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Several new examples of electric dipole transitions to final isospin 3/2 are c'alculated using the Fabre-Levinger
formalism: (i) the Volkov potential (Serber exchange) gives an integrated cross section 4% higher than the
O' Connell-Prats sum rule; (ii) the V" potential (zero force in odd-parity two-body states) gives a H photoeffect
cross section close to that found by Fabre and Levinger for He; (iii) transitions to an uncoupled grand orbital three
are several percent of those to grand, orbita1 one. Addition of the cross sections for uncoupled states gives poor
agreement with the coupled calculation of Fang et al. ; (iv) a V" potential (Wigner-Bartlett exchange) gives an

integrated cross section 5% higher than the Thomas-Reiche-Kuhn value. We also calculate for final isospin 1/2,
neglecting coupling to two-body breakup. The V potential (zero force in odd-parity two-body states) gives an

integrated cross section 23% higher than the O' Connell-Prats value. A Wigner-Bartlett mixture gives a 23% dis-

agreement with the Thomas-Reiche-Kuhn sum rule. The calculated cross section (summed for both isospin
states) has a higher and narrower peak than that measured by Gorbonov (summed for two-body and three-body
breakup).

NUCLEAR REACTIONS photodisintegration of trinucleon; hyperspherical har-
monics.

I. INTRODUCTION

Expansions in hyperspherical harmonics
(h. h. ) have been used by a number of
workers in the past decade for ealeula-
tions of the ground state properties of
systems of three nucleons'~ and of four
nucleons ' ". The convergence of thy h. h.
expansion is rapid, giving accurate numer-
ical results with truncated expansions.

Delves used a single h. h. for the
ground state and continuum wave functions
reached in the trinucleon photoeffect.
His work was corrected by Fabre and
Levinger6 (designated collectively as FL)
anjg extended to spin-dependent but central
two-nucleon potentials. FL calculated for
final states of isospin 3/2, to avoid the
problem of a final nucleon-deuteron wave
function, which poses a severe test of the
h. h. expansion7.

Myers, Fang and Levinger (designated
I'IFL) tested the single-term h. h. expansion
for the continuum state by comparison of
the integrated cross section with the
Thomas-Reiehe-Kuhn sum rule for a Volkov
potential of Wigner exchange character.
They found agreement within 6~/~.

Recently Fang, Levinger and Fabre (des-
ignated FLF) truncated the expansion of
the continuum wave function at two h. h.
They found an improved agreement with the
TRK sum-rule for a potential of Wigner
character: the diserepaney was reduced to
only 3/0. They also ealeulated with a
spin-dependent Volkov potential with
Serber exchange character, and found that
the total cross section for isospin 3/2
final states was in closer agreement with
experiment for three-body break-up than

that for a single h. h.
These successes with severely truncated

h. h. expansions suggest testing the h. h.
technique on other properties of. the tri-
nucleon photoeffect, for eleetrie dipole
transitions: specifically in 'this paper
the cross section for final states of iso-
spin 1/2 and the total cross section for
both isospin states. Our purpose is to
find the limits of applicability af h. h.
expansions, and to develop an intuitive
feeling as to which calculations ean be
done accurately by this technique.

We shall first review rapidly the con-
cepts and notation involved in ealeulation
of the trinucleon photoeffeet (electric
dipole transitions to isospin 3/2) using
a single h. h. for the final state. We
also review sum rule calculations of the
integrated cross section. In the next
section we apply the FLF formalism to find
the total cross section for isospin 3/2
for the 'H photoeffect, for a Wigner-
Bartlett exchange mixture and for a Volkov
spin independent potential with Berber ex-
change character. We also examine transi-
tions to grand orbital three in the un-
coupled h. h. approximation. In section
III we calculate the total cross section
for the 'He photoeffeet to isospin 1/I'2
final states. In the last section we
summarize the tests of the h. h. expansion
by comparison with experiment, and by
comparison with sum rules.

We follow FLF notation for the trinue-
leon photo@ffeet. We first define Jacobi
variables g~ and g2 for the trinuelegn,
jn terms of the nucleon coordinates r~,
r2, rq and center of mass coordinate B.

+
ry — r2, $2 = 3 (r3 — R). {l.13
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The two vectors in three-dimensional space
are eornbined into a six vector, of length

(gq + g2 )2. We denote its. five
angles eolleetively by ~&. Two angles
give th|; directions [i]~(6~ (I}y) of the unit
vector g~, two others give v~ for g2, the
fifth angle is defined as tan (Ki/(2).

The kinetic energy operator T is ex-
pressed in terms of these six hyperspheri-
cal coordinates. If the potential energy
were zero and energy E = fi k~/M, the wave
function Q(g, ~~) obeys the six-dimensional
Helmholtz equation, where ~ represents
the Laplacian in six-dimensional space,

(~ + k )Q(g, ~~) = 0 (1 ~)
Tke solution of this equation for a
single partial wave'' is a product of a
Bessel function of k and a hyperspheri-
eal harmonic HL' &{&&).

4L(K ") = (k4) 'JL+2(k4)HL'g, , 'f, , ('}) (1 3)

Here the "grand orbita, l" L = &~ + &2 + 2n,
where n is a non-ne ative integer. The
parity is then (-1) . Normalized h. h. have
been discussed by many workers'; Fang'' has
recently given explicit equations for a
number of h. h.

For the three-nucleon problem, we follow
Simonov' and Fabre in taking combinations
of h. h. which have i) a specified value of
the total orbital angular momentum

and ii) a specified symmetry for spatial
exchange of a pair of nucleons. We include
completely symmetric (denoted by a super-
script {0)) and mixed symmetry, either
even (+) or odd (-) on exchange of the
first and second nucleons. The completely
antisymmetrie spatial wave function i.s
very small ~' and will be neglected. "We

write these normalized eombinatioris for a
specified grand orbital L as PL(o)(~~),
P (+ ) (&& ), and P ( ) (~~ ) . Of course these
are combined with appropriate spin-isospin
wave functions to give desired values of
total spin S and total isospin T, and to
obey the Pauli. prineipl

In general the potential energy of the
trinucleon V(g, ~&) depends on the angles,
thus coupling together different h. h.
Fabre truncates the h. h. expansion of the
wave function giving a finite number of
coupled differential equations, which are
solved numerically to give grour]d state
hyperradial functions up((), u2{g), ug(g),etc. Here uL(g) = g5/ QL(g). Since the
ground state has even parity, he uses only
even value of the grand orbital. L = 0
and L = 4 are completely symmetric h. h. ,
while L = 2 has mixed symmetry.

FLF truncate the partial wave expansion
of the 1 , T = 3/2 f' nal state at L = 3
obtaining coupled differential equations
for u~(g) and u3(g). Neglecting the
coupling between these two states, the FLF
equations reduce to

2 (1)-ui" + (35/4g )ui + (M/8 )U& ui = k2ui

2 2 (3)u3 + (99/4(')us + (M/4')U& uq = k~us (l.4)
The effective potentials U~ (g) and U3 (() are expressed in terms of "hypermultipoles"(1) (3)
V ' (() of the two-nucleon potential for a state of spin S and parity + orL

(1) (3/2) [V
(1+) + V

3 + V
(1+)

V (3-)]

U, (3) (3/2)[V (1+) + V
(3-) ~ V (1+)/g

V2 /3 — (8/3}V6( + (8/'3)V6 }] (1.5)

The hypermultipole V (g) for a gaussian potential V((q) = v exp( Eq /a -) is given by0

V2K( g ) = 2v exp(-x ' )IK 1(x ' )/x'
x' = ~~((/2) (1.6)

In (1.6) IK 1 is a modified 13essel function.

Since the effective potentials are pro-
portional to g at large hyperradius
we can express the asymptotic solution of
Eq. (1.4) for L = 1 as linear combinations
of the regular solution given in (1.3) and
the irregular solution, proportional to
the Neumann function N3(kE). We use the
normalization from FLF at large g; u~(()
has the asymptotic form

~1

u&(g) = (g '/k ) [cos6qJq(kg)
sin bqN3(k()] (1.7)

~1

I[u (g)-u2(g)/2 '] guy(g)dg

c(3/2} = (v'/18)n(M/4')(E k")(Ha ~)'. (1.9)

(1.8)

(6 ~(k) is the phase shift for three-body
to three-body scattering'' for grand or-
bital one, ~&~ t = 1 . )tot

Considering only transitions to grand
orbital one, FLF express the cross section
in terms of the hyperradial overlap inte-
gral H, p y
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The u2($) term comes from the mixed sym-
metry part of the ground state wave
function.

We ean check our results for the total
cross section by using it to evaluate,
moments n (3/2) defined as

(3/2) = J E o'(3/2)dE (1 ~ 10)
p o Y Y'

MFL treat a force of pure Wigner character
and compare moments from (1.10) for p-1, 0, and 1 with values found by using
sum rules. '' Below we compare with the
O' Connell-Prats'" (OP) sum rules for po-
tentials with Bart, lett, Majorana or
Heisenberg exchange; in this ease the
moments depend on the final isospin.

The choice p = -1 gives o ~(3/2) pro-
portional to the mean square radius of the
trinucleon, and independent of the calcu-
lation of the continuum wave functions.
The integrated cross section, p = 0, pro-
vides a, test of the truncation used to
obtain the continuum wave functions. For
a pure Wigner potential, the integrated
cross section is given by the Thomas-
Reiche-Kuhn (TRK) sum rule, independent of
the form of the trinucleon wave function,
or the nucleon-nucleon potential. For the
spin-independent potential treated by MFL,
the cross sections and moments do not de-
pend on the final isospin'" so MFL ca, lcu-
late the total cross section o = o(3/2) +
G(~) = 20(3/2), and compare the integrated.

total cross section with the TRK sum rule
cr = (4a /3)(e 4/Mc} = 39.8 MeV mb. . The
vRlue found from (1.10) is only 6% higher
than the TRK results;while FLF find that
the diserepaney is reduced to a mere 3%
when two coupled h. h. are used in calcu-
lating the continuum wave functions.

For spin-dependent potentials, we com-
pare moments calculated from the cross
sections with the OP sum rules. Again the
choice p = '-1 merely cheeks numerical
aeeuracy. In our notation

n i(3/2) = J [uo(g)
2 2u2(6)] 2(2d (1.11)

For o ~(~&),
' OP change the minus to a plus

sign in the integrand.
For p = 0, and only Wigner or Bartlett

exchange, the OP sum rules give equality
of a (3/2) and a (~~~):

a (3/2) = a (~~) = (2vr2/3) (e~4/Mc)
19.9 MeV mb (1.12)

We use this sum rule below to cheek the
accuracy of our truncation to a single
h. h. For a sum of two-nucleon potentials
including a fraction x of Majorana ex-
change a.nd a fraction P of isospin ex-
change, OP find that the integrated cross
sections are given by the following
equations:

a (3/2) = (2vr'/3}n(6'/M) [1-(x -y) (M/5') (Q, r'V(r)$ }]
n (~~) = (2v'/3)n(4'/M) [1-x (M/4')(q~, r'V(r)$ )] (1.13)

They have made the approximation of using a completely symmetric ground state wave func-
tion Q s. In truncating we make the further approximation that $ can be replaced by
the lowest h. h. , namely L = 0, which has a weight of some 98% for the examples we con-
sider. We can replace r V(r) of OP by g] V(g~); we expand the latter in h. h. Performing
integrations over the five angles, we find

(g, r'V(r)4 ) = 'J [u (()]'('[V (6) — V2(()]d( (1.14)

Eqs. (1.13) and (1.14) were used by FLF to
test the truncation of the continuum wave
function to two h. h. for the spin-indepen-
dent Vx potential with Serber exchange
character. A single h. h. gave an inte-
grated cross section very close to the
sum rule result, v hile two h. h. gave ao
integrated cross section only 2% above
the sum rule value. The speed of conver-
gence of the h. h, expansion is similar to
that found by MFL for a potential of
Volkov shape and pure Wigner exchange
character.

II. FINAL ISOSPIN 3/2

We apply the FL formalism outlined in
the introduction to several new examples. -

First we use the Volkov spin-independent
potential for the 'H nucleus, considering
transition from grand orbital zero to
grand orbital one. As discussed above,
MFL have calculated in Born approximation,
and with assumed pure Wigner forces. We

now a.ssume a /~reer exchange mixture. We
substitute V &' = V~(3 ) = 0 in Hq~(1.5) for the ef fective potential U]
We evaluate the phase shi ft 4 q f rom' (1.7),
the cross section a(3/2) from (1.9) and
the moments o (3/2) from (1.10). Our re-
sults are giv8n in Ta.ble I. We find large
phase shifts, i.e. , the Born approximation
is invalid for a Serber mixture: compare
with MFL for Born approximation for o(3/2).
The moment a ~(3/2) is used to check num-
erical accuracy: it agrees with NFL. We
compare the integrated cross section
a (3/2) with the OP sum rule (1.13) and
(j.14) . The sum rule gives a ('3/2 )
28. 1 MeV mb, only 4% lower than the value
29. 3 MeV mb f'ound from n(3/2).

We next use the same Volkov potential
for 'H, but this time follow MFL in assum-
ing Wigner forces. We now consider tran-
sitions from initial grand orbital four"
to final grand orbital three. We present
in Table II results in Born approximation,
and phase shift 6q a.nd n(3/2) from Eqs.
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(1.5) to (1.9). (In Eq. (1.5) we use
= V . In Eq. (1.7) we change(1+) (3-)

L' L
to 5 3 and J3 (kg) and N3 (kg) to

J5(k&) and N5(k&) respectively. ) We see
that the phase shift 53 is appreciable,
and becomes quite large at high energy,
Then Born approximation is not accurate.

Transitions to an uncoupled grand or-
bital three (denoted by primes) are much
smaller than those found by MFL to un-
coupled grand orbital one. The ratio of
a'

~
= 0.0335 mb to MFL o ~

= 1.44 mb is
2. 3%. The ratio of a ' = 1.11 MeV mb to
MFL co = 21.1 MeV mb Ps 5.3%. The ratio
of cr'(E&)/o(E ) increases with photon
energy E

We now consider whether use of two un-
coupled partial waves for the final state
is a good approximation to FLF's calcula-
tion using two coupled partial waves. Tbe
use of two uncoupled partial waves is
clearly unsatisfactory for finding the in-
tegrated cross section. o + a ' = 22. 2
MeV mb, while FLF find a = 20. 5 MeV mb
in good agreement with 18.9 MeV mb from
the Thomas-Reiche-Kuhn sum rule. FL point
out two results of including a second par-
tial wave: i) transitions to the second
partial wave increase tbe cross section;ii) coupling between the two partial waves
acts like an increased attractive poten-
tial for the dominant partial wave de-
creasing the cross section at energies
past the peak, and decreasing. the inte-
grated cross section. We find that tbe
second effect dominates.

FL used the spin-dependent V potential,
for an uncoupled final state of grand or-
bital one. They used the ground state
Ballot wave functions" for 'He, and
neglected the Coulomb force in calculating
the continuum wave function. We now con-
sider 'H, using Ballot's ground state
wave function for this nucleus, and the
same wave function used by FL. Table I
presents the Born approximation and the

numerical calculation of a(E ). Since we
calculate at the same wave number k as
used by FL, our phase shifts are the same.

The cross sections and moments should be
in reasonable agreement with experimental
values on the three-body break-up of H.
However, we have not found such experi-
ments in the literature; Table I gives
predictions to be checked when experiments
are completed. We study the importance of
coulomb effects on the ground state wave
function by comparing Table I with FL. We
find that the peak cross section of 0.97
mb is unchanged. Below the peak energy,
'H cross sections are smaller by some 10%;
above tbe peak energy, H cross sections
are larger by some 10/0. (We compare cross
sections at the same continuum wave number,
or 0.7 MeV higher gamma ray energy for 'H).

In distinction to the Serber mixture for
the Vx potential used by FL for 'He, we
now use a Wigner-Bartlett mixture. That
is, in Eq. (1.5) we assume V = V
Our purpose is to check against tbe. L L

OP version of the TRK sum rule: i.e. , a
19.9 MeV mb. Table III gives a(E ),
and three moments. We see that oKr value
of 21.0 MeV mb for the integrated cross
section is 5% higher than the TRK value:
the same sort of agreement found by MFL,
for a Volkov potential of pure Wigner ex-
change character.

III. TRANSITIONS TO ISOSPIN ~~2

As we remarked in the introduction, FL
and FLF limited their calculations to
final states of isospin 3/2, to avoid the
problem of two-body break-up which is
difficult to treat in the h. h. formalism.
However, if we treat our calculation as a
mathematical model, which may or may not
be a good approximation to the real world,
we can make a simple change in the earlier
formalism to calculate transitions to
isospin ~~& states.

Table I
'H Photoeffect

E (MeV)
Y

cr(3/2)mb 6 y (degrees)

Volkov (Serber)
Born

c(3/2)mb
Serber

a(3/2)mb

V Potential

8.84 .

9.51
10.61
12 ~ 33
15.02
19.38
26. 99
41.79
76. 92

201.7

0.0066
0.108
0.558
1.35
1.70
1.26
0.625
0.208
0.0345
0.00017

14.4
26. 8
42. 2
60.1
76.4
86.7
89.4
84. 14
69.1
40. 2

0.696 E-3
0.0113
0.0634
0, 204
0, 446
0.702
0.792
0.590
0.196
0, 282 E-2

0.186 E-2
0.0296
0.158
0.458
0.828
0, 974
0.744
0.354
0.083
0.184 E-2

cr &(3/2) = 1.43 mb

co(3/2) = 29.3 MeV mb

c&(3/2) = 783 MeV mb

1,09 mb

38.4 MeV mb

1850 MeV2 mb

1.09 mb

29.7 MeV mb

1140 MeV~ mb
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Table I I
Volkov (Wigner mixture) 'H, L = 3

E (MeV) a (3/2) mb o(3/2) mb 63(degrees)

8.84
9.51

10.61
12.33
15.02
19.38
26. 99
41.79
76.92

201.7

6.75 E-8
7.53 E-6
1.50 E-4
0.00124
0.00572
0.0165
0.0294
0.0254
0.00305
0.00127

o ~
= 0 . 0342 mb

B

op = 1.45 MeV rnb
B

a~ = 113 MeV mb
B

1.24 E-7
1,37 E-5
2.69 E-4
0.00217
0.00955
0.0251
0.0363
0.0178
8, 57 E-. 6
7, 13 E-4

o' i = 0.0335 mb

op' = 1.11 MeV mb

a ~' = 66.7 MeV mb

4 . 3.3
7 . 82

11 . 55
15 .88
2 1 .15
27 .92
37 .22
50 .29
65 .73
66 .65

In 'our mathematical model we truncate
the h. h. expansion of the potential ener-
gy V(g, &&) of the three-nucleon system at
some finite value of grand orbital. MFL
truncated at the lowest term, L = 0; in
our current work with a spin-dependent
potential we truncate at L = 2. FLF work
with two coupled pe.rtial waves, and effec-
tively truncate the potential at L = 4.
Ballot et al. work with coupled partial
waves up to L = 24, and effectively trun-
cate the potential at L = 24. These
truncated potentials disagree at large
hyperradius g with a potential which is
the sum of short-range two body poten-
tials since each hypermultipole decreases
as E-' so any finite sum of hypermulti-
poles will also decrease as g '. But a
short range two-body potential (for example
between the first and second nucleons) will
give a non-zero contribution to the poten-
tial V(g, ~~) for large g, provided that
is smaller than the range of the two-nuc-
leon force. Hence the truncated expansion
is unreliable for large ( and angle (I) very
near zero.

In assessing the justification of an h. h.
expansion of the potential for a specified
problem, we must ask, "Do we get a signif-
icant contribution from the region of
and (I) for which the truncated expansion is
unreliable?" If we want to calculate two-
body N-d break-up following the photoeffect
we must certainly answer, "Yes, so we can-
not use the truncated h. h. expansion". But
if we need the final state wave function
only for moderate values of the hyperradius,
perhaps the truncated h. h. expansion will
be satisfactory. Since we use the final
state wave function in an overlap integral,
the rapid decrease of the ground state wave
function at large hyperradius suppresses
the influence of the final state wave func-
tion at large g, so there is hope that the
truncated expansion will be a good approxi-
mation.

Another reason to hope for some success

Table III
V potential, Signer-Bartlett mixture, 'He

E (MeV)
Y

o(3/2) mb 5 ~ (degrees)

8.13
8.81
9.91ll. 63

14.32
18.68
26. 29
41.09
76.22

201.0

0.
0.
0.
0.l.l.
0.
0.
0.
0.

278 E-2
0424
231
717
36
30
516
0859
390 E-2.
193 E-2

8.3
14.8
23.0
34.4
51.5
73.8
93.1

100.2
92.3
64. 1

0 y
= 1.12 mb

Gp = 21.0 MeV mb

= 454 MeV mb

in this approximation is that we can cal-
culate moments of the cross section a (~~&)

for isospin ~~&, following OP, using
I3allot's ground state wave function and a
truncated potential. Since their wave
function is reliable, as shown by their
calculations of trinucleon form factors,
we can expect to calculate reliable
moments. But we get similar moments from
calculation of the cross section ~(E ), so
the cross section curve cannot be coifiplete-
ly unreasonable.

On the other hand, it is clear that our
truncated expansion must fail in two re-
spects. First, by suppressing two-body
break-up we forbid absorption of photons
by 'He in the region between the threshold
5.5 MeV for two body break-up and the
threshold 7.7 MeV for three-body break-up.
Gorbunov'' finds that the cross section in
this 2. 2 MeV range is indeed small, and
gives a very small contribution to the
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moments o (~I~), so this failure should not
be seriouR in getting the overall picture
of the photoeffect. Second, we will be
unable to calculate the branching of the
isospin ~& state for two-body break-up.

The calculation of the cross section for
electric dipole transitions to isospin ~&

states with grand orbital one uses the FL
formalism, with two minor modifications.
First, when we evaluate the matrix element
for the dipole operator using the spin-
isospin wave functions for mixed symmetry
final states of isospin ~&, Eq. (1.8) for
overlap integral Hog for transitions to

isospin 3/2 is replaced by
B'

o i = J o[uo(6)
+ up(g)/2 ']gu' g(g)dg (3 1)

That is, we change the sign of the mixed
symmetry term uq(g)/2 ~ in the ground state
wave function. u'y(g) is the continuum
radial function for isospin ~&. Equation
(1.9) holds, replacing Hop by H'

p y.
Second, the effective potential U~ (g)

given in Eq. (1.5) and used in (1.4) to
find the continuum wave function uq(g) is
replaced by the new expression

U, '"(-;) = (3«)[V + V. + V. + '.0
+ V ( ") + V ( ) — V~ — V~2

(3.2)

We use U~ (~~) to find u'~(() and 6'~, the phase shift for isospin ~2. Note that all four
two-body states now contribute to the ei'fective potential, unlike the case of isospin 3/2
where we have an isospin symmetric wave function and hence only 1+ and 3- two-body states.

If we consider a Volkov potential of
Wigner exchange character, as used by MFL,
then uq(&) is zero. Further, the effec-
tive potentials U~ and U~ (~) each
reduce to 3 V (&), as used by NFL. For 'a

Volkov-Serber potential, U~ = U~ (~&}

(3/2)[V + V~ ] as used in(1+) (1+)
Section II. In each case, we obtain the
same cross section for final isospin 1/2
or 3/2.

We now, apply equations (3.1) and (3,2)
usinq Ballot's ground state wave functions
for He for the Vx potential. We consider
three different effective potentials for
the final state: i) Born approximation,

(1-& (3-)ii) Berber exchange with V = V
0, iii) Wigner-Bartlett exchange withL L

V = V and V = V . TableL L L L
IV gives our numerical results for the
cross sections i' or isospin 1/2 states for
the three choices. We also present the
phase shifts 6~' for the latter two cases.

The cross sections for Born approxima-
tion are very close to 1.4 times those of
FL, for final isospin 3/2; the factor 1.4
takes accoun't of the change of sign u~(g}
in Eq . (3.1} as compared to (l.8) . The
phase shifts for a Serber mixture are much
larger for isospin 1/2 than those of FL
for isospin 3/2, reaching a maximum of 83'
for the former and only 49' for the lat-
ter. These larger phase shifts are caused
by the more attractive effective potential
U~ (~&), Eq. (3.2) as compared to U~

(1), (1)
of' FL for isospin 3/2. The more attrac-

Table IV

V Potential, T = 'Eke

E (MeV)

Born

o (~~~ ) mb

Serber
0 ~'{degrees) o(', ) b

Wigner-Bartlett
6y'(degrees) 0(~&) mb

8.13
8.81
9.91

11.63
14.32
18.68
26. 29
41.09
76.22

201.0

0, 0013
0.019
0.101
0. 316
0.677
1.04
1.15
0.826
0.246
0.0020

o ~
= 1.61 mb

B

vo = 52. 7 MeV mb
8

12.7
23.0
35.5
50. 3
65.6
77.5
83.2
91.2
69.4
43-. 8

0.0062
0.093
0.472
1."2
1.75
1.46
0.765
0.251
0.039
0.00026

1.60 mb

32.8 MeV mb

12, 9
23.9
39.6
64. 8
97.2

119.8
127.8
124, 3
108.7
74. 1

0.0078
0.128
9.758
2.28
2.61
1.12
0.263
0.030
0.0004
0.00009

1.6 mb

24. 5 MeV mb

oy = 2350 MeV mb
B 2

Sum rule 26. 7 MeV mb

882 MeV~ mb

19.9 MeV mb

414 MeV mb
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tive potential for final isospin ~2 states
causes the photoeffect cross section to
peak at a lower energy for these states,
in qualitative agreement with Gorbunov's
comparison of a(2) for two-body break-up
and a(3) for three-body break-up. Com-
parisons of the results for two different
isospin states for a Wigner-Bartlett
force (Tables III and IV) show a similar
effect of the more attractive potential
for isospin ~& states.

The three values of the moment o
given in Table IV are in good agreement
with each other, and with the OP sum-rule
value. We compare the values of the
integrated cross section for a Wigner-
Bartlett mixture and for a Serber mixture
with those found from the OP calculation.
The value o = 24. 5 MeV mb for the former
is 23% higher than the Thomas-Reiche-Kuhn
value of 19.9 MeV mb. For the Serber mix-
ture, the OP equation gives o = 26 7 MeV
mb, so our 32.8 MeV mb is 22% higher.

Combining calculatj. ons of FI and column
4 of this table gives us an h. h. . calcula-
tion of the total cross section for the

He photoeffect, for a V potential with a
Serber mixture. Figure 1 compares our
calculated curve (solid) with Gorbunov's''
experimenta1 total cross section, which is
the sum of two-body and three-body break-
up. We also show (dotted) our result for
a Born approximation. The agreement be-
tween calculations and experiment is only
fair. Our calculations for the V poten-

tial gives too little cross section near
threshold, too high a cross section near
the .peak (12 to 26 MeV) and too low a
cross section above 50 MeV. Our previous
work using coupled channels for isospin
3/2 (FLF) suggests that a coupled channel
calculation for isospin ~& would improve
the agreement with experiment both at low
energy and above 50 MeV.

We also compare calculated and experi-
mental values for the bremsstrahlung
weighted and integrated total cross sec-
tions. The three calculated values for
a ~ are in good agreement with the experi-
mental a'-q as they must be, since all
agree with the rms charge radius of 'He
as determined by electron scattering. The
value of o for the V potential of 61.8
MeV mb based on the cross sections of0

Table IV is 11% higher than the OP, sum
rule value of 55.5 MeV mb. Neither is in
good agreement with Gorbunov's experi-
mental value of 70 + MeV mb.

IV. DISCTJSSION

In the previous two sections we have
applied truncated expansions in h. h. to
calculate the trinucleon photoeffect to
final isospin 3/2 a.nd 1/2 respectively.

Our work in Section II and Tables I, II
and III used the standard formalism for
isospin 3/2 of FL applied to several new
examples. Table I gives the 'H photoeffect
for the Volkov spin-independent potential,

0 '
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20
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40

FIG. l. Total cross section for the -He photoeffect in mb vs photon energy in MeV. The
solid curve shows El calculations summed over final isospin states, for a V
potential, zero in odd-parity two-body states. The dashed curve shows Born
approximation. The points with statistical errors show Gorbunov s measurements,
summed for two-body and three-body break-up.



l8 CROSS SECTION S FOR TRINUCI, EON PHOTOEFFECT

with his original Serber exchange mixture,
and also the spin-dependent Vx potential,
with the same Serber mixture. Bath calcu-
lations are cheeked against the OP sum
rules. The former disagrees with the OP
integrated cross section by only 4'j&.
This excellent agreement is similar to
that found by MFL for a Volkov potential
of Wigner exchange character. The cross
sections for the V potential given in
Table I are predictions to be cheeked
against future experiments on three-body
break-up of 'H. We note that they are
close ta the FL results for 'He for the
same nuclear potential: Coulomb effects on
the ground state wave function are small.

Table II shows that cross sections to
grand orbital three are small, as antici-
pated. The use of uncoupled grand orbi-
tals is a poor approximation: indeed the
use of uncoupled grand orbitals one and
three is in general farther from the
coupled FLF calculation than the cross
sections of MFL for a. single uncoupled
grand orbital. At high energies where
transitions to grand orbital 3 are appre-
ciable mare work should be done ta study
the accuracy of truncation at L = 3, or
L = 5, or still 'higher grand orbitals.

Table III shows that the integrated cross
section for the spin-dependent potential
is within 5% of the TRK results appropri-
ate to the Wigner-Bartlett mixture
assumed ~

In Section III we treat final isospin ~~~,

truncating the h. h. expansion of the po-
tential energy of 'He at grand orbital
two and the h. h. expansion of the wave
function at the single term with, grand
orbital one. We present the new expres-
sions for the effective potential and for
the overlap integral. For a. spin inde-
pendent potential {with or without
Majorana exchange) the photoeffect cross
sections are independent af the isospin
af the final state. For a Volkav poten-
tial with pure Wigner exchange, MFL pre-
sented the total cross section, summed
over final isospin. In this paper we use

a Volkov potential with Serber exchange.
The cross sections given in Tab"e I, mul-
tiplied by two, give the total cross sec-
tion. The peak is broader and not as high
as for a, Wigner mixture, but is still 80%
higher than Gorbunov's peak experimental
value for the total cross section, summed
over both two-body and three-body break-up.

In Table IV we presented cross sections
o(-'~) for isospin ~~& for the Vx potential.
The results for the integrated cross po-
tential cross sections are. not in close
agreement with the approximate OP sum
rules for this case. For a Serber mixture,
our result is 24% above the sum rule; and
for a pure Wigner-Bartlett mixture we are
23% above the TRK value. Presumably the
stronger attractive potential in isospin
makes the truncation of the fina. l wave
function ta a single term less accurate
than for isospin 3/2.

For the Vx potential with a Serber mix-
ture, the cross sectian curve o(~&) (Table
IV) is narrower and has a higher peak than
that found by FL for c|(3/2). The sum o
o(~~~} + v(3/2} is in better agreement wi$b
Gorbunov ' s total cross sect ion than our
calculated ot for the Volkov potential
(Serber mixture). For instance the 80%
discrepancy for the peak cross sectian is
reduced to 35%. But the fit between our
calculated 0 and Gorbunov's values,
shown in Fig. 1, is clearly not satisfac-
tory.

We conclude that our calculation far
final isospin Q is in an inconclusive
state. A more accurate calculation using
coupled h. h. may well improve agreement
with experiment. In any event, our calcu-
lation of ot even with a single h. h.
clearly represents an improvement over
Born approximation. But, as noted above,
any truncated ealcula, tian will fail in
the energy range between the thresholds
for two-body and three-body break-up.

We are grateful to M. Fabre de la
Ripelle for providing the ground state
wave functions used in our calculation.
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