thus, the intensity of the 3.84-MeV pair peak in EB would require the 10.95-MeV state to be populated more strongly than the 6.05-, 6.9-7.1-, or 8.88-MeV states by factors ranging from 2 to 15. This seems to be inconsistent with the previous work⁶ of Bent and Kruse in which the 10.95-MeV state was first found and studied using the ¹⁹ $F(p, \alpha)^{16}$ O reaction. Thus, at $E_p = 5.5$ MeV (see Fig. 9 of Ref. 6) the various peaks in the three-crystal pair spectrum, when corrected for detector efficiencies and γ -ray branches, correspond to a population of the 10.95-MeV state less intense by factors of 4 or more relative to any of the other states. Also it may be mentioned that the α -particle spectrum from the ¹⁹F(p, α)¹⁶O reaction at $E_{p} = 7.31$ MeV had been measured by Squires, Bockelman, and Buechner¹⁰ in a magnetic spectrograph. No evidence was found for population of the 10.95-MeV state of ¹⁶O although the next higher state at 11.095 MeV gave a peak of moderate amplitude.

In view of the uncertainty as to the intensity of the 3.84-MeV pair peak in EB a new measurement was made of the pair spectrum using the same type iron-free intermediate-image spectrometer and closely similar conditions, i.e., a 2-mg/cm²

18

576

© 1978 The American Physical Society

thick BaF_2 target on a 6.7-mg/cm² thick Ni backing and a proton beam from a tandem Van de Graaff accelerator. In the first test at $E_p = 6.0$ MeV the beam struck the target material after passing through the Ni backing at which point its energy was 5.7 MeV. Figure 1 shows the results. The peaks due to the 6.05-, 6.92+7.12-, and 8.88-MeV transitions in ¹⁶O are in approximately the same intensity ratios as in EB, there is a weak 4.44-MeV peak due to inelastic scattering from carbon contamination, but there is no visible peak of 3.84 MeV. Comparing these data with Fig. 1 of EB the 3.84-MeV peak here (at three standard deviations above background) is at least 10 times less intense relative to the 6.05-MeV peak.

Another difference between the present and previous results is the strong 4.44-MeV peak in EB presumably due to a much greater amount of carbon, perhaps a carbon target backing. A possibility could be that the 3.84-MeV peak in EB (about 20% as intense as the 4.44-MeV peak) was due to ${}^{13}C(p,p'){}^{13}C$ excitation of the 3.85-MeV state of ${}^{13}C$. To test this a carbon foil target 3.5-mg/cm² thick was inserted with the result shown in the inset in Fig. 1. No peak of 3.85 MeV is observable and it must be <1% as strong as the 4.44-MeV peak. Therefore the 3.84-MeV line in EB cannot be due to natural carbon contaminants.

Allowing for the possibility of resonant excitation of the 10.95-MeV state the experiment on $BaF_2 + p$ was repeated at exactly the same proton energy of 5.43 MeV used previously.⁵ There was still no evidence for the 3.84-MeV peak and the upper limit was comparable to that guoted above. Further tests were made by measuring the γ ray spectrum from the ¹⁹F(p, α)¹⁶O reaction at E_{p} = 5.5–7 MeV using a 2.0-mg/cm² thick BaF₂ target and a Ge(Li) γ -ray detector. In addition to the higher energy γ rays a relatively strong 2.75-MeV line from the 8.88-MeV state of ¹⁶O was observed but the 3.84-MeV peak could not be seen above the background. The upper limit on the 3.84-MeV γ -ray intensity was consistent with the relative intensities found in Ref. 6 but not with the pair spectrum in EB.

Thus the relatively large intensity of the 3.84-MeV peak in EB seems to be at variance with the present work as well as with the results of Refs. 6 and 10. Due to the absence of the 3.84-MeV pair peak in Fig. 1 no search was made for a possible 10.95-MeV line.

Since the 10.95-MeV state is known⁷ to be excited in the ¹⁴N(³He, p)¹⁶O reaction, a test was made with the pair spectrometer using a ZrN target made from 0.0025-cm thick Zr foil. The beam intensity was 0.5 μ A of ³He^{*} at 4 MeV. Unfortunately, the counting rates were only ~40/min at the 6.05-MeV E0 peak and <0.2/min for the 3.84-MeV peak, a yield too low to continue the study.

A previous investigation¹¹ of some pair lines in the ${}^{13}C(d, p){}^{14}C$ reaction was carried out but a specific search was not made for the $0^- \rightarrow 0^+$ ground-state pair decay of the 6.90-MeV 0^- state of ${}^{14}C$. This state was found¹¹ to be populated about equally compared with the 6.73-MeV level of ${}^{14}C$ for $E_d = 2.8 - 4.5$ MeV. A measurement was therefore made at $E_d = 4.5$ MeV using a carbon foil target of 90% enriched ${}^{13}C$ 0.85-mg/cm² thick. From

FIG. 1. Pair spectrum from the 5.7-MeV proton bombardment of a 2-mg/cm² thick BaF₂ target. The inset shows the spectrum from a 3.5-mg/cm² thick carbon target for the same integrated charge per point.

FIG. 2. Pair spectrum from the 4.5-MeV deuteron bombardment of a 90% enriched ¹³C target. The vertical lines show the expected positions of the ¹⁴C peaks at 6.59, 6.73, 6.90, and 7.34 MeV and the ¹⁴N peak at 7.03 MeV [from the ¹³C(d,n)¹⁴N reaction] using the ¹⁴C 6.09-MeV peak for calibration.

the resulting positron-electron pair spectrum shown in Fig. 2 the limit on a 6.90-MeV peak is estimated as <0.05 times the intensity of the 6.73-MeV peak. The latter is an *E*3 transition and thus the ratio of spectrometer efficiencies⁹ is $\epsilon_{6,90}/\epsilon_{6,73}$ = 416 assuming, for present purposes, the simplistic approximation $\epsilon_{M0} = \epsilon_{E0}$ for the 6.90-MeV transition. From the populations $p_{6,90} \simeq p_{6,73}$ it follows that the 6.90-MeV ground-state pair branch is <1.1×10⁻⁴. The lifetime¹² of this state, (3.6 ±0.4)×10⁻¹⁴ sec, leads to a lower limit of τ >3 ×10⁻¹⁰ sec for the *M*0 pair decay. However, a comparable *E*0 pair transition such as that of 6.05 MeV in ¹⁶O, has a lifetime of about 10^{-10} sec, so the experimental lifetime lower limit for the ¹⁴C *M*0 pair transition cannot be considered as significant.

It is concluded that a really sensitive search for $0^- \rightarrow 0^+$ pair transitions remains to be made.

The author would like to thank E. K. Warburton and D. H. Wilkinson for helpful comments and suggestions.

- †Research supported by the Division of Basic Energy Sciences, Department of Energy, under Contract No. EY-76-C-02-0016.
- ¹J. R. Oppenheimer and J. Schwinger, Phys. Rev. <u>56</u>, 1066 (1939).
- ²R. G. Sachs, Phys. Rev. <u>57</u>, 194 (1940).
- ³R. H. Dalitz, Proc. Roy. Soc. Lond. A206, 521 (1951).
- ⁴B. A. Watson, T. T. Bardin, J. A. Becker, and T. R. Fisher, Phys. Rev. Lett. <u>35</u>, 1333 (1975).
- ⁵K. E. Eklund and R. D. Bent, Phys. Rev. <u>112</u>, 488 (1958).
- ⁶R. D. Bent and T. H. Kruse, Phys. Rev. 108, 802 (1957).
- ⁷D. A. Bromley, H. E. Gove, J. A. Kuehner, A. E. Lit-

herland, and E. Almqvist, Phys. Rev. <u>114</u>, 758 (1959). ⁸M. C. Bertin and R. E. Pixley, Nucl. Phys. <u>A150</u>, 247 (1970).

- ⁹D. H. Wilkinson, D. E. Alburger, E. K. Warburton, and R. E. Pixley, Phys. Rev. <u>129</u>, 1643 (1963).
- ¹⁰G. L. Squires, C. K. Bockelman, and W. W. Buechner, Phys. Rev. 104, 413 (1956).
- ¹¹D. E. Alburger, A. Gallmann, J. B. Nelson, J. T. Sample, and E. K. Warburton, Phys. Rev. <u>148</u>, 1050 (1966).
- ¹²H. P. Seiler, R. Kulessa, P. M. Cockburn, P. Marmier, and P. H. Barker, Nucl. Phys. <u>A241</u>, 159 (1975).