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Semiempirical nuclear level density formula with shell effects
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A new semiempirical nuclear level density formula is proposed, which takes into account the influence of
nuclear shell structure on level densities and the excitation energy dependence of shell effects. The ground
state shell and pairing energies enter directly into this formula, which involves three mass-independent
parameters characterizing the average single-particle level density near the Fermi level and the wavelength of
shell oscillations. The present formulation is shown not only to give a good fit to the experimental data on
neutron resonance spacings of spherical nuclei, but also to provide a reliable extrapolation to higher
excitation energies. The present analysis has also brought out the need to include the dependence of level
density parameter a on the surface to volume ratio of nuclei. The analysis of the data for deformed nuclei
with the present formulation does not indicate an enhancement of the level densities of the magnitude
suggestive of a rotation degree of freedom completely decoupled from intrinsic degrees at the excitation
energy equal to neutron binding energies.

NUCLEAR STRUCTURE Nuclear level densities, semiempirical formula,
dependence on surface to volume ratio, shell effects, spherical, deformed

nuclei.

I. INTRODUCTION

Nuclear level densities play a central role in any
statistical analysis of nuclear reactions. Experi-
mental information on nuclear level densities as
obtained from analysis of neutron and charged par-
ticle resonances, inelastic scattering, particle
evaporation spectra, etc. , extend neither over a
wide range of excitation energies nor over all nu-
cleon numbers over the Periodic Table. In view
of this, in any practical calculation, one often re-
sorts to theoretical estimates of nuclear level den-
sities. Two different approaches have been em-
ployed in the past for theoretical estimates of nu-
clear level densities. In the first approach, one
retains the traditional Bethe expression' for level
density and the level density parameter a is ob-
tained Q.om available experimental data by suit-
able interpolation and extrapolation techniques as,
for instance, given by Newton' and by Gilbert and
Cameron. ' However, since the constants of these
formulas are determined from experimental data
confined to a narrow range of excitation energies,
extrapolation of these formulas to other regions of
excitation energy is subject to large errors. It is
in fact now well known on the basis of numerical
calculations starting from a shelL model single-
particle energy level scheme that the Bethe form.
of the level density formula cannot satisfactorily
describe the excitation energy dependence of shell
effects on nuclear level density by treating a as an
energy independent free parameter. In particular,
washing out of shell effects on the thermodynamic

properties of excited nuclei is a feature, which is now
well established but which is not incorporated prop-
erly in the existing level density formulas.

In the second and the more recent approach' one
numerically computes the level density starting
from a set of shell model single-particle energy
level scheme. This approach takes into account
in a natural way the influence of nuclear shell and
pairing effects on the level density and its washing
out with excitation energy and has found a wider
use in the last few years. There exist, however,
a few inherent drawbacks in this approach also.
First is, of course, the requirement of detailed
shell model calculations for all nuclei, resulting
in a considerable computational effort. While this,
in itself, is not a big constraint, because of a num-
ber of single-particle level schemes currently
available in literature and easy accessibility of
fast computers, this is a step which one will like
to gladly dispense with for routine calculations.
The second drawback of this procedure is more
intrinsic. In any shell model calculation, the quan-
tity on which the calculated level density crucially
depends is the density of single-particle states
near the Fermi level. This is not a quantity which
is crucially adjusted in any calculation of shell
model energy level scheme. In fact, differences
to the extent of 10-20% are known to exist between
the calculated average single-particle density near
the Fermi level corresponding to various level
schemes currently being used in literature for the
calculation of nuclear shell correction energies.
Even the ground state shell correction energies
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evaluated from different single-particle level
schemes are found to be appreciably different. It
is therefore necessary to adopt a normalization
procedure which ensures that the shell-independent
part of the calculated level densities are consis-
tent with a liquid drop model (LDM) estimate and
the shell-dependent part is consistent with experi-
mental shell correction energies. In the absence
of such a normalization, the calculated level den-
sities from different single-particle level schemes
are expected to exhibit appreciable differences, as
for example, found by Huizenga et al.' It may also
be pointed out here that normalization to the LDM
values is a well established procedure in deforma-
tion potential energy calculations and the need for
such a normalization in microscopic calculations
of nuclear moments of inertia parameters from
shell model single-particle level scheme has also
been emphasized earlier. Another objection which
can be raised' against the numerical calculations of
level densities from shell model single-particle
level scheme is that these calculations of level
densities are carried out in the independent parti-
cle model approximation. Some earlier studies
have in fact shown' that if one takes into consider-
ation that the shell model potential is an effective
potential generated by two body interactions the
calculated level densities as a function of excitation
energy differ significantly from those calculated
in the independent particle approximation.

In the present work we propose a method of cal-
culating nuclear level densities in a way which
avoids the above mentioned inherent uncertainties
of the numerical calculations. Furthermore, this
method while retaining the simplicity of the earlier
semiempirical methods does not have limitations of
the earlier simpler prescriptions, since it takes
into account nuclear shell effects in a realistic
manner.

II. THEORETICAL OUTLINE OF THE PRESENT
APPROACH

It is known that to a good degree of approxima-
tion, the spin-dependent level density p(E„,I) is
related to the state density W(E„)by the following
expression:

(2f + 1) W(E„) -I (I + 1)
2V 2w g'(E„) 2g'(E„)

where o'(E„)is spin cut-off factor. The state den-
sity W(E„)is mainly determined by the entropy
S(E„)of the nucleus by the following relation:

W(E, ) =
2 3y2 iy~ =C exp[S(E„)].exp [S(E„)]

For a model single-particle scheme with equi-

distant single-particle states, the following well
known relations hold:

S = 2(aE„)'~',

E~ =AT

a = (v'/6) g„
D = (v'/l2) g 'T'

where g, is density of the single-particle states.
Further, the spin cutoff factor g' is related to

the moment of inertia of the nucleus by the rela-
tion

2 JT
(4)

lt is, however, known' that if Eqs. (1)-(4) of the
equidistant model are used to fit the experimental
data on the neutron resonance spacings, the pa-
rameter a fluctuates systematically in accordance
with the known nuclear shell effects. Once the
values of a as a function of mass number are em-
pirically determined in this way, it may be pos-
sible to estimate, by a suitable interpolation of a
values the neutron resonance spacing in unknown
cases. However, since the shell dependence of the
thermodynamic behavior of a nucleus is excitation
energy dependent, the shell-dependent values of a
applicable for excitation energies at neutron reso-
nances cannot be used for the calculation of level
densities at other excitation energies.

In the present formulation for the calculation of
shell dependent level densities, the parameter a
which enters into the expressions for entropy and
excitation energy is a sheQ-independent parameter
equal to that of the equivalent liquid-drop model
nucleus; and the shell effects on the level density
enter through the ground state shell correction
energy and the wave length of shell oscillations
as described below.

It is known that the single-particle states in nu-
clei exhibit appreciable fluctuations from the equi-
distant level scheme and these fluctuations are the
source of the observed ghe?1 effects in nuclear
masses and other observables. We first investi-
gate the influence of these fluctuations on the nu-
clear level densities. Let us consider only one
kind of nucleons, say neutrons. Let G(e) =+,6(e
—e,.) represent the single-particle density for these
nucleons, where q,. is a suitable set of shell states.
In the spirit of the macroscopic-microscopic ap-
proach'" one can write G(q) as

G(e) =g(e) +5g(c),
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where g(e) represents the overall smooth compo-
nent of the single-particle level density and 6g(e)
represents the local fluctuation. For a small range
of energies around the Fermi energy, g(e) can be
well approximated by a constant value g,. The
fluctuation 5g(e} can be represented by a Fourier
series expansion as follows:

5g(g) = Qg„cos(m(de —(t)„).

The corresponding expression for the excitation
energy is

E» =
6 17goT +Q 2 2 cos(m(dp, —Q~)Sl Q7

m'7)'(d'T' cosh(m)) (d T)X —1 0

sinh'(m)((d T)

The' temperature dependence of the entropy and ex-
citation energy calculated numerically starting
from a single-particle scheme has been analyzed
earlier" with regard to Eqs. (6) and, (I). It was
found to be a good approximation to neglect the
terms with m & I in Eqs. (6) and (7), since the con-
tribution of the fundamental term is the most pre-
dominant. If one also assumes that in the range of
temperatures of interest in nuclear reaction anal-
ysis the effect of the weak temperature dependence
of the chemical potential p, is negligible on the cal-
culation of entropy and excitation energy and p, can
be treated as energy independent in Eqs. (6) and (7),
one can write Eqs. (6) and (7) as follows:

m (d T'cosh(m(dT) w(dT

» sic» (crcT) src»(srcr))'

(8)

where

w2(d'T cosh(w(d T)
sinh'(7((d T) (9)

A, = (g, /(d') cos((d p —(j),) .
It follows from Eqs. (8} and (9), that in the limit

of large value of T

An analytical expression for the entropy as a func-
tion of the temperature for such a level scheme
has been obtained by Gilbert" and is given below:

g cos(m(d p, —p„)S =3 Z goT+
tÃ Q) T

X (m (d v T cosh(mw(dT)
sinh'(m m(d T)

MKQ) T
sin(r(rs crcT) )

and

S =—', m' goT

E„=—, &'g T -A, .1 2

7T (d T cosh(7)'(d T)

If one follows the usual assumption based on Fermi
gas model then g, and, therefore, a is proportion-
al to the mass numberA of the nucleus, that is,
a =A&A. The constant ~, which is the fundamental
frequency of oscillation of 5g(e), is characteristic
of the major shell spacing A. , in nuclei such that
(d =.2w/X. It is also known that A, =k/A. ' ', where k

is expected to be around 30 to 40 MeV. Hence one
can write (d =(dQ'~' where (d, =2m/)), is a mass in-
dependent parameter.

Although the preexponential factor C in Eq. (3)
can also be modified for shell effects in the same
way as has been done above for S and E„,it is not
important since the level densities are predomi-
nantly determined by the entropy S. For the sake
of simplicity, the value of C given by Eq. (3) can,
therefore, be used for the calculations of level
densities as has been done in the present work. It

Thus, the quantity A, turns out to be the difference
between the excitation energy of an equivalent
smooth nucleus (i.e., without shell effects) and
that of the actual nucleus in the asymptotic limit
of high temperatures. The quantity A, is, there-
fore, also equal to the difference in the ground
state energies of the actual nucleus and of the
corresponding smooth system' and, hence, A,
is to be identified as the ground state shell cor-
rection energy

The validity of the simplifying assumptions lead-
ing to Eqs. (8) and (9) have been examined by a
comparison of the predictions of these equations
with the exact numerical calculations. It is shown
in the Appendix I that the simplifying assumptions
are justified. Although Eqs. (8) and (9) were ob-
tained for one component system, the same equa-
tions hold for a two component system like a nu-
cleus provided S, E„,g„and~, refer to the nu-
cleus as a whole, and the parameter & refer to
a suitable average for the neutron and proton com-
ponents. The quantity g, is related to the LDM
value of the level density parameter a as

6 71 g0 ~
2

Equations (8) and (9) can therefore be written as

c rc'T hc(cs»r) rccrc)rS =2aT+
T sinh2(v(dT) sinh()((d T)

(10)
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is possible to include the shell dependence of the
spin cut-off factor o' in an approximate way by the
following empirical relation:

0.150

0.145
0.6

+ I.DM
0'

I.DM

JRIGID 2S
0 (12)

0.140

X
0.135

In the above expression the liquid-drop model value
of the spin cut-off parameter p I DM' is multiplied by
the ratio of single-particle level density near the
Fermi level of the actual system and that of the
equivalent smooth system to take into consideration
the shell effects on the values of p'. It may be
noted that Eq. (12) meets the requirement that in
the asymptotic limit of high exciation energies, 0'
should become equal to aI.DM'.

Equations (10) and (11) form the basis of the
present calculations of the level density versus
excitation energy, in which the preexponential
factors of Eqs. (1) and (2) are calculated with Eqs.
(12) and (3), respectively. The effect of nucleon
pairing is accounted by substitution of an effective
excitation energy for the true excitation energy:
E„'=g„-~~,where ~~ is equal to the pairing ener-
gy values of Gilbert and Cameron. '

0130 I I I I I I l

O.15 0.16 0.17 O.18 0.19 P.20 0.21 0.22

~, C~~V )

FIG. 1. Contour plot of the mean square deviation
o2 =P (lnD&/D, »} /N for about 100 spherical nuclei as
a function n and cop The best fits are obtained with a
=0.14 and cop =0.185.

and the LDM binding energy obtained with param-
eters of Seeger and Howard. " The level spacings
were calculated for a range of values of the pa-
rameters ~ and &0 to determine the values for, the
best fit to the experimental level spacings deduced
from neutron resonance studies. A value of x, =1.2
fm was used for the calculation of JRIGtD. The level
spacings in eV for one parity .is defined by

2x10'
p(Z„,I, —,) +p(Z„I,+,)

III. COMPARISON WITH EXPERIMENTAL DATA
AND DISCUSSION

2x106
for Ip 0. (13)

A calculation of level densities on the basis of
Eqs. (10) and (11) requires that the ground state
shell correction energies of nuclei be known. The
two unknown mass-independent parameters ~ and
(4) 0 can then be determined by fitting the calculated
level densities to the available experimental data.
In the present calculations, "experimental" shell
correction energies for different nuclei were sub-
stituted for ~,. These were obtained as the differ-
ences between the experimental binding energy

The experimental level spacings D,„were taken
from the compilations of Lynn, ' Baba,"and Dilg
et al." Since for several cases there is consider-
able scatter in the available values of D,„,the
most favorable value of D,

„

for any nucleus was
used in the least square fitting to theory.

A. Spherical nuclei

Figure 1 shows a contour plot of the calculated
mean square deviation, defined as 5~„(inD~
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[
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FIG. 2. Plot of D,h/D, „„versusthe mass number A. Dth was calculated with the expression a =eA; and a =0.14 and

cop =0.185. The value of D,» used is the most favorable value out of the three compilations (Refs. 14—16).
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—lnD, „~)/N, where N is number of nuclei included
in the fittings. The mean square deviations are
plotted in this figure against the parameters ~ and
(4) p and about 100 spheric al nuc le i were inc luded in
the fitting. It is seen that a minimum mean square
deviation is obtained for jy = 0.14 1VIeV ' and ~p
=0.185 MeV '. This value of &p corresponds to a
major shell spacing of about 34.5/A'~' MeV in good
agreement with the vagus used in literature. "
The above vajtue of ~ which corresponds to a value
of a equal top /V, is close to the values of a gen-

erally used in the literature. ' Figure 2 shows a
plot of D,„/D,„~for about 100 spherical nuclei
based on the above values of Q' and Q)p It is seen
that a major fraction of the points are within the
range of 0.5 ~ D,„/D,„,c2 and no significant system-
atic structure due to nuclear shell effects is evi-
dent, except in the region very close to the doubly
magic nucleus ' 'Pb where some systematic dis-
crepancy seem to be present. It is, however, to
be noted that this is precisely the mass region in
which nuclei have large shell correction energies,

QP

SIGHER)CAL NUCLEI

&0

10

50 100 150

MASS NUMBER A

200 250

FIG. 3. Plot of the experimental value of a versus mass number A for spherical nuclei, deduced from the data as
described in the text. The continuous line corresponds to the straight line I =0.14A.
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Table I lists the calculated level spacings along
with the available experimental data. Figure 5

shows a plot of D,„/D,„,in which D,„arecalculated
with the values of a obtained from Eq. (14). As
expected, the residual systematics trend seen in

Fig. 2 is not evident if a bvo-parameter represen-
tation for g is used to include nuclear surface ef-
fects. The above analysis thus brings out the need
for the inclusion of finite size effects in the level
density calcu1ations.

TABLE I. Calculated and experimental level spacings of spherical nuclei.

Compound
nucleus

Target E„
spin, parity (Me V) (MeV) ~ (Me V)

D,„,(eV)
d

&u
(eV)

4fCa

'4Ca

45Ca

p+

2

p+

8 ~ 56

11.16

1.50

2.90

1.50

2.5

2.4

2.0

49 000

50 000

50000 45 000 27 050

2 900 3 300 2 460

55 000 33 000 34 555

46SC
2

8.92 0.0 2.1 1 600 1100 1411
4'Ti

48Ti

48Ti

p+

5~
2

0+

8.98

11.67

8.24

11.07

1.7
3.0
1.7

3.2

2.2

1.3
0.7

-0.6

30 000

15 000

2 820 1 600- 1 720

20 000 25 000 31 081

3 600 6 000 6 050

45 000 22 000 12 550

0+ 6.48 1.7 -0.8 120 000 18 000 191270

52V

5f( r
53Cr

2

p+

0+

7.38

9,44

8.11

0.0

1.4

1.4

-0.8
0.2

-0.9

3 600

16 500

44 000.

4 390 4 900 7 478

19 000 21 000 11 985

46 000 47 000 43 430

54C

"Mn
2

2

9.85

7.37

2.8

0.0 2 100

3 200

2 970

5 700 7 168

1 900 4 000

55Fe

"Fe
58Fe

+

0+

f a

2

9.55

7.97

10.05

1.4
1.4
2.9

-0.8
-0.3

25 000

29 000

21 000 20 000 17 000

21 000 25 000 30 610

5 900 1 500 6 766

60Co
2

7.55 0.0 -0.7 960 1 530 1 300 2 316

6fNi

0+

0+

9.3

8.12

1.4

1.4
-1.5
-0.7

27 000

23 000

21 000 22 000 13 005

21 000 17 000 16 934

Ni

64Cu

"Cu

2

3 &

2

2

p+

10.6

7.93

7.08

7.06

2.8

0.0

0.0

-0.6
—0.1

0.3

1.5

1 200

2 000

5 000

2 300

-1 060

1 170

5 600

1400 1 728

580 946

1' 000 1 185

6 000 5 370

68Zn

"Ga
? Ga

"Ge

0+

2

2

p+

6.6

7.66

6.52

7.43

0.0

0.0

1.4

1.4
1.0
1.5
2.1

340

170

1 700

320

190

320

370

303

562

2 000 1 330 2460

20 000 10 000 7 200

?3Ge

?4Ge

"Ge

p+

p+

6.8

10.2

6.5

1.4
2.8

1.4

2.0

1.9
2100 .

8 500

3 900

77

8 500

1 550 3 990

123

3 900 7 384

?Ge

"As

p+

2

6.03

7.33

1.4
0.0

1.3
] 4

8 000 8 000 4 200 9 330

186

"Sc 0+ 8.05 1.4 2.3 250 200 370 846
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TABL E I. (Continued)

Compound
nucleus

Target E„
spin, parity (MeV) (Me&) (MeV) " D,„,(eV)

(eV)

77Se

YsSe

78Se

81Se

83Se

p+

f ~

2

p+

p+

p+

7.42

10.5

6.99

6.71

5.94

1.4
2.9

1.4
1.4

1.4

1.6
2.1

2.0

0.6

-0.7

1 200

100

3 700

4300

7 000

1 200

4 500

1 600

6 900

700 1 910

120 143

1 000 2 000

1 200 4400

6 700 22400

80Br

82Br

86Rb

88Rb

85Sr

3
2

2

5 ~

2
W

2

0+

7.88

8.65

6.08

8.53

0.0

0.0

0.0

0.0

1.2

2.2

0.6

-1.3
-2.0

1.2

57

51

130

1 200

61

52

1 100

1 800

350

60

80

130

400

113

1430

260

88S

p+ 8.43

11.11

1.2

2.5

-1.1
-2.5

2 100

210 250 105

.1 000 1 200

"Sr

Si zr
82zr

85Zr

86Mo

87Mo

0+

1
2

0+

5+
2

p+

p+

5y
2

p+

6.51

6.87

7.24

8.64

6.78

6.48

9.15

6.8

1.2

1.0
1.6

1.0

1.0
1.9
1.2

-1.9
-2.5

-2.3
-1.8
-0.9
-0.2
-0.4
+ 0.6

1 000 1 600

4 500 3300

3 000 1 270

5 000 4 000

250 110 251

1 2 00 3400

2400 3 300

2 500 3 000

2400 2 150

100

1 200

102

290

65

830

55 000 12 000 12 000 10 300

ssMo

1 00Tc

1008

102Ru

104Rb

106Pd

108A g

110Ag

112C

5+
2

2

5y
2

5+
2

2

5+
2

1+
2

1+
2

+

2

8 ~ 64

6.59

9.67

9.22

7.0

9.56

7.27

6.8

9 4

2.4

0.0

2.5

2.5

0.0

2.8

0.0

0.0

2.7

1.2
1.4
0.5

1.6
0.8

1.3
0.4

0.7

170

24

120

26

20P

14 50

19

34

16 15

19 10

13

80

18

23

26

25

41

12

29

33

22

"'Cd

14Cd

i..f 6I

113Sn

"'Sn
116Sn

if 7Sn

118Sn

11S.S

p+

1 +

2

9+
2

g+
2

p+

p+

f+
2

0+

1+
2

p+

6.54

9.04

7.31

6.78

7.74

7.53

9.57

6.94

9.33

6.48

1.4
2.7

0.0

0.0

1.3

1.3
2.6

1.3
2.6

1.3

0.9

0.9

0.2

0.3

0.0

-0.2
0.0

-0.2
-0.1
—0.3

200

6.5

6.7

108

150

50

180

25

180

200

7.1

9.5

140

320

50

250,

65

730

198

20

300

250

45

600

360

35

6.1

9.1

140

190

29

340

35

620
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TABLE I. (Continued)

Compound
nucleus

Target E„
spin, parity (MeV) (MeV) (MeV)

D,„,(eV)
d

D&

(eV)

120sn

f 28'

132xe

'36Xe

f 34Cs

"'Ba
f37Ba

f +

2

5+
2

7+
2

3+
2

3+
2

0+

9.10

6.83

6.46

8.94

7.99

6.89

9.11

6.9

0.0

0.0

2.0

1.6

2.2

0.6

—2.0

-2.9
-3.3
-7.3
-3.3
-3.5
-4.7

30

31

20

51

8 000

21.

500

21

35

3 800

70

14

710

20

36

20

31

600 1 110

139Ba

140La

141Ce

143Ce

142pr

144Nd

146Nd

'4'pm

'"Sm
192-r

106pt

200Hg

201Hg

202Hg

2 04Tl

206Tl

207pb

208pb

3 +

2

0+

?+
2

p+

p+

5+
2

7

2

7 &

2

7+
2

2

+

2

3 +

2

f «

2

1
2

0+

2

1+
2

f+
2

p+

0+

8.61

4.82

5.17

5.43

5.18

5.85

' 7.82

7.57

5.9

8 ' 14

6.20

6.07

7.92

8.03

6.22

7.76

6.65

6.54

7.11

4.84

1.7

0.0

1.2
1.2

2.,0

2.2

0.0

1.9

1.6
1.3

0.7

1.6
0.0

0.0

0.8

0.8

—1.9

-3.1
-2.0

-0.5

-0.9

1 000

51

5.2

5.1

-6.5
-9.0

9 4

-9.9

8.2

18

70

2 200

100

-13.1 2 000

13.1 10 000

-13.6
-12.7

-5.7 . 200

—4.5 10 000

—3.9
—3.2

460 230 110

9 600 10 000 21 000

110 260 241

3 000

1 000

3 000 3 700

1 000 2 300

84

19

7.9

3.2

8.5

19

90

7.3

2.8

8.0

12

52.7

20.8

15.3

8.4

4 5

5.9

11.6

17.6

56

1 300 1 300 1 180

110

2 200

90

2 000

132

290

19 000 4 000 930

24 000 50 000 . 3 700

110000 105 000 152 000

Ground state pairing energy taken from Ref. 3.
Experimental ground state shell correction energy (see text).

'Data compiled by Lynn (Ref. 14).
"Data compiled by Baba (Ref. 15).

Data compiled by Dilg et aE. (Ref. 16).

It should be mentioned that if one considers in-
dividual neutron and proton components, the ex-
pression for a will also have an additional param-
eter characterizing isospin. However, with the
present experimental data confined to nuclei in the
vicinity of P-stability line, and the experimental
uncertainties present in the data, our investigations
did not provide any definite evidence for the need
for inclusion of such a term in the expression for

a. Therefore although no evidence on isospin de-
pendence of a could be deduced, the present anal-
ysis has presented evidence that a two-parameter
representation for g to include both the volume and
surface dependence provides a better fit to the ex-
perimental data on neutron resonances.

The proposed two-parameter form for g has
some other interesting implications also. First,
this would imply that extrapolations to unknown
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FIG. 6. Plot of D,h/D p
for deformed nuclei: (a) with a =0.14A and coo=0.185, (b) with a =0.176A(1 —1.0A~ 3&s)

and coo =0.185.

regions of mass numbers, or deformations based
on the form a =~ can have considerable errors.
For instance, the LDM level density parameter
for the fission saddle point shape is expected to be
smaller by about 5% as compared to that for the
spherical shape —a fact which is important to take
into account for R reliable analysis of the fission
excitation functions. The evidence for such a de-
crease has also been seen" in the analysis of fis-
sion excitation function for the ~ particle induced
fission of "'Pb. Similarly, a reliable extrapola-
tion of g values to higher mass numbers, particu-
larly to the region of superheavy nuclei will require
that the two-parameter form of g proposed here
should be used.

%e have also calculated level densities versus
excitation energy for a few cases with the present
formulation. The results for two typical cases of
MFe and "Mn compound nuclei are shown in Fig. 7
along with the available experimental data. " It
can be seen that the present calculations provide
a satisfactory fit to the experimental data at higher
excitation energies as well without the use of any
free parameters. At excitation energies lower
than that corresponding to neutron binding energies,
the observed small deviation particularly for the
case of MFe is understandable, since at these en-
ergies pairing effects cannot be taken into account
-simply by subtraction of &~ from the excitation en-
ergy E„.

B. Deformed nuclei

The present calculations were also applied to de-
formed nuclei, for which level spacing data ob-
tained from neutron resonance studies have also
been compiled by Lynn, ' Baba, "and Dilg et al."
'The level spacings of these nuclei, were calculated
on the basis of Eq. (1) with both one- and two.-
parameter representation for g and with the same
values of the parameter &0 as determined from the
analysis of spherical nuclei. The spin-cut-off fac-
tor o' was calculated on the basis of Eci. (12), ex-
cept that here the moment of inertia refers to the
value parallel to the nuclear symmetry axis. As
described in Appendix I, the fitting of the numeri-
cal calculation results with the functional forms of
Egs. (10) and (11) did not show a significant vari-
ation of the effective value. of ~, with nuclear
shapes up to the ground state deformed shapes.
Therefore, the same value of ~0 as deduced from
analysis of spherical nuclei was used in the cal-
culations for deformed nuclei. In the case of two-
parameter representation for a, the values of B,
corresponding to known ground state deforma-
tions" were substituted, since it is known that at
excitation energies of 6-10 MeV the nuclear de-
formation coincides with that of the ground state. '

The calculated values were compared with the
experimental values to look for any significant en-
hancement of the level densities of deformed nuclei
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TABLE II. Calculated and experimental level spacings for deformed nuclei.

Compound
nucleus

Target E„
spin, parity (MeV) (MeV) (MeV)

a,„,(eV)
d

&th
(eV)

'"Gd

'"Gd

162Dy

163Dy

164Dy

163Er
165Er

167Fr
168Er

169Er

169gb

177gb

Hf

179Hf

181Hf

'"Ta
is4W

185W

s7W

is6Re

Re

1880s

190Os

33Th

233U

2'4U

236V

237V

3 w

2

p+

3
2

5+
2

p+

5 aa

2

. p+

p+

p+

7+
2

p+

o+

o+

p+

p+

p+

7+
2

1 ~

2

0+

p+

5+
2

5+
2

1-
2

p+

0+

5+
2

p+

7

2

p+

8.53

6.37

7.93

8.2

6.27

7.66

6.91

6.66

6.44

7.77

6.00

6.87

5.56

6.38

6.1

5.70

6.06

7.41

5.76

5.47

6.18

5.87

7.99

7.79

4.79

5.74

6.84

5.31

6.55

5.12

1.95

1.00

2.00

1.96

0.91

1.97

0.92

0.92

0.92

1.99

0.92

1.00

1.00

2.14

1.23

123

1.68

1.59

0.8

0.81

1.45

0.81

1.39

0.81

—2.0

-2.4
-2.4
-2.7
-3.1
-3.0
-1.9
-2.7
-3.5
-3.4
-4.0

-3.9
-4.0
-4.2
-5.0
-4.1

-4.2

-4.3
-4.7
-4.9
-4.7
-5.1
-3.0
-4.2
-4.1
-4.7
-3.9
-3.7

2.1

21
130

11.0

15

150

17.5

7.6

13

1.9

2.6

9.6

7.1

100

20

250

41

55

140

16

93

3.2

6.4

12.4

14.2

0.99.

18

0.67

27

2.0 3.7

2.9 4.7

72 126.5

9.6

6.9

22

4.1

13.1

20.3

45.8

99.4

9.8

95 260.8

35.9

185 566.0

32 113.0

64 178.4

125 381.0

12 43.9

89 344.6

123 582.6

4.8

8.3

9.1

16.7

4.2

0.61

12.3

0.53

15.4

52.0

15.2

0.94

28.3

1.0

34.2

47 112.0

6.0

39V

39V

240pu

241pu

'4'I u

p+

p+

1+
2

p+

5y
2

4.82

5.66

5.24

0.81

0.69

1,24

69

1 ~ 26

--3.3
-4.7
-4.5

—4.3
-3.10

17.7 18.1

16

2.3

14

20.8

11.7

2.4

12.5

1.2

47.0

15.4

3.05

26.2

1.4

~Ground state pairing energy taken from Ref. 3.
Experimental ground state shell correction energy (see text).
Data compiled by Lynn (Ref. 14).
Data compiled by Baba (Ref. 15).

'Data compiled by Dilg et al. (Ref. 16).
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over the corresponding single-particle values cal-
culated on the basis of Eq. (1). Such an enhance-
ment, has been indicated by an earlier analysis. '
It has been pointed out' that this enhancement can
arise as a result of additional rotational degrees
of freedom available to deformed nuclei'if one
assumes that rotational degrees are totally de-
coupled from the intrinsic excitation. On the fur-
ther assumption that the rotational energy is small
as compared to the total excitation energy, it has
been shown' that the enhancement factor is nearly
equal to g~'=J~T/5', where j~ is the moment of
inertia about an axis perpendicular to nuclear sym-
metry axis. For mass numbers ranging from 150
to 250, rigid body moment of inertia. and excitation
energy equal to the neutron binding energy, 0~'
ranges from 35 to 65. Figures 6(a) and 6(b) show
the present results on the ratio D,„/D,

„

for about
35 deformed nuclei with one- and bvo-parameter
representation for a, respectively. %e list in
Table II the calculated level spacings with the bvo-
parameter representation for a. It is seen that
the calculated level spacings are systematically
higher as compared with experimental values but
only by an average factor of about 2 irrespective
of the form chosen for a. Further, it was found
that this factor of 2 has an uncertainty of almost
another factor 2 in either direction, with a change
of +20% in the value of &o,. The present analysis,
therefore, does not indicate an enhancement of the
magnitude p~'. This may imply that the assump-
tion of totally decoupled rotational degree is not
valid at these excitation energies, leading to a
lesser enhancement factor than indicated by the
analysis of Huizenga et al. The good fit obtained
by them for deformed nuclei with the inclusion of
rotational enhancement can be traced to the fact
that the single-particle scheme of Nilsson et al."
used by them for deformed nuclei has about 15%
lower value of the single-particle level density g,
compared with the level scheme of Seeger and
Perisho" used by them for spherical nuclei. In
fact, it can be seen from Table V of Huizenga et
al.' that the level densities calculated with the
levels of Nilsson et al."are systematically lower
than those calculated with the levels of Seeger and
Perisho. " If the single-particles level scheme of
Nilsson et al. ' is, therefore, used for calcula-
tions, the ratio Dqh/D, „willbe systematically
overestimated almost by a factor of 5-10 even in
the case of spherical nuclei. In view of the pre-
ceding discussion it can, therefore, be concluded
that the present analysis of level densities of de-
formed nuclei does not provide sufficient evidence
for the rotational enhancement of level densities
of the magnitude comparable to o, '.

The present discussion also brings out that for

f6
0 Fg

Mn

I

10
I

15
I

20
I

25
I

30

EXCITATION ENERGY {MeV)

FIG. 7. Plot of calculated total level density versus
excitation energy for the two nuclei 56Fe and Mn. The
experimental points are from Ref. 18.

a reliable numerical calculation of level densities
from single-particle levels there is a need for a
suitable normalization of the values to an appropri-
ate LDM average behavior. It is therfore apparent
that a semiempirical approach similar to the well
known macroscopic-microscopic approach for
nuclear masses, is expected to be more reliable
for the calculation of the level densities also.

IV. SUMMARY

A semiempirical nuclear level density formula
which takes into account nuclear shell effects in a
realistic way has been proposed. The formulation
is based on the results of earlier investigations of
the thermodynamic properties of nuclei and has a
built-in excitation energy dependence of shell ef-
fects on the level densities. The formula involves
three mass-independent parameters, y, p, and ~„
characterizing the average single-particle level
density near the Fermi level and the wavelength
of the shell oscillations in the single-particle level
density near the Fermi level. The other inputs re-
quired are the ground state shell and pairing cor-
rection energies of the nucleus. The best values of
the parameters y, P, and a, have been obtained by
fitting the formula to the experimental level spac-
ings for spherical nuclei obtained from neutron
resonance data. The level densities versus ex-
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citation energy calculated with the present formula
are also found to be in good agreement with experi-
mental data for the cases examined. A notable fea-
ture of the formula is the explicit inclusion of a
surface term in the LDM value of the parameter a,
evidence for which was found to exist in the ex-
perimental data. This hitherto neglected surface
dependence should be included for a reliable extra-
polation of level densities for unknown cases in-
volving superheavy nuclei and highly deformed nu-
clear shapes encountered in fission. An analysis
of available experimental level spacing for de-
formed nuclei on the basis of the present formula
has shown that though a small enhancement of the
level densities of deformed nuclei is not ruled out,
the magnitude of enhancement is significantly
smaller at the excitation energies equal to neutron
binding energies, than what is demanded on the

assumption of complete decoupling of rotational
degree of freedom from the intrinsic degrees.

APPENDIX I
/

Equations (10) and (11) were derived under the
simplifying assumptions that (i) at finite tempera-
tures the predominant contribution comes from the
fundamental term in the expression for the shell
oscillations 6g(g) and (ii) a weak temperature de-
pendence of the chemical potential p, can be ne-
glected. The validity of these assumptions can be
ascertained by finding out whether Eqs. (10) and
(11) can be made to fit the numerical calculations
of 8 versus g„.Starting from the single-particle
level. scheme of Seeger and Perisho, ~' numerical
calculations Of S versus &„were carried out for a
few typical cases of a given number of particles

40

30—

o CAICULATFD S FROM SINGLE PARTICLE STATES

CALCULATED S FROM PRESENT FORMULA

(8)
(7)
(6)

28 -3.5 0.0 0.21

26 +0.87 0.0 0.25

24 -3 15 0.0 Q 21

O 100

X
hl

4 126 -4.5 0.0 0.24

5 12 2 —1.3 0.0 0.21

6 94 3.88 0.0 0.21

10— 7 9 4 5.56 0.05 0.18

8 9 4 636 015 017

I I

5 10 15

EXCITATlON ENERGY (MeV)

-1

20

FIG. 8. Comparison of the calculated entropy S versus excitation energy E„from numerical calculations using har-
monic oscillator single-particle fevel scheme and the calculation based on Eqs. (10) and (11).
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and for deformed shapes. The ground state shell
correction energies ~, for these cases were also
obtained by the standard procedure. Kith these
values of b,„Eqs.(10) and (11) were fitted to the
numerically calculated S versus E„and these fits
are shown in Fig. 8. It is seen that in all the cases
studied, at excitation energies above 3.0 MeV, the
maximum error introduced by the use of Eqs. (10)
and (11) vis a vis numerical calculations is less
than 0.5 in entropy. This corresponds to a maxi-
mum error of less than a factor of 2 in level spac-
ings. The inset in the figure shows parameter val-
ues obtained for the different cases. Considering
that the uncertainty in the derived values of ur, is
about+0. 03, one can conclude that no systematic
variation of (dp exists with respect to either the
sign and magnitude of the shell correction energies
or the size and shape of the nuclei.

where rn is the nucleon mass. The Fermi. momen--
tum k~ can be obtained from the number equation

k~3
N=V32 —

8 k~

that is

3~2N j./3
(1+0.6B N '~')

where surface area S has been expressed in units
of the surface area of a sphere Sp of the same vol-
ume V as 8 =&,Sp. Substituting this value of k„,
we get

2m V 3m'N '~'

Bw

APPENDIX II

Following Hill and Wheeler, "the density of
single-particle states of one kind of particles,
say, neutrons, in an infinite square wellpotential
confined to volume V with surface area S, and

mean curvature C, can be written as

ith V= —,vr, 'A and S =4',~A' ' andA =2N assum-
ing equal proton and neutron contributions to g„
one obtains the following expression for the LDM
value of a

a = —6m'(g", +g~o)

dN
2

V 2 S
k

C=2 2
k' k+8,—

= 317 gp

(1 —0.95B,A '~ ) for r, = 1.2 fm.

dN
gp=

dE F

2m V 8= A. 2,.k -8

where the .factor 2 has been included to account for
spin degeneracy. Considering only the predominant
volume and surface energy terms, the density go
of the single-particle states at the Fermi energy,
&~, is given by

Although the numerical constants obtained above
for the simple case of a Fermi gas are not ex-
pected to apply for the case of an actual nucleus,
the above deductions show that a functional form
of the following type for a is expected:

a =yA (1 -PB,A '~')
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