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A theory of radiative muon capture, with applications to nuclear spin and isospin doublets, is formulated

on the basis of the conservation of the hadronic electromagnetic current, the conservation of the hadronic
weak polar current, the partial conservation of the hadronic weak axial-vector current, the SU(2) )C SU(2)
current algebra for the various hadronic currents, and a simplifying dynamical approximation for the hadron-

radiating part of the transition amplitude —the "linearity hypothesis. " The resultant total transition

amplitude, which also includes the muon-radiating part, is worked out explicitly and applied to treat the
processes p, p~v„ny and p, 'He —+v„'Hy.

RADIOACTIVITY p P - v ~np and p 3He- v ~SHE; general theory of radiative
muon capture with applications to nuclear spin and isospin doublets.

INTRODUCTION

The theory of radiative muon capture by a nu-
cleus: p, -N&- v„A&y,

' " even in the simplest case
when the nucleus is a proton, is not altogether
satisfactory because of the uncertainties involved
in the determination of the hadron-radiating part
of the transition amplitude V' ", i.e. , the part con-
taining contributions from p. P- p Xy- v&ny and

p P- v 2F- v&ny (where X=P, &', . . . and Y=n,
b, . . . ) and from p. p- (very}n (where the v„and
yemerge "together" from the weak vertex) Clear-.
ly, these uncertainties become even more serious
in radiative muon capture by a complex nucleus.
In addition, a formalism is desirable which per-
mits exPlicit verification of the constraints im-
posed on ~" which arise from the conservation
of the hadronic electromagnetic current (CEC),
the conservation of the hadronic weak polar cur-
rent (CVC), and the partial conservation of the
hadronic weak axial-vector current (PCAC).

Our approach is based on hypothesizing a sim-
plifying dynamical approximation for ~ "'—we call
this approximation the "linearity hypothesis"
(LH). The linearity hypothesis, which is fully

described below, together with the constraints
arising from CEC, CVC, and PCAC, enables us
to express E" entirely in terms of the form fac-
tors characteri. zing the nonradiative muon capture
between A'& and A'& and the electromagnetic proper-
ties of these nuclei. Since the muon-radiating
part of the transition amplitude & ', i.e. , the part
containing the contribution from p, lV& - p, y¹- v„N&y, can be similarly expressed entirely in
terms of the form factors characterizing the non-
radiative muon capture between N& and N& and the
charge on the muon, the w.hole transition amplitude
r ~+1'("i is determined and applications to specific
processes, i.e. , p-p- v„ny and p 'He- v„'Hy,
can be made.

FORMULATION

We define the various relevant form factors in
the case of the nuclear spin and isospin doublets
by the expressions immediately below, Further,
we assume the absence of second-class currents
which, if they exist, can easily be taken into ac-
count on the phenomenological level on which we
operate. Thus, with V~(x} and A&(x) the hadronic
weak polar and axial-vector currents,
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where

q„—= (p(f)+p«))„, fpf = 2(Mf+I&) =~~=fvf—&,
— — —
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[ (p(f). (»)}2]1/&

(6=—M/-M» is neglected consistently below), and where I v» ~(q') and I »)(q')/(1+q'/m', ) are, re-
spectively, the vector; weak magnetism, axial-vector, pseudoscalar, and axial-divergence weak nuclear
form factors characterizing the nonradiative muon capture i», I)I;- v„N/. Equations (1b) and (1c) yieldq',

)
rn(q')

~(q +»(q = „./ (ld}

which is an equation that, together with PCAC, yields the generalized Goldberger-Treiman relation [see
Eqs. (8c)-(8f}below].

Making use of standard reduction formulas for the outgoing photon, we can write the transition amplitude
5 for the radiative muon capture

(p(l») s(»))} +p (p(») s(»)) p (p(&)) s(v)) +~ '(p(s s()»)) + y(k e)
(2)

p(»))+p(») p(v) +p(f) +k p(v) +p(») +q +k p(U) p(») +@+k

as follows:

q g &&)+q(It)

where
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1/(2k }l/2 —(v)(P()/) (v)) (1 )
' m &&» RP, »} /)4»» (»(»)P(»»)s(»»))

&(")=-,' -"(p'"',""'),(1. ,) '"'(p' ',""') 1,„',", (V„,(k, , e) A„,(k, , e)1,

)'„i&a, q, )&) =- —im, f dna "*&N &&'"' P')
I T'&Z„&x) )'i&0)) lwi &&'

" ~'")&, (5a)

~„„&),~, &&)= ,1 ~". "--&,«"',.'"))-T&~„&.)~„&00)~&)'","")& (5b)

c*k =(e* ~ k —c*)k =0,0 0 (5c)

with e~ = (Z~,

iaaf),

,J„( )xthe hadronic electro-
magnetic current, and

T(J,(x)K„(y}}-=Z„(x)I(.),(y): x,) y,

-=K~(y)Z„(x) . x,( y, .
Here 1 ~ ~ describes the contribution to & arising
from radiation by the muon, while W" describes
the contribution to V' arising from radiation by
the initial and final nuclei, by the intermediate
hadrons, and by any charged particle (W'} that
transmits the weak interaction, The Lorentz gauge
is used so that

where I(z)(x} (i =1, 2, 3} and Yq(x} are, respectively,
isovector (isospin) and isoscalar (hypercharge}
polar currents, while Iq')(x) (i =1,2, 3) are iso-
vector axial-vector currents "conjugate" to
I(q)(x) (i =1, 2, 3) so that the SU(2) xSU(2) current
algebra (CA} is val. id:

[I(,»)(x), I~»(y)]„„=—.„,I(,')(x}5 g y},
( I'4"(x), Ix'"(y) l.,=„=—&;»a Ig"(x)5'(x —y) . (7b)

Further, in the evaluation of matrix elements of
functionals of currents between hadronic states,
Zz(x), V)(x), and Az(x) can be assumed to satisfy
the differential conservation equations

To obtain the constraints on V„q(k, q, Q) and

A„)&(k, q, (I)) due to CEC, CVC, and PCAC, we
assume

Z, (x) = I',"(x) +-,' 1.„(x),
V, (x) = I(,)(x}—» I(;)(x},

a, (x) =- I,"(x) —f I',"'(x),

(6a)

(6b)

(6c)

CEC: s,J,(x)=0,

CVC: sg Vg(x) =0,
PCAC: s)A„(x}=a,m, '( —s„s„+m,') '8('(x),

(8a)

(8b)

(8c)

where 8 (x) is the pion-source current and a,
the pion-decay constant. As a first example of
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=f II Nf N» (q

with f„„„,(q') the n +N, —Nf vertex function or
form factor; combining Eq, (Bd) with Eq. (ld)
yields

(Bd)

the use of these differential conservation equations,
we note that Eqs. (Bc) and (1c) give

(@ (p(f) s(f))
I
7( )(()) IN (p(») s(»)))

p(f)(p(f) s(f))y ~(»)(p(») s(»))

with

= &N, (p'~ s")
I V„(0)IN (P'" s'")) (1O)

= (N, (P'", s'") IA „(0)I N, (P ",s '))+L)„(k,q, Q)

(11)

E ( 2} + q F ( 2)»»f »IN»N»(q'
2 ( 2)

m ' 1+q'/m '

(Be)E„(0)=a,f,N,„,(0)

which is the generalized Goldberger- Treiman
relation and which, in the p n case, corres-
ponds to the vaI. idity of pion-poie dominance of
ED(q')/(1+q'/m, ') [since f,„P(-m „')=f„„d(0)
=fo„f(+m „)]. Rearrangement of Eq. (Be) yields

, .)P(q 1 +q2/ 2

f,...,(q')/f, ...,.(o) )I

E„(q')/E„(o)

F.(q'}
1+q'/m, ' (Bf)

with the second equality known to be approximately
valid both for the P —n case and the 'He —'H

case.
We next apply Eqs. (Ba)-(Bc) and (7a) and ('7b)

to Eqs. (5a) and (5b). This yields the following
constraints on V„2(k, q, Q) and A„,(k, q, Q):

" A„(k, q, Q)
mp

= &N (P'",s"') IA ~(0) IN»(p", s'")); (9b)

CEC: '
Vqg(k, q, Q)

mp

= (Nf(p~, s ) I V, (O) I N, (p(",s'*')), (9a)

D„(k, q, Q)

d4~ e-fk'x

x(Nf(p ', s' )I&(J„(N)S~'A~(0)) IN»(P", s'"))
(1 la)

and [using again Eq. (Ba)]

k„D„(k,q, Q)

='(N (p", )I& A (0)IN(P"', '")&

t 2
g(f)(p(f) S(f)) SI»f»IN»N» q 2M' (»)f»,(») S(»))

=@'"(P"',s'~)([EA(q2}+ (q'/m .'}EP(q')]2~) J
&&

(»)(p(») s(»)) (1lb)

where we have also used Eqs. (1c), (Bd), and

(Be). We note that Eqs. (5)—(5b) and (9a)—
(],lb), which are basic for our calculation of
& ", are independent of the possible presence of
"seagull" terms [in Eqs. (5a) and (5b)] and

Schwinger terms [in Eqs. (7a) and (7b)]." We also
note that the first equality in Eq. (lib) is simply
a consequence of Eqs. (9b) and (11).

We proceed to construct the most general
Lorentz-covariant expressions for V„z(k, q, Q),
A&)(k, q, Q), and D&(k, q, Q) from which approxi-
mate expressions for e„*V„&(k,q, Q) and
e*,A„(k, q, Q} will be obtained with the aid of the
linearity hypothesis and the CEC, CVC, and PCAC
constraint equations.

We have

(P I )I y o'o+ )I ). oo+ [k~E»»+ ~QF»2+q)IE»2 ]+ [k)I F», +Q)I F»2+q)I F»2]m p m p mp

» "[k&F&~&+Q„F(d)+q„E(»d]+» I [k E(o)+Q E(2)+q F(2)]o k 0 k

l

+ ~„,~',,'+ ", k, Z, , +q, Z,,~+&„I-~,-~ +, k„F&&+@,+~„~+,„&&,~
mp m p

+ ", (ik'»,*,'+ 0 i t,;i+it»;, ))m p

oo+ 2 ( ~ »»+Q~E»2+q~E»2)+ 2 (kyF2»+QgF22+qgE22)(d) II (d) (d) (d) Q II (d) (d) (d)

mp m p mp

(k F(d) + Q E(d) +q E(d)) +(»)(p(i) s(I))
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a)f c [k G()+Q G(a)+q G(a)]+ xc )f [k G(s)~Q g(3&+q G(s)]

+ 5&&G'+ ", k&G'+ zG, , +q&613 + "2 kx G21+Q&G22+q&G'3
mp m p

+ ". (qic';,'+cia'i+qiC))
m p

+3 5()X. 00+ 3 (kk ll+Q&. 12 qkG13) 3 ( X 21' QX. 22+qXG33)
k a . (a) ()n (3) Q u (a) (a) ((n

m p m p mp

(13)-

iq)(f f . RMq„q, q q„q- . RMq'„f, f j,q„„q„

+i ', {q„f,+Q„f, qq„f, ))g 'i(pqi, s ').
m p

(14)

Here, each of the weak radiative nuclear form
factors R =—E(a),(b),(c),(d? G(a),(b?,(c?,(4)

and f, , is, in general, a function of the three
Lorentz invariants q', Q k, and q.k.

We now apply CEC, as described by Eqs. (9a),
(9b) and (la), (1b) to V„(k,q, Q) and A„(k, q, Q)
as given by Eqs. (12) and (13).
This yields

Next, we apply CVC, as described by Eqs. (10)
and (1a) to V„&(k,q, Q) as given by Eq. (12). This
yields

F,',q k+F,",Q k+F,',q. (q+k)+m 'F s=o, (17a)

(E(&+E(,'&)q k+(E(', .F(,",)Q k+F;(,'q (q+k)

-2 ~iq';m,
i
(m (=q)+'qC (q')), (lqb).

mp
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M
m p

E()OQ .k + E(3)q, k m 3[i (F(3) + F(a))
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E(c)Q, k + E(c)q .k m 3E (c)
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23 33
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g m 2g(~?
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G'Q k+G'q'k=o
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(15a)

F(a&]

G(a&]

(15c)

(15d}

(15e)

(15f)

(15g)

(15h)

(16a)

(16b)

(16c)

(16d)

(16e)

(16f)

(16g)

(1611)

q„(q')), ()qq)

m,3E('+E('&q k+F",,'Q k+F;','q (q+k)

F",,'Q k=O,

E31q k+F3'3Q k+E 'q (q+k)+iE Q 'k

—im, 'F",,'= —,'im, 'F„(q'),

m, 'E(&+F"q k+F"Q k+F"q (q+k)

+i F33Q k= 0, .
~ (~?
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(17d)

(17e}

(17f)
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(17h)

Finally, we apply PCAC, as described by Eqs.
(11), (lla), (lib), and (lb) toA„(k,1q, Q) and
D„(k, q, Q} as given by Eqs. (13) and (14). This
yields

G'q k+O'Q k+0'q (q+k)+m 'G'
—2Mm3G00 = —3m&'f s, (18a)
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G'q k+O'Q k+G'~q (q+k)+iG, ,Q k

—i 2Mm~G» —imz, Goo= —,'im~ fs )
(a) 2 (.) ~ ~

m 'd;, +G;,'q k+G;,Q k+d;,q. (q+k)

(18d)

3

+i G~„'Q .k —i 2Mm ~G~,", = i ', [Fz,(q') +f~],
(18e)

m 'G~ ~+G ~q k+G~@Q k+G„q (q+k)
2 (b) . 2 (5) 2—zm~ G„+zm~ Goo=md fy,

G q k+d Q k+G 'q. (q+k) —im 'G

(a)—imp Gpp mpfz

(18f)

(18g}

m 'Gi l+G~ q k+Gi" Q k+d q (q+k)

—imq G,z =mq'fz, (18h)

(G"+d")q k+(G", —G'")Q k+G';,'q (q+k)
= —m&'[F~(q') +f~] ) (18b)

m 'd;,'+G&'q k+d;,'Q k+G';,'q (q+k)+zd, ",Q k

2M
mr'

the initial and final nuclei e;, e& p'j pf.
(III) More specifically, the R(q', Q 'k, q k) are at
most linear in the + [(Q +q) k) ', linear in the
F& „,„,J„and linear in the e&, ef, p&, pf. Also
wherever [(Q —q) 'k] ' appears it is multiplied by

e, or iz; and wherever [(Q+q) 'k] ' appears it is
multiplied by e& or pz.

Assumptions I, II, and III indicate that any
R(q', Q k, q k) may be expressed as

R+ R
(q ) Q iq

(Q ) k (Q )

(19)

where R is linear in the Fv z( „z((q+k)',
(P(O —k)', (P ~')') and linear in the e;(k', (P ')',
(pin —k)') and )L(;(k', (p '~)', (p ' —k)') and where
entirely analogous expressions hold for R' and

It is further seen that the R(q', Q k, q k) of
Eq. (19) cannot satisfy the CEC, CVC, and PCAC
constraint equations (15a)-(18j) unless one sets

((q+k)2, (p(') —k)2, ((pf }2l)

= F„„„((q+k)',(p" —k)', -M, ')
f,Q k+f,q k = —imp'F„, (18i) =Fv )v g ~(q M ~ —My )

fz Q k +, f~ q k = Fz(q') +, Fz, (q )
mp m mr'

(18j)

We note that the CVC constraint is consistent
with the CEC constraint since Eq. (17b) follows
from Eqs. (17g) and (17h) and Eqs, (15a)—(15e),
while Eqs. (17d) and (17e) are compatible with

Eqs. (15a) and (15f)—(15h). It is to be noted

that such consistency can be obtained only if
4=M& —M& is neglected. Further„ the PCAC con-
straint is also consistent with the CEC constraint
since Eq. (18i) follows from Eqs. (18b), (18g), and

(18h},and Eqs. (16b}—(16e) while Eq. (18j) is a
consequence of Eqs. (18d) and (18e) and Eqs. (16a),
(16b), (16f), and (16h).

We now proceed to determine, at least approxi-
mately, the various weak radiative nuclear form
factors R(q', Q k, q k) as functions of q', Q .k,
and q k. To do this, we abstract certain general
properties of these form factors which follow from
perturbation theory and from several simple
physical assumptions, viz:
(I) The dependence of the R(q', Q k, q k) on Q k

and q .k enters predominantly through the propa-
gators of the initial and final nuclei: [M,'
y (p&') k) ' = [(Q —q) ~ k] and [M&'+ (p(~

+k)'] '=+ (Q+q) ~ k] '.
(11) The R(q', Q .k, q k) are primarily determined

by the weak nonradiative nuclear form factors
Fv» z. [Eqs. (1a), (1b)] andbythe electric-charge
and anomalous-magnetic-moment form factors of

=-F. . ., (q'),

e,(k', (p"'}z, (p' k) ) =e,(0, M, ', (p"--k).')

R(q, Q k, q k)=-R' (q')
Q+q .k

+ 'q +d'&(q'},R ~2)

(Q —q}.k (20)

where R'(q') is linear in Fv „z„(q') and in e&,

)zf, R (q') is linear in Fv „z~ (q') and in e„p, ;,
and R'(q') is linear in Fv, zz, &, z (q') and in e„ez,
p;, p&. We note that expressions of the form of
Eq. (20) for the R(q', Q. k, q k) can always be
made to satisfy the CEC, CVC, and PCAC con-
straint equations (15a)-(18j) identically by proper
choice of constant parameters. For example,
the CEC constraint equation (15b) is identically
satisfied by

Ft,".(s o), )) a) =I,''(,)",(q')+ )" (e'))
M

p

e
& ez

(p-e) )' (o+s) &)'

(21a)

=e;(0, —M, —M&') = e„etc.
This last restriction together with Eq. (19) sug-
gests the form of the "linearity hypothesis" (I H)
for the R(q', Q k, q k), viz:
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F"'(q,, , Q'a, q ~ ki= —m, '(F, (q'1+ F„(q'))

e& ez
{Q—q) k (Q+ql k)

(2 lb)
since e&= e& —1.

The meaning of LH may be explored a little
further by comparing the R(q', Q k, q k) obtained

from LH with the R(q', Q k, q k) calculated by
perturbation theory. Recalling that in perturbation
theory contributions to R(q', Q k, q k) come not
only from diagrams corresponding to p N~- p Xy- v„N~y and p, A&- v„F- v„N&y where the
photon is emitted "before" and "after" the neutrino
but also from the "box" diagram (BD) correspond-
ing to p N& - v „Nzy where the photon and neutrino
are emitted '*simultaneously, " we obtain, for
example,

F,(q', Q kq k)=m 'P (F* "I((q+k)', (P' —k)', —Mr')+ F q &{(q+k)', (Pr —k)', —Mr' ))
X P

'" -n(r} -M (prk-a} ))-Mx'+M, '+(Q-q) k

nr Y Fr '-n((q+al. M ~ (pm+a)*)+ Fr '-n((q+k)* Mr. (pm+a) ))
Y m p

e'" "~'(0 (P '+k)' -M')
M '-M '+(Q+q) k (22a)

Fi"(q2 Q k q k}=-m2 gl~bp-Np}((q+k)2 (pt'}-k)' -M')+ Fix-Nf'((q+k), (pi ~-k), -M,)
~

.X 1(}'

(
e (N{ x) (0 M 2 (pr(i) k)2)

X P S P

-M„'+M, '+(Q —q} ~ k

—m *Y(F'"' "'((q+il)' —M * (p"'+k}'1

M
+ F ' '((q+k)' M' (P' '+k)'))

(22b)

where the sum over X [ Y] includes contributions from the nucleus N, [Nz] and from all other hadronic
systems with the same electric charge as N; [Nz] and where

F,'"t, "f'((q+k)2, (p" -k)', -M,') -=F„„((q+k)2,(p'& -k)', -M,'),

e'tN{-N{&(0 -M ' (p" —k)') =- e, (O, -M', (p'"- k) ) [F'"], Np'((q+k)2, -M,.' (pi»+k)')

= FvN((q+k)', —M, (pi»+k}'),

e~Nf i'(0N, (p +i»k)' -M ') = e~(0, (p"'+k)', -M&')] ~

With these expressions for Fkt2 }(q2, Q ~ k, q ~ k), Fik2'~(q', Q k, q k), the CEC constraint equation (15b)
becomes
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F ((q+k)', —M', , (0' ' +k}')+ 2'„((q+k)', —M, (2 +k)')) ee(0, (0' ' +k)', —Me')
I

+ g (F'e "e'((q ek)', (F~' —k)'-M, *,) + ~„F" "(e( +2")*k,(F"—k)', -Me'))
M

x(x"¹i~ mp

*'( , 0M!,-( "F'--)*k)( -Q)qk)
-M;+M'+(Q-q) k

((q+k), ke;, (0 +k)-) + F ' ((q+k)'", -M, (P
e +k) ))

M

Y(YMN~) ( PBp

e~ e (0, (F~ ~ ek)*, -M ')(Q+q) ~ k
)MY' —Mz' +(Q+ q) ~ k

+[F2,"(q', Q. k, q k)]», +[F„' (q', Q k, q k)], =F (q')+ F„(q') (22c)

and is not identically or manifestly satisfied if only because

[F'ik)(q', Q ~ k, q ~ k)]» and [Fp)(q', Q ~ k, q ~ k)]

are not easily calculable; alternatively, E(l. (22c) can be viewed as a sum rule which permits determina-
tion of

[F&",)(q', Q ~ k, q ~ k)], , +[F~,')(q', Q ~ k, q ~ k)]

in terms of

F gq') F' „"N~'((q+k)' (p'*'-k)' -M ') and F'"2""((q+k)' -M.' (p"'+k)')

On the other hand, comparison of E(ls. (22a) and (22b) with E(ls. (21a) and (21b) yields

F'* "e'((q+k)' (0" k)' M') + F'* "((0+2)' (0" k)' M'))
x(x~or;) PÃ p

x ' ' " ' ' "')+ ({F"'(q' Q. k, q. k)I--{F"'(0' Q k, q k), }
-MNQ +M.2 + —q k

={F (q')+ F„(q )] (
' ), (220)

F ((q+k)*, -M, (k' '+k} )+ F„((q+k) M' (2' ' 'k)') ' ' 0 ' -)t ~ iI t
~

~

p
M ~ ~

~
~

~I t ~
e 0

~ ~
~

~

~
~I

M e 0 +O' -M'
Stp (Q+q) ~ k

+ E F~ ' ~(( )' q-eMk(P~e~ek)')e F ((q+k), -M;*, {k~ +k) )). e

z(z~ yr&) mp

={F,(q')+ F (q')1( Q„* k ) (22e)
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which can be viewed as "approximate sum rules. "
It is interesting that from the point of view of
Eqs. (22d) and (22e) the whole contribution of the
Qx(x„„.) ~ ~ ~, Qr(„„„f)~ ~ ~, and BD terms
corresponds to a shift in the values of the varia-
bles on which E„, E„, e;, and ef depend [i.e.,
(q+k) q' (p

' —k)' (p
' )'=-M.' (p'f'+k)'

(p(f))2 M 2]

We go on to calculate explicitly all of the "rele-
vant" R(q', Q k, q k), i.e., all of the R(q', Q 'k,
q k) which contribute to q'(2', these are all of the
F(a&, (b), (c&, ((&&(~2 Q, k ~,k) and G&a&, (b), (c), ((&)( 2

Cg

Q k, q 'k) except for F,f((q&', Q k, q k), F,'b'(q',

Q 'k q 'k) E"'(q' Q'k q 'k) E' '(q' Q 'k q 'k)
(.""(q' Q k q k) G'"(q' Q k q k), G,",.'(q',
Q k, q k), and G,",.'(q', Q k, q k) which, in view
of Eqs. (12), (13), and (5c), do not contribute to
q*,V„(k,Q, q) and q*,A„„(k,Q, q) and so do not con-
tribute to 7 ("& [Eq. (5}]. We do this by working
out the perturbation-theory expressions for an
' appropriate" set of E,.' " ""(q' Q k q k) or('„"'"'"~ "'(q', Q k, q k) m the approximation:

F» ~A p((q+ k)2, (p ('& —k)', -Mf)
=—Ev ~A~((q +k)', -M, (P (f& +k)'}

= F».~,Ap(q') )

Fv, &(',AQ(q ) F»NAQ ((q +k) y (p k) y Mf

(XW A,.),
F»&f A p(q')» F» '2) A'p((q+k)', -M, (p' '+k)'}

Q k, q k) are also of the form required by the LH

of Eq. (20}. Thus choosing E(')(b)'(q', Q 'k, q 'k),
E'"(q' Q k, q k}, and E,' (q', Q k, q k) as the
members of an appropriate set and performing
the perturbation theory calculation in the approxi-
mation of Eq. (23), we obtain

I

E(b& m 2 F»(q } P& Pf
2m,

e, + &2; ef + (&,f
( (-))c. )t (()+0) (')- '

E( & 2 F2((q ) )f P( (ff
2mb )( 2M, 2Mf

+ Evq + F q
mp

(Q —q) ~ k (Q+ q) ~ k

(()-a).k (2+2) I) (24b)

F(a) p23 (24c)

F() F 2 M . 2 P, P~

whence, determining the other relevant F,' ~ ~ '~ «&

by ~cans of Eqs. (15a)-(15h), (17a) (17h), and (20)
(see Appendix A), we obtain

(F+N~), (23)

E 2q') [E' """"'(q',Q k, q. k}]

(q2}»[G(a).(b).(c&.(a&(q2 Q, k q k)]

e;(0, -M, (P('& —k)') =—e;,
p.; (0, -M; (P (' & —k} )—= p, .

ef (0, (p(f&+k)2, -Mf') =ef,

Pf(0, (P"'+k)', -M,') =-(&f .
We proceed to calculate all the relevant

E,f'
( (' (q' Q .~ k, q ~ k). We first note that any

E,;('& ('& a (q' . .Q ~ k, q k) calculated by perturba-
tion theory in the approximation of Eq. (23) is of
the form required by.the LH of Eq. (20) [see, e.g. ,
Eqs. (24a) and (24b) below] and we define an ap-
propriate set of relevant E; b ' a (q', Q. k,q. k)
as a set of relevant E,', '(' '" ' a (q', Q ~ k, q ~ k)
whose specification via perturbation theory in.
the approximation of Eq. (23) is sufficient to
determine all the other relevant E',f" '" "'' '(q'.
Q k, q k} by means of the CEC and CVC constraint
equations (15a}-(15h}and (17a)-(17h) and the as-
sumption that these other relevant E',f' "' '"~ "'(q',

E,',& as given by Eq. (24a),

E;, as given by Eq. (24b),

F„——,m, E„(q )(a) Py

z&'=0
13

F~~~ m, F q + F q
mp

e; e&

(c-a) ' -
(()+v) ~)

[as in Eq. (21a)]

F~„~=-m ' F„q' + F„q'
mp

e ; e
(Q —q) .k (Q+ q} k ~l

'

[as in Eq. (21b)]

(25a,)

(25b)

(25c)

(25d)

(25e)

(25g)
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E2", =m&3 Evq2 + E~qm p

1 Pf
(, (Q q) k 2M,.

'
(Q+q) k 2M,

m 3 E, q2+ F„q222 g V

(25h)

(q')
- 2m, (q —q) k (q+q) k)

+ Eyq + Egqm
tI&

1 p, , p.

(Q —q) k 2M, (Q+q) k 2M,

(»q)
1 P] 1 Pf

(Q q). k 2M,. (Q+q) k 2M~

F(;) as given by Eq. (24c),
(25i)

(251)

= —m E q +
mp

—my Ey q + F+ q
mp

, (25k)
(Q —q) ~ k 2M, (Q+q) ~ k 2M&

F(c) 0

F (g) 2 F»»(q 2) )»» )»»«& 2m 2M& 2Mf

+ E~q' +
m p

X
e;+ g& ef+ pf+

(Q —q) k (Q +q) k

(25r)
(25s)

(25t)

(~) i 3F21 & ™»F)»»(q)
(Q q)

( ) 1. . 2 2 eg ef
(q )2 (Q+)2)'

(251)
(Q q) .k 2M, (Q+ q) ~ k 2M~

F,,'=im, (e; e+z) +F„(q )+ F»»(q )(.) M
2 mp

1

(Q + q) ~ k 2M&

(g) ~ 3 1

(Q-q). k 2M

(25u)

2M, 2Mf

2m, (()-2} k (()+2) 2)

+ Evq +
m t))

(Q —q) ~ k 2M.

P,f
(Q+ q) ~ k 2M'

( )2'„=—(m~ 2'„(q )
(@
') k

—
(q q} 2)

E(c) 023

(25m)

(25n)

(25o)

(25p)

jLLf
(Q+ q) ~ k 2M&

(a)
F23 =0

~

(y)
(Q —q) k 2M.

[if
'

(Q+q) ~ k 2M~

(„), 3 2 1F„=, im, F„(q ) -(Q ) k

1 P.f
(Q —q) k 2Mf

(25v)

(25w)

(25x)

(25y)

E,",) =0, (25z)

Substitution of these values of the E(,;. ' ' ' ' ' " into
Eq. (12) for V„~(k, q, Q) and calculation of the
quantity (1/m~)e~2' V~ „(k,q, Q) which enters linearly
into V'(") [Eq. (5)] yields the remarkably simple
expression:

I

E ) „(2,q, Q) = —u 2 (2 ~~, q'") (2,(q') ~ (,)
vi, (q+k)„, 2'-(((("' —2) ki;2)»,'

M, '+ (p«& kP "
2M

'Ii M', (p .k)-" F (q')y .(q') "2—
f f

+(»)(~(») e(»))
2m,

(26)
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We emphasize that had we chosen another appro-
priate set of "relevant" F;', ' '" "'"'(q2, Q k, q k),
say, (F33', F12 13 )F23) r( 11 )F12 )F22 23)
~ ~ ~ (all of which exclude F ~~3~ from membership),
to be calculated by perturbation theory in the ap-
proximation of Eq. (23) and then, as previously,
determined the other relevant E&,' ' " ' ' ' by
means of Eqs. (15a)-(15h), (17a)-(17h), and (20),
we would have obtained again the expressions in
Eqs. (25a)-(25z). In fact, any set of relevant
Fgf'~' ' ' ' (not containing F,', as a member)
which is sufficient to determine all the other rele-
vant I';& ' ' ' ' " may serve equally well as the
"appropriate" set. Thus our results for the
F;J ' " ' ' ' in Eqs. (25a)-(25z) are independent
of which particular appropriate set of F I; ' ' ' ' ' "
is chosen initially. .We also emphasize that the
F', &' ~ '" "''3'(q2)Q kqq k) in Eqs. (25a)-(25z)
with but one exception agree with what one would
calculate by perturbation theory in the approxi-
mation of Eq. (23). The exception, F3(3) in Eq.
(25a), must therefore contain a non-negligible net
contribution from

Fy~~+f Fy+& (X4N '2 FIN~)

' "(q' (2M '2M.
i f

(27)

G( 0

m, 2 2M;

f+ I f
(Q+q) k '

2M') '

(28)

(28)

(30)

G(3) 3F ( 2) 1+l 1 f+l f
(Q —e) k (Q+e)'k

(31)

and (F«"))» which is automatically included
through our use of the CEC constraint equation
(15a); this net contribution can be obtained by
comparing Eq. (25a) with the result of perturbation
theory in the approximation of Eq. (23) and is
just -2F„(q2). Finally we note that perturbation-
theory calculations in the approximation of Eq.
(23) for F„', F,', ', F",, ', and F', ~&' together with
the F,'&'' '"''3' of .Eqs. (25a)—(25z) are iricon-
sistent with the CVC constraint equations (17a)-
(17h) however—, this is of no consequence since,

contribute to W'"'.
In a completely analogous way, we can, starting

with an "appropriate" set of "relevant" G,'&' "'"' '"'
(q2, Q k, q k), determine all the other relevant
G,'.&'' '"''3' (q' Q k q k); the members of such
an appropriate set are taken to be

G,' as given by Eq. (27),

G,",' as given by Eq. (28),

(32a)

(32b)

G» =23312'Fg(Q )
(Q ).k

(,)
2M p, ; p,

2M,. 2n,

G,',"=o,

G,' as given by Eq. (29),

(3) 2 ( 2 eq Sy

(() —q) k (2+q) k)'

(() -q) k ' (2+q) k) '

(32c)

(3M)

(32e)

(32g)

e;+~; e +~f
21 2 P 7' 2

(Q ), k (Q ), k

G,'," as given by Eq. (30),

G,",' as given by Eq. (31),

(32h)

(32i)

(32j)

(Q-q) k 2M.

1 P,f
(Q+q) k 2M~

((2 —q) k 2M.

(32k)

1 P,f
(Q+q) k 2M'

(32m)

(321)

G,",'=(m, ' q„(q') ((2 ) k

1 Pf
(t)+q) k 2M' )

m.,' (q-q) k (2+q) k)

G22 =0,
(32n)

(32o)

'q '
m * (2 —q) k (() + q) k) '

(32p)

m

where the expressions on the right-hand sides
of the equations are calculated from perturbation
theory in the approximation of Eq. (23). Then,
determining the other relevant G,'.&""'"' '"' by
means of Eqs. (16a)-(16h), (18a)—(18j), and (20)
(see Appendix A), we obtain
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1

(Q —q) k 2M

1 p,s
(Q+q) k 2Mf

2M e,.,(q) - —,
(Q )

k-

G(c) 0

+
e

(Q+q) k

(32q)

(32r)

() 2 8 ~ +P, ~ 8S+ PS
Gpp —l )QQfe Fg(q )

(Q ) k
+

(Q ) k 4

() 2 2M 1 p,
G24 =™~FP(q ) ~ 2

(Q q)

1 p.s
(Q+q) k 2Mf

(4)G,", =0,
2M 1 pj

(Q q)k2M,
1 P,f

(Q + q) k 2Mf

(32t)

(32u)

(32v)

, 2M e,.
Q,;= e pF(q),

(Q )4 e(Q )4}
(32s)

1 p, ;
'm, ' (Q-q) k 2M,

f

Ps'(Q )k 2M

In addition, we obtain

2

f,= (F,(q')+, F (4'))(pi- pp),mg'

2

f =-m. '(Fe(q')+ ~ Fp(q'))mr'

e 8x
(Q —q) 4 (Q+4) 4)'

2 I

f, =4Mm, (F„(q )+', F,(q'))mr'

e,. es
(Q-4) 4 (Q+4) 4)'

2

em, '(F„(q')+, Fp(q'))
m, '

(Q-q) 4 (Q+4) 4)'
2

f,=*, (F„(").', F.('))m. '

P,. P,s
(Q-q) 4 ' (Q+4) 4) '

f, = 4Mmp (F„(q')+, Fp(q ') )m, '

(32a')

(32h')

(32c')

(32d')

(32e')

G(~) m4~ ( n2M
» f' ~' m' (Q —q) k 2M

1 ps'
(Q+q) k 2M

G,'", ' = 0,

(32x)

(32y)

X
8-+ P, ~ es+ Ps

(Q-q) k (Q+q) k

"(4*)(4M'
i s

(32f')

Equation (13) together with Eqs. (32a)-(32z) yields
the. remarkably simple expression:

&*A,(k, q, Q) = u~'(P(f', s'f')

, . 2M(q, k, )Y, . M, -z(p'"-)(() p. ,
)Y)Y +Fle(qpq) r2 M 4 (p(4) k)2

+4'*(e, ' 4)( ', , „, „4Fe(q')r, r, +F,(4')4''
mr

m. ' (33)

This expression, together with that for (1/m&)
&& &*„V,„(k,q, Q) [Eq. (26)], completely determines
the 1'"' of Eq (5)

We emphasize that all the relevant

G,',"'"'"'' ' in Eqs. (32a)-(32z) except G"' G"'

one would calculate by perturbation theory in the
approximation of Eq. (23). We note that the dif-
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ference between the values of G,",', G,",', G,',",
G,'~', G,',"', and G,'y obtained by perturbation theory
in the approximation of Eq. (23) and the values of

(32h), (32n), (32q), (32u), and (32x) correspond
to a switch in sign of all the F~(q'} terms. We fur-
ther note that the value of G,' in Eq. (32m) dif-
fers from the value of 600 obtained by perturba-
tion theory in the approximation of Eq. (23) by the
term (i2 M)n J)n, ')F~(q').

Vfe also emphasize that, as in the case of the

F,'&'"'"''~'t our results for the relevant
G,'&' '~' "' '~' [Eqs. (32a)-(32z)] are independent
of which particular set of G,'~&' "'"' '"' is chosen
initially as appropriate [i.e., chosen initially to
be calculated by perturbation theory in the approx-
imation of Eq. (23)]. It is, however, clear that
an appropriate set must exclude every one of the

G()()', G,', ', G,', ', G,', ', G,', ', G,',", and G,', ', from
membership.

As an overall check, we can test our results

e A 8 Cko
(s5)

where

for gauge invariance (GI) by replacing a„* by k,
in the 1' of Eqs. (3)-(5); this gives zero, as.re-
quired by GIt if

k~[V„,(k, q, Q)+A„(k, q, Q)]Slp

=&~,(p ', )~[v,(o),~„(o)j~N (p, s ))

(s4)
a result which is guaranteed by Eqs. (Sa) and
(9b). Further, we can perform the GI test on
the explicit y" of Eqs. (3)-(5) and Eqs. (la), (lb),
(26), and (33). Replacement of &+ by k„ in this V'

again gives zero.
Finally we note that the 9" of Eqs. (3)-(5), (la),

(lb), (26), and (33) can be written as

cp(l ) q {A)

with

p(g), gg p(f), gg p(f) ~ ~g
0 p(P), k f p(j), k f P(f)~ k

+e T'

u"(p'"' s'"')y (1 y )u'"'(p"' s'"')u'f'(p' ' s' ')G

v2
+ t t

(Sea)

F q2 y F q2 xP P F q2 y F q2 ) x 5 +(t) P(&) +(&)

q, -=(p '-p"'), =(p"'-p'"'-k)„

u(v&(p(v& s(»)y (I+y ) u(v)(p())& s(v&)u(f)(p(f& s(f))G
2p(v). k

1

x F q2 y F q
xg 'f) +F q y y F q0 j x 5 g f p

P 1f

u(v&(p(v) s(v))y (I +y )u(ll)(p(I4) s(v&)u(f)(p(j) s(f&)'
2

o'~ q 2, 2Mq)ty5x F„(q')y„F„(q') "" " +F„(q')y, y, +Fz(q')i
2mp P?g

Px
2M

~ +
2M (f) k

z + i+I"f 2P(f) k
5

I f 2 (f
f f P

x F q'y -F q' -"" " +F„q'y y +FI q' i
fPl

and

P"'g+ p(f'g+, g „k„,. 2Mk~y,
+ $ {g)~ k

— f (f), k Fg q. 2
+ y'q

p ~ k

(, ~,p„(,)
. 2M&;y, )-q

~ f ~
~~
F~ q 1

2~~
~

~ «

~

u t s (3'Ia}
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m 2~la —(It)(p&o) S &It)) y (1 y ) /(0&(p(lt& S(t&a)g(f &(p&f& q(f &)

2 p

li .d„otd" " .) ( )
& (I 2 (.)o,.t. ~ (.) IMtD.

)j
ot(dt. t, tlt)

(37b)

and where lim„, V' = V'„„„„,the transition amplitude for the nonradiative muon capture p, N,.- v N&. Equa-
tions (35)-(37b) show that A, B, and C are (1) determined completely in terms of the nonradiative weak nu-
clear form factors Ev „„~and the electromagnetic form factors e, , ef, p, , I«f, (2) depend on k0 only through
the k dependence of q, and (3) become independent of k, for k, «m„; these. results are consistent with
I.ow's theorem. " Further, with 1' specified by Eq. (35), the photon energy spectrum

dI'( PN; —v, ,Nf y)
dk

becomes, taking

and with

(v )/
l p

(v )
l

—p(tv )/@ (Ia )

dI'(I2 N; —v~Nfy)
dko

d 3p(f)

(2)&)
2

d3p{v)

(2)&)'
k 2dQ{&) 1

(2&&)
2 4

(
-=ento over I'nal and 'n'tial ep'n o 'entat one)

spans

=(2n') '

=(2)&) '

dn {» dg (v& dB (v )(F (v))2k 2 5 0 +E (v) + k
l

jz l2
2Xf

e 2 2~"(m„-k.)'k.' —g I + ae(A*B)+, [jBl'+2ae(A*C)]4 spans 2ko — k'o' m„ko m

Thus, since in general

2ko k 2
+ ', ae(B*C)+ '

lC lm 3 m '

p{g),gW p{i).gW p(f ),~g - 2

(38)

I'(i2 N, -v„Nfy) —= .~ dX' p. N& —v„Nyy d

Such an infrared divergence is clearly another
manifestation of Low's theorem" and can be treat-
ed quantitatively in the standard manner. " A gen-
eral estimate of the importance of this infrared
divergence is easily obtained if one remembers
that e,. =ef+ I, c,*=e* k [Eq. (5)], and p'"'=p"
= 0. Equation (36a) then becomes

c* [kx (kx )")J(Z&"&/Z&f&)

f 1 (P(f )/@&f )).k
t " [k x (k x f&)] [(m ~ —k0)/Mf j
1+1[(m —k0)v+k0k]/Mf J k

the lA l' term in Eq. (38) gives rise to an infrared
divergence in the total radiative muon capture rate

Thus, in the case p p-v„ny, e.=e„=0, so that
A =0 and there is no infrared divergence. On the
other hand, in the case p, 'He-v 'Hy, e&=e3„=1,
so that lA I

= (m~/Mf)
I

~'
I

w 0. Thus the term -
lA l'

will here yield an (eventually made finite) infrared-
divergence contribution =(m, /Mf)'l 1' l', however,
this contribution is so small that it need not be
considered and, in fact, only the terms -lB l',
2 Re B*C, and

l
C l' need be taken into account in

the various applications.

APPLICATIONS

With the aid of the transition amplitude 1'= 1'"
+ g '"' obtained in the previous section [Eqs. (3)-(5),
(la)-(2), (26), (33)] we proceed to evaluate the
various observable quantities associated with
p. N,. —v N&y taking into account the possible total-

r
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spin configurations, i.e. , S =1, S,=1,0, -1 and
8=0, $, =0 of the (pN() state. Our results are ob-
tained using the fact that the numerical values of
the nonradiative form factors ~E» ~, ~E„~,
~E~(m„/2m ) ~, and ~Fz ~

are all of the same o'rder
so that the expansion of the expressions for the

various observable quantities in powers of. m„/M
is rapidly convergent. Thus, using the gauge
to~=a* k=0 and remembering that e, =e&+1 and .

p'i"=p"'=0, we can express the F"' and V'"' of
Eqs. (4), (la), (1b), (5), (26), and (33) to zeroth
order in m„/M as

v (& )

g ~ g

~(f )

x E (q') — " E (q')i(a'"'x o' ') —E (q')o'"'&&' '
2m, ~ m

Wf ) V')
u F ( g)o(N), p g(L) ~

p (1 g(L ),k)( (&L&&,et)( (&( ()(&(g ))
()&, S (40a)

v(l )

x " F (q')2[i(o'"&x o'z&) e*—i(a'"&xe~) k]2m

m 2 (f )
+ " E ( ')2 1 - ' &&&"'e*(1+ &&&~'k) —o&~& ~ o&z 'e* ((&"'(&'" ')

(40b)

where v~', v"' and v'"', v'i' are two-component Pauli spinors for N&, N,. and v„, p, o'"' and o' ' are two-
by-two Pauli matrices to be sandwiched between v&f '~, v"' and v&" &~, (&'"', respectively, and p(f & =-(p'"'+k)
=--. [(m„—k, )&+k,k]. We note that inclusion of terms F»(m„-/M), [E~(m„/2m~)](m„/M), E„(m„/M), and
E~(m /M) in Eqs. (40a) and (40b) affects the (eventually calculated) I'()&. N, -v„N&p) .by only a few percent-
a detailed (and tedious) estimate, in the case of a uniform distribution of the ()&, N, ) over their possible
total-spin configurations, yields a modification of S3% for I'(p p - v„nZ) and &2% for I'(p 'He - v„'Hp). &5

We proceed to calculate

(t)(e( .s(») s(f)'S S )+cf ()&)(e+ s(»& s(f)'S S ) j&

ySg ~Sg

This quantity is of the form

((&(&)(&(P ))t' (A ++&»(w, o(N)+ &&(w o/p(E&. D+ o&&) ~ E + &&&». F)(()(& )(& (~ &)S~Sg $0S

=A+&[2$($+1)-3]+0 D[$(S+1)—S', —1]+2 PD &»[-$($+1)+3S',]+(E P T+P)$, ,

where A, B, 0, 5, E, and P depend on the E» „„z(&f')and on k„ f&, and k. We thus have

j
V'"(P, s&"&, s',~&;$,$,)+ 9'"'(e*,s'"&, s',~';$, $,) ~'

( ) (f)

~
(W, + W, [2$(S+1)—3]+W,[S(S+1)—S', —1]

+[W, (&& z)'+W, (v z)(k g)+ W, (k z)'][-$($ +1)+3$',]+[W )& g+W, k g]S,j, (42a)

W =W"'+W"'(v k)+W"'(v k)' i =1,2, 3, (42b)

where the W,'."' are structure functions which are homogeneous and quadratic in the F»» ~(q') and which
also depend on 4, . All the W,'."' can be decomposed according to

W(ff) —W(ff)l (l l ) + W(n); (Eh) + W(n);(Ah)
t f f

with the W'.""""W'."""") and W(.""'""'originating, respectively, from

(42c)
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~jz'&l)(en s&v) s&1).S S ) ~2

(v ) &f )
g» g

6*tSg hSg

and

2 ftecf &t &n(en s &v) s&f ).S S )cf &h&(en & &v) s(f&. S S )
~ s(v) s(f

g ' g

~cf.&h)(hn s( s(f)'S S )
s(», s(f

g g

For purposes of illustration, we append here certain of our results regarding the W,'."'"",W,'.""""',and
W( )' &hh) viz ')

m''
W"""'' = [E (q')]' + 8[E (q')]' + 2E (q')E (q') " + E (q') ", 1 —2 + 2

r r
2

(42d)

W(o)h (g) W(o)J (g) W(l); ($} W(o)h (g} + W(1)h (g) W(2}t (g) W(L); (j)
3 6 — 7 3 5 6 3 5

W(O)h (4) —W(1)h &0) —W&2)h &4) —04 4 4

W( )l (4) —W( )h &0) - W( )l (()-0. g —)~ EI5- 6 7
(42e)

and refer the reader to Eqs. (Bl)-(B58) in Appendix B where all of the W'."""'', W&"&'&'"', and W'. "&' &hh& are
given explicitly. We also evaluate the average of

(6n S" S(f&'S S )+1 &(6&', S&"&, S f&;S,S ) ~h

with respect to the distribution of the (lt, N, )over their . possible total-spin configurations, i.e. , evaluate
the quantity

(42f)(~g ~') = Q Q ~r&t)(a*, s&" &, s&f', S,S )+r'")(&*,s&'), s&f', S,S ) ~' P(S, S ),
(v) (f )

g 7 g 9 7 g g 7 g 0 7 g g )
S,S ~+,s ",s

where P(S,S,) is the probability of finding (p N, )at the insta. nt of muon capture in the total-spin configura-
tion specified by S,S„ i.e. ,

P(1, +1) = —,'(1 +P„+Ptf +P„P„), .

P(1, 0) =P(0, 0) = —,'(1 —P P„): no S=1 S=0 conversion in a time =T()t—decay), ,

$

P(1, yl) =P(1,0) =O, P(0, 0) =1: complete S =1 —S =0 conversion in a time =r(tt —decay)

(42g)

I'„g and P„z being the p. and N,. polarizations at the instant of arrival of the p. in the lowest Bohr orbit
around the N, Substitution of Eqs. (42a)—(42c) into Eq. (42f) yields

(~&~') =~ 2„&fh I ( W, +W, [P(1, 1)+P(1,0)+P(1, —1) —3P(0, 0)]+W/P(1, 0) —P(0, 0)]
((e 1 1

+[W, (v ~ z) +W, (t) z)(k z)+W, (k ~ z) ][P(1,1)+P(1, -1) —2P(1, 0)]

+[W,v ~ z+W, k ~ z][P(1, 1) -P(l, -1)]],

W g W (n) (1) k)n p (W(n);(t t) ~ W (n) (th)+ W (n);(hh))(p, k)n
n=O n=O,

(42h)

Equation (42h), together with Eqs. (Bl)-(B58) for the W(")'(", W;")' '", W, " ' "" and the specification of
appropriate p(S, S,) [Eq. (42g)], constitutes the basis of our further calculations.

To perform the calculations we first note that the Wt(")(q', k,/m„), which depend on q' through the

Ev» ~(q'), themselves have a dependence on v ~ k since

(P(f) P(i) )h (t)(t)) P(v) k)h m h + 2(~(v)+ k )m 2@(v) k (1 t) . k)

-=m„' —2(m„—k,)k,(1 —t& ~ k)
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(43b)

(43c)

(43d)

E„„„„(q')= F„„„v(m„'—2(m„—kp)kp)+[2(mv- kp)kp(v. k)]
q &=wv2-Xm p-kp)0p

In view of the relatively slow variation of E„»(q') with q' (in both the p —n case and the 'He —'H case)
the ratio of the second to the first term on the right side of Eq. (43b) is quite small so that the second
term can be safely neglected. As regards Ez(q'), one has from Eq. (8f) (which' holds in both the p n
case and the 'He —'H case)

s E (q') g.'/m. ')2(i —k./m. )(k./m. ) l(v k)l
Ev(q') sq', p 2 &„» 1+(m '/m„')(1 —2(l-k, /m )kgm )

rAa

with the expression on the right side of Eq (43.c) varying between 0 and 0.2 [v ~ k~ &0.2 as kgm„varies
between 0 and 2 or between 1 and —,

' [in fact, suitable averages of (v ~ k) are numerically «1 (see below)
so that 0.2 ~v k[ is effectively «0.2]. Such a variation of F~(q ) does not affect the values of the
W,i"~(q', k,/m„) sufficiently to modify the (~v'~ ) of Eq. (42h) in a significant way so that the second term on
the right side of Eq. (43b) can be neglected even in the case of Fv(q ). Further, a similar replacement
of E» „„~[m„'—2(m„—k,)kp] by F„„„~(,'m„'), —where —,'m„' is the average of m„' —2(m„—kp)k, over
the "phase-space" photon energy spectrum: 12(kgm„)(1 —k,/m„)' [see Eq. (46a) below], can again be
justified on the basis of the relatively slow variation of F„„„(q')with q' and of the expression for

sE(-'. „'-2( „-k,)k,), 'q
( „'/;)I-; 2[(1-kJ gkg J}

which varies between 0.17 and 0.04 as k,/m„varies between 0 and —,
' or between 1 and —,. Thus the

W,'"'(q', kp/mp in Eq. (42h) for (( &~') can be replaced by W~i". i(-', m„', k,/m„), and become, as can be
seen from Eq. (Bl)-(858), simple quadratic functions of k,/m„=-x with 0 ~x & 1.

With these Wi"~(—', m„', x) —= W~i"i(x) we can immediately proceed to calculate the various observable quan-
tities associated with p N, —vQ&y. First of all, the neutrino-photon angular correlation

(44a)

is given by Eqs. (42h) and (42e) and corresponds to the forward-backward asymmetry

e(v ~ k = 1) —e(v ~ k = —1)
6(v ~ k= 1)+ e(v ~ 5=-1) Dp „- ' (44b)

with

N„- -„=W&,'&(x)+Wt,'i(x)[P(1, 1)+P(1,0)+P(l, -1) -3P(0, 0)]

+Wi3o(x)[[P(l, 0) —P(0, 0)]+ (k z) [P(1,1)+ Pl, -1) —2P(1, 0)]}

+ [W,P (x) + W,' (x)]k.z[P(l, 1) —P(1, -1)],
D„-,g =[W,'(x)+ C,'(X)]+[W2 (x)+Wa (x)][P(l, 1)+P(1,0)+P(l, -1) —3P(0, 0)]

+[W',"(x)+W',"(x)]((P(1,0) -P(0, 0)+ (5 z)'[P(l, 1)+P(l, -1) —2P(1, 0)]}

+[Wi,'i(x)+Wt,'i(x)+W,'(x)]k ~ a[P(1, 1) -P(1, -1)],

(44c)

where v ~ k=al corresponds toP~~ k= —1, (m„—2kp)/~m& —2k). Further, the angular correlation between
the photon momentum and the polarization of the g or/and the N,

4, (I~I')
dn'~' dn'"'

corresponds to the forward-backward asymmetry
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with

6(k ~ 2 =1) —e(k z = —1) Ng g
e(k z =1)+e(k 2 = —1) Dg ~

' (44d)

&„- „"= (riW,' (x) + W,' (x)+ gW,'(x))[P(1, 1) —P(1, -1)],
D„" „=[W~~(x) + 3Wi,'~(x)] + [W,' (x) + gW,' (x)][P(1,1) + P(1,0) + P(1, -1) —3P(0, 0)],

+ [Wi,'i(x) + ~W~,'i(x)][P(1, 1)+ P(1, -1) —P(1, 0) —P(0, 0)],
where we have used

dn'"' t'G 1 1
(ilia =i „,i, I

([8",'(x)+ 3W',"(x)]+[W'2'(x)+3W'2'(x)][P(1, 1)+P(1,0)+P(1, -1) —3P(0, 0)]
4&

& 2 2ko''~&
+[W~,'~(x)+ 3Wi,'i(x)]f[P(1,0) —P(0,0)]+ (k z)'[P(1, 1)+P(1,—1) —2P(1, 0)]]

[—,'W~,'i( ) W~, ( )+ —,'W,'( )]k ~ "[P(1,1) -P(1, -1)]) (44e)

as obtained from Eqs. (42h) and (42e). Finally, we have from Eqs. (44e)

dg(y) .dg( ) Ge ] ]
(~g ~q = „,/, — ([W',Oi(x)+-,'W", (x)]+gW',"(x)+-'W',"(x)]+gW'"(x)+ W'"(x)])

4m 4m

x[P(1, 1)+P(1,0)+ P(1, -1) —3P(0, 0)])

a quantity which determines the photon energy spectrum (see below). As examples of the relations in

Eqs. (44a), (44d), and (44f), we consider the values of 8~ „", S~ r, and

Ge

~q (2k,)'"m„

for three set of values of the P(S, S,) which occur in practice:

Case (a): NoS=1-S=O conversion: P(S, S,) as in Eq.. (42g)

g ~ U.kN" "

~v, k

with

(44f)

(45a)

W,' (x) + [W,' (x) + Ws' (x) (k 2)']P„P„.+[W7' (x) + W.,' (x)]k ~ 2—,
'

(Pq+ P„.)
Vyk 5

D- -=[W'"(x)+W"(x)]+([W'"(x)+W'"(x)]+[W'"(x)+W"(x)](k 2)'j P„P,
+ [W '~(x) + Wi ~(x) + Wi ~(x)]k ~ 2—'(P„+P )

[—'W,'(x)+W,o(x)+ —'W, (x)]—'(P, +P,).
[W',"(x)+ 3W+, '(x)]+([W',"(x)+ —,'W~(x)]+ [8',"(x)+ —,'W&;&(x)]jP,P„

f, (~I&I'&

1 1
(2k,)'i' m„

Case (b): Complete S= 1-S=O conversion: P(S, S,) as in Eq. (42g)

= [W, (x)+yw'(x)]+([W, (x)+ 3W'(x)]+ qgW~ (x)+ 3W'(x)]/P P

W&P(x) —3Wtu(x) —W,"(x)
[W,"(x)+ W',"(x)] —3[W',"(x)+ W',"(x)] —[W',"(x)+ W',"(x)] '

dQ~ . dQ

~~= [W'"(x) + -'W '(x)]+([W'"(x) + 3W'"(x)] + 3[W", (x) + 3+,'(x)]) (—3).
Ge

(2a,)'" m )

(45b)

(45c)

(45d)

(45e)

(45f)
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Case (c): p, p - v ny from the total-spin —, ortho- (Pp, P) molecule: P(l, +1) = P(1, 0) = », P(0, 0) =-',

W" '(x) —2 W,"'(x) ——' W" '(x)
[W,"'(x)+ W,"'(x)]—2[W,"'(x)+ W,"'(x)]——', [W,"'(x)+ W,"'(x)] '

SA", ;=0,

(45g)

(45h)

(45i)

dn "' dn '"'
dI(u N, - N', y) „& (&, )*( &,

)
4w 4w

(i ~i')
dx z m„„(oe j 1

kv2 v2 ~ j

r,(12x(l x)')((W',"(x)+ —, W,"'(x))+ ([T«,"'(x)+ -', W,"'(x))+ —.[W,"'(x)+ —, W, '(x)]}

= [Wi,'i(x) + -'Wi')(x)] +([Wi,')(x) + —'Wi'~(x)] + Q Wi,')(x) + Wi,')(x)]} ~ (-2).

~

~

Ge

We are now ready to specify dl'(p N, - v „N&y)/dk„ the photon energy spectrum, and 1"(p, N, —v„N&y), the
radiative muon capture rate We .have, using Eq. (44f),

x [P(l, 1)+ P(1, 0) + P(l, -1)—3P(0, 0)]},

'-='. '(- ...-, ) (";.-, )'

C, = S.QO:~, =P

= 0.96:N, = 'He (see Ref. 17)

so that

' d N ii. N, - v, N~y) „yP dx-

(46a)

I' 12x(1 —x)'([W,' '(x)+ —' W, '(x)]+([W,"'(x)+ —W, '(x)]+ —,
'

[W,' '(x)+ —,
'

W,~'(x)]}
7T p

x [P(l, 1)+ P(1, 0) + P(1, -1)—3P(0, 0) ])dx. (46b)

It is also convenient to introduce the branching ra-
tio for radiative muon capture

G -=E (q„,') (1+ " — F„(q„,')

I"(V, N& —v N&y)
I'(VN& - v„N&), (46c)

where the nonradiative muon capture rate is given
byl6~lv

2

Gp = F~(q„„') ", + [F-~(q„„')—F~(q„„')]

I'(p N, -v„Nf).
= r,f(G„2+ 3G„' 2G„G,+ G ')

-F~(q„')
2

"
02p

qnr: (P . & )nonrad.
muon capture

(P (g) f (v))2
nonrad.
muon capture

with

+ (—2G„+2G~G„—g G„G~+ 3 G~GP)

x [P(1,1)+ P (1, 0) + P(1, —, 1) —3P(0, 0)j}
(46d)

= (—m, '+2Z"'m, )„„„.,
muon capture

m.'
=ypg 2ypg + = Q. 88~ j[L p p yg

= Q. 96nz„', : p. 'He- v, 'H.

(46e)
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Equations (45a)—(46e) demonstrate explicitly the
"hyperfine effect" in the observable quantities

6„- k, 8k;,
dr(iJ. N&- v„N&y)

dx
'

[see also Eq. (8f)]. From these values
F» „„(—,'m, ') can be obtained by linear interpolation
and

and

r(p N&- v„N&y),

r(p, N&- v„Ni)

so that the F» „„~(5m„')entering into the
gr„" '(—,'m, ', x) =—ts'„' '(x) are all numerically deter-
mined and the W„"'(x) are immediately calculable
from Eqs. (Bl) (B58). In this way we obtain

arising from the dependence on the P(S, S,) of the

&I & I') [Eq. (42h)] and of the corresponding
(l&„,„~. I') (Ref. 16).

We proceed to give numerical values for

6„- k,

dr(g N, - v Nzy)
dx

r(p N, - v„N&y),

r(p N, —v N&),

and R for the various cases of experimental interest.

(I): p P - v, ny

Here, using Ref. 16, we have

E»(0.88m„') = F»(0) x 0.977 = 0.977,

F„(0.88m„) =Fe(0) && 0.971= 3.598,

E~(0.88m„') =F„(0)x 0.978=1.213,

F~(0.88m ') = — " ',', (1+0.02)
E„(0.88m, ')

' =-0.822

P&',"(x)= 8.46 —10.55x+ 6.94x',

m~',"(x)= -5.49+ 7.70x+ 1.44x',

P~| i(x) = 0.78 —1.90x+ 1.13x',

T~'2"'(x) = 0.38 —l.08x —1.19x',

W, '(x) = -0.31 —0.89x+ 2.38x',

p&,e'(x) = 0.78+ 1.97x 1.19x',

ur,"'(x) = 4.83 3.48x 0.57x',

wi,~'(x) = -6.26+ 12.09x —4.50x',

pr,e'(x) = 3.54 8.61x+ 5.07x',

vr,"'(x)= 6.49+ 9.97x —3.14x',

v~,"(x)= 2.71 5.86x+ 3.14x',

p',"'(x) = 13.59 —15.55x+ 3.99x',

vi,"(x)= -5.64+10.93x- 3.76x',

p&,~'(x) = 0 —0.68x+ 0.68x'

(47a)

(47b)

(47c)

(47d)

(47e)

(47f)

(47g)

(47h)

(47i)

(47))

(47k)

(471)

(47m)

(47n)

and treat the individual cases of particular sets of
values for the P(S, S,) separately.

Case I(a): No S=I -S=O conversion:P(S, S,)
as in Eq. (4~8). Using Eqs. (45a)-(45c), (46a)-
(46e), and Eqs. (47a)—(47n), we have

with

NP kA

&yk

(48a)

N„- g
= ( 5.49+ 7.70x+ 1.44x')+ [(—0.31 —0.89x+ 2.38x')+ (-6.26+ 12.09x —4.50x')(k ~ z)']P„P~,

+ (-12.13+20.90x —6.90x')k I —,'(P + Pp),

D," g
= (9.24 —12.45x+8.06x')+[(-0.40+ 0.89x —2.38x )+ (8.37 12.09x+ 4.50x')(k ~ Z)']P,P~

+ (16.30 —22.09x+ 7.8lx')k ~ P —,
' (P„+P~),

k, g
N"-

k, k
k, g

with

N; g
= (14.49 —17.73x+ 5.26x') i2(P, +P~),

D„- g
= (8.72 —11.18x+ 7.31x')'+ (6.13 —6.77x+ 0.47x')P, P~,

(48b)

dr(V p - v ny)

r,(12&(1 x)'}
12@

= (8,72 11.18x+ 7.31x')+ (2.12 —2.54x —1.21x')P„PJ, , (48c)
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""y) = 5.71+ 0.86P„P„(n/12')r,

= 5.99 —5.58P Pp,~ 0 p
0

n 5.71+0.86P„Pp, 1+0.15P P~
12m 5.99 —5.58P P~ 1 —0.93P„Pp

(48d)

(48e)

(48f)

Case I(a) occurs when the p beam stops in low
density gaseous hydrogen. " We note that the val-
ues of I'(t), p- v„n) and R are very sensitive to the
value of P„P~, the value P,P~=1 corresponding to
P(0, 0) = 0 [and P(1, 1)= 1,P (1, 0) = P (1,-1)= 0] and
so to muon capture from the triplet (S= 1, S,= 1)
total- spin conf iguration of ()L P). Unfortunately,
however, attainment in practice of anything but
very small values of P,P~ appears to be extremely
diff icult.

Case I(b): Complete S=1-S = 0 cont)ersion: P(S, S,)
as in Eq. (42g). Using Eqs. (45d)-(45f), (46a)—
(46e) and Eqs. (47a) (47n), we have

= 5.71 0.86 ~ (-2) = 3.99,
(o./12 m) I'0 (48p)

= 5.99 5.58 (—2) = 17.15,r,
n 3.99

R =
12 17 15

= 4.50 x 10 '.
(48q)

(48r)

(11): p 'He- v„'Hy

Here, using Ref. 1V, we have

Case I(c) occurs when the tt beam stops in high-
density gaseous hydrogen or in liquid hydrogen. "

dl'(t), P- v„ny)
dx

l,(12x (1 —x)')
= (8.72 —11.18x+ 7.31x')

1.70 —1.72x —1.20x
2 QV 3 07x+ 1Q 70x~

6!~;=0,

(48g)

(48h)

Fr(0.96m„') = F„(0)x 0.82= 0.82,

F„(0.96m„') = F„(0)x0.87= 4.73,

F~(0.96m„') = F~(0) x p. 87 = 1.06,

F~(0.96 m „')
+ ~ ~p S2~

+ (2.12 —2.54x —1.21x') ~ ( 3)

= 2.36 —3.56x+ 10.94x,

= 5.71 0.86 ~ (-3)= 3.13,
(o./12m) I,

(48i)

(48j)

= 5.99 —5.58 ~ (—3) = 22.73,
I'0

a 3.13
R

12 22 73
2 67 10

(48k)

Case I(b) occurs when the t), beam stops in med-
ium density gaseous hydrogen i6

Case 1(c): p p» v„ny from the total spin 7 ortho
(p p, p) molecule: P(1, +1)= P(1, 0) = ~), p(0, 0) = g~-.

Using Eqs. (45g)-(45i), (46a)-(46e), and Eqs.
(47a)—(47n), we have

F„(g m„')F,(-'. m„') -=—,,", , = 0.83

so that the Fr „„),(5 m„') entering into the
I"'(s m„', x) =- WI"'(x) are all numerically deter-

mined and the W,'"'(x) are immediately calculable
from Eqs. (B1)-(B58). In this way, we obtain

W,"'(x)= 8.73 -10.31x+ 6.36x',

W)' (x) = -5.61+S.28x+ 0.02x',

(x) = 0.57 —l.V5x+ 1.18x',

(49a)

(49b)

(49c)

[see also Eq. (Sf)]. Note that F„ in the 'He~ 'H
case is negative while F„ in the p n case is pos-
itive. From these values, F„,»(5 m„') can be
obtained by linear interpolation and

-0.70+ 1.42x —Q. 32x2

4 46 6 17 + 9 82x2

8-„;=0,

(48m)

(48n)

dI'(t) p v ny)
d'x

r,(12x{1—x)')
= (8.72 —11.18x+ 7.31x )

= 4.48 —6.10x+ 9.73x', (48o)

+ (2.12 2.54x —1.2lx') ~ (-2)

W,"'(x)=1.23 1.19x 0.94

W(x) ( )

W ~2) (x)

W.,"'(x)=

W (1)(x)

0.63 -0.32x+1,89x',

-0.57+ 1.52x —0.94x,
-1.8V+ 0.37x -0.08x,
-8.80+ 12.44x —4.V 1x2,

W3t2) (x) = 8.02 —12.81x+4.V9x',

W, ) (x) = -9.07+ 11.17x —3.45x~,

(49d)

(49e)

(49f)

(49g)

(49h)

(49i)

(49j)
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W7(~) (x}= 7.46 —10.9lx+ 3.45x',

W,"'(x) = 7.92 —11.69x+ 4.39x',

W,"' (x) = -4.87+ 11.11x —4.08x',

W,"'(x)=0 0.63x+0.63x'.

(49k)

(491)

(49m)

(49n)

In p 'He- v„'Hy, S=0- S = 1 conversion and
('He)i 'He) molecule formation do not take place
so that the only situation of practical interest is

Case II(a): NoS=ol- S=l~conversion: P(S,S, ) as
in Eq. (42@). Using Eqs. (45a)-(45c), (46a) (46e),
and Eqs. (49a)-(49n), we have

Qg ~ Vjh
v, &

Ve I(L

with

N; »
= (-5.61+ 8.28x+ 0.02x') + [(0.63 —0.32x+ 1.89x') + (-8.80+ 12.44x 4.7lx')()t,"z)']P„P3s»

+ (-13.94+ 22. 28x —7.53x')k ' g» (P„+P»„,),
D; »

= (9.30 —12.06x+ 7.54x') + [(0.66+ 0.33x —l.88x') + (6.15 —12.44x + 4.71x')(k ' z)'] P„Ps„,
+ (15.38 —23.23x + 8.47x )k ' z 2 (P„+Pss, ),

(49o)

Q„„keg
D~ ~

0()s

with

(49p)

N„","„=(10.41 —15.54x+ 5.75x')2( P„+P3„,),
D„",» ='(8.92 —10.89x+ 6.75x')+ (1.84 —4.58x —0.27x')P„Ps„,

dI'()( 'He - v„'Hy)
ck

I',(12x(1 -x) ')
= (8.92 10.89x + 6.75x') +(1.31 —1.98x —0.74x')P„P~„, , (49q)

591 037P P
(n/12v) I', (49r)

=4.61 —0.49P„P „,,
0

n 5.91+0.3P P3H 4 1+0.06P P3H" = 2.48x10'
12' 4e 61 Oe 49PPPSHf&) 1 Oe 11P P3H

(49s)

(49t)

Here, though P„ is expected to be small (experi-
mentally, P, =0.06 in 'He arid should be approx-
imately the same in 'He) one could, hopefully,
develop techniques for polarizing the 'He nuclei
(in liquid 'He) and so attain Ps„, = 1. In this
situation, determination of &„"» [by observation in
coincidence of the recoil 'H andtheg atp3H
()))„—2&o)/

~

&„—2&, ~] and of @»„"would be of
particular interest.

We conclude this discussion of applications by
appending several comments:

(1) We emphasize that all our expression for

dI'(pN, - v„N~y),
tkc

and

I'(g N, v„N&y)

receive comparable contributions from V
' and

This is most easily seen by examination of
the explicit expressions for W,'""""(x),
W,

'"' '"'(x), and W';""""'(x) in Eqs. (42d), (42e),
and Appendix B. Thus, for example, the quantity

W,"'(x)+ 3 W,"'(x)= 8.72 —11.18x+ 7.31x'

dl'(p p- v„ny)/dx
(n/12m') I',( 12x(1 —x) ')

4

in case I(a) with P„P~=O [see Eqs. (46a) and (48c)]
is composed additively of contributions [W,'o'""(x)
+

)
W (2&; ()) )) ( W (0&;(r»)(x) +

)
W (»); (I») (x) )

[W,""'""'(x)+-,' W""(~)(x}](see Eq. (42e)) which
are, respectively, 5.48 —2.68x+0.68x', 2.49
—6.42x+ 1.49x' and 0.75 —2. 08x+ 5.15x' [see Eqs.
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(81}-(83}and (BV)-(89)). Along the same line,
neglect of terms containing P„(—, m„') and

Er(6 m~') corresponds to dropping 7'"', i.e. ,
setting W'"'""'(x)=0 and W'"' ""'(x)=0 [see Eqs.
(40b) and (42c)], and in addition retaining only
these terms in W,'"""'(x)which depend solely
on E„(5 m„') and E/((6 m„'). In view of the re-
mark just made, this neglect would result in very
considerable modification of the predictions for

dI'()), N( v Nzy)
dx

I'()( N; v„N&y)

—as an example of a particularly large modifica-
tion:

&(9 9-i„nr)
ck

1,(12x(I -x) 2

aS4) I(l))

= ([W'" (x) + 3 W"'(x) ] + j[W,"'(x) + 3 W,"'(x)]+ s [ W,"(x)+ 2 W"'(x) j)(-3))

.=(8.72 11.18x+7.31x')+(2.12 —2. 54x —1.21x')(-3)
= 2.36 —3.56x+ 10.94x'

[see Eqs. (46a) and (48h)] would become

([W&0)'&&&)(x)+
1

W (2);&1&)(x)]+ ([W(0)l &1&)(x)+
1 W&2)'(&)) (x)] +

1
[W (0)'&&&)(x) ~

1
W (2)&(ll )(x)))( 3)) ZJ'=O

=(([Ev(f m„')]'+ 3[E„(—', m„')]']+—', ([2EQ—', m„')E„(—,
' m„')] + 2[E„(—,

' m„')]'](-3))
= [P„(-,' m„') -E„(', m„')]'=0—.058

[see Eqs. (81), (87), (810), (816), (819), and (825)].
(2) We note that the average value of v k is, using Eqs. (42h) and (42e)

f d()&"' f&t~g~"' p, -(~

dQ'"' dQ'"'
,. (I~l'&

—' )V &»(g) + —,
' ((V',"(2;) + -,' W,&2) (2;) ) [ P(1, 1) + P(1, 0) + P(1, -1) 3P(0, 0)]-—

[)V&»(~)+-,' )V&»(~)]+{[W&»(x)+'3W&2'(x)]+3 [(V,"'(x)+3 (V3"'(x)]}[P(i,i)+P(i, c)+&(i, -I)-»(o, o)]
' (50a)

A

(v' k)„ is always small, a fact which helps justify the approximation W,'"'(q', x) = W,'"'(—, m„', x) -=W', "'(x)
[see Eqs. (43a)-(43d) et seq. ]. Thus, for example, in case I(b) where [P(1,1)+P(1,0)+P(1, -1) —3P(0, 0)]
= —3 [Eq. (42g)], we have from Eqs. (50a) and Eqs. (47a)-(47n)

0.24 x= 0
I 1.70 —1.72x —1.20x'
3 2. 36 —3.56@+10.94m'

0.04: x=1.
(3) Though the approximation of

-F„(q')/(1+ q'/m, ') q' P~(q')/&„(0)

(50b)

by I in both the t& p and p 'He cases [Eq. (Sf)] appears reasonably well established on the basis of the
analysis of p P- v„n and p 'He- v„'H,"'" it is nevertheless worth pointing out that the values of
6„~, Q~,", dl (V N, - v„Nfy)/dx, and I'(t& N, - v„N&y) are all rather sensitive to the value assumed for

E„(q')/(1+q'/m, '} q' E (q2)/E (0)

the sensitivity being greatestfor 6„""„and ~;. It is therefore interesting to calculate the values of „",",
8~,", dl'(pN, - v„N&y)/, dx, and 1(p, N, —v„N&y), e.g. , for (=2 an. d P, =2, and compare these values with
the values calculated for $ = 1 and already given in Eqs. (49o)-(49r). Considering, for example, case
II(a) with P„=O, P», ——1, we have, using Eqs. (45a)-(45c), (46a), (46b), and Eqs. (Bl)-(858)
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QA A

vt k'

-0.51 —2.09k ' z
5.36+2.66$ ~ g (51a)

Q- - = ' ' „:]=1, x= s [Eq. (49o)],
-0.08 —1.22k ' z 2

(51b)

2.78+0,61k z
5.90+ 1.18$ ~ g

(51c}

1 2
Qg; =0.43: )=2, x= s,t

Qg; =0.28: )=1, x= s [Eq. (49p)],

(51d)

(51e)

8-; =0.06: [=2 x= —,
2

Q~g (51f)

dl'(p 'He- v„'Hy)
dx

I',(12x(1 -x) '}
1 2=5.42: )=g, x= s, (51g)

di'(V 'He- v„'Hy)
dx

I',( 12x(1)—x'}
=4.66: g= 1, x= s [Eq. (49q)], (51h)

dl'(p 'He- v„'Hy)
dx

I',( 12x(1 -x)'}
2=5.80: )=2, x= s, (51i)

I'(V 'He- v„'Hy)/I", = 12.8 x 10 '
I'(p 'He- v„'Hy)/1, =11.4&& 10 '. )=1 [Eq. (49r)],

I'(p 'He- v„'Hy)/I', = 12.4 x 10 '. $ = 2.

(4) The photon emitted in V. N, - v„N&y possesses a net circular polarization

(51j)

(51k)

(51l)

dn'»
4m

dn'"
4w

dn"'
4m

dn"&
4m

where

.dn~»
4m

dQ"'
4m

(52a)

(~$'~*) = z, ,
z )$'"'(t,', 8' '8$!;SS)"''(S' ,R'$",& 8+'&&; , S$)~')p($, $ )s,s, s,'"',s ~

wit" ('-. and e right and left circular polarization vectors, respectivelY (e, =(I/~2)(& y(', q ),
, cm, cs mutuallY orthogonal}. Equation (52b) for &~ Q~ ), is to be compared with Eq. (42f) for &~sf

~

&=:

Evaluating the sums on the right side of Eq. 52b, we get

(52b)
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1 1
(~ &~ )&=

2 2k, ~ (U„,+U„,[P(l, 1)+P(1,0)+P(1, -1)—3P(0, 0)]+U...[P(1,0) -P(0, 0)]

+ [U4; (v '2) + U, , (v 'z)(S 'z)+ U6,. (k '2)2][P(1,1)+P(1,—1) —2P(1, 0)]

+[U...v z+U. ..k z][P(1,1)-P(1'„-1)]], (52c)

~ U(n)(&, jqn ~ (p(n)~(tl)+ U(n) v(lh) + U(n) $(hh))(&, p)n
n=O n=O

i

W'"" '=U'""~'+U'""~' '=LL Ih hh

where the UI",,) are structure functions which are homogeneous and quadratic in the F» „„v(q') and which
also depend on k,—Eq. (52c) for (~9'~'), is to be compared with Eq. (42h) for (~V'~'}. We note that
~"'(e*,s,"',s,~', S,S,)=0 [this follows from Eq. (40a) since (1 —o ' k)cr~' z*=0]; thus only
&" (c*,s,"',s,' ', S,S,) contributes to (~W~ ) [i.e. , U,'. ".'=U,.","'""']so that(~ & ') depends only on F„(q') and

FJ,(q') [see Eq. (40b)] and P„, =1 only if the terms involving Fz(q') and Fv q') are neglected.
If we now approximate the structure functions UI", )'M)(q', k, /m„) by UI","~'(—,'m„', k, /m„) [using the argu-

ments of Eqs. (43a)—(43d) et seq. ], calculate the UI","~)(—,m„', k, /m„) from the F» „„~(—,m„') listed above,
insert the values obtained into Eq. (52c) to get (~ 9 ~'), and integrate over all v and k, we have

4g 4p 2 2$ 1/2 m

m 2

x —,
' )' (

—,'m„') ", (4-18x+32x')+ —,'E ( ', m„') ", E—„(, m„') )(1 ——4t)

m 2

+3 E~ 5m„" + +9 E~ 5m "2 -4+30x —56x
mp mf}, mg

x E —,m " 1 —4x —2E 5m

x [P(1,1)+P(1,0)+P(1, —1) —3P(0, 0}] (52d)

which, together with Eqs. (44f) and (47a)-(47i) for J dA'"'/4w

fdic'"

/4)(~vF ~'), yields upon substitution in
Eq. (52a)

case I(a)

case I(b)

case I(c)

case II(a)

(0.22 —0.59x+ 3.17x') —(0.02 —0.20x+ 1.85x')P Pv
(8.72 —11.18x+ 7 3lx')+ (2.12 —2.54x —1 2lx')P P

(0.28 —1.19x+ 8.72x')
(2 36 —3.56x+ 10.94x')

(0.26 —0.99x+ 6.87x')
(4.48 —6.10x+ 9 73x')

(0.19+0.04x+ 2.52x') —(0.06+ 0.18x+ 1.47x')P„P3„,
(8.92 —10.89x+ 6.75x'}+ (1.31 —1.98x —0.74x')P„P~„,

(52e)

(52f)

(52g)

(52h)

P((i )i ) 1+I 2/ 2
~1

f((NiN (q } firN Nf(
—F„(5m ')/[1+(5m„')/m, ']

I)
'

) F~(q')/F~(0), , (~(5)

Unfortunately, the experimental determination of P„„appears to be extremely difficult.

= 0.43 for x = —,
' and I'„I'3H, 0.

As can be seen directly from Eqs. (52d) and (52a) the value of P„„ is also sensitive to the value assum-
ed for
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SUMMARY

In conclusion, we summarize our results by em-
phasizing that we have derived an explicit expres-
sion for the transition amplitude of radiative muon

,capture by a nucleus in terms of the charge on the
muon and the form factors characterizing the cor-
responding nonradiative muon capture [Eqs. (40a)
and (40b)]. Moreover, this transition amplitude,
albeit rather approximate, satisfies exactly the
constraint equation of CEC, CVC, and PCAC and
can be used to give a detailed numerical predic-
tion of the various observable quantities associa-
ted with p p-v„ny andy 'He- va'Hy[Eqs. (48a)-
(48r), (49o)-(49t), (51a)-(51k), (52e)-(52h)].

APPENDIX A

'
(Q ) 'k (Q+ )'k)'

E(')=='zm 2E I ' (Q-q)'k (Q+k)'k)'

E(c) 023

F(c) O

(A8)

(A7)

(A8)

(A9)

Further, Eq. (15a) and Eq. (20) show that EQ",) de-
pends only on q'. Similarly, Eq. (15e) and Eq. (20)
show that E,",) depends only on q' so that Eq. (17b)
becomes

(E(a) + E(b) + ~(a) )q, k+ (~(a) ~(b ))Q, k

k'F;', '+ -mkM+,",'+m, '. (E (t)')+—k'„(q'))

In this appendix, we begin with a description of
the procedure for the determination of all the rel-
evant F; ' ' ' " by means of the CEC and CVC
constraints of Eqs. (15a)-(15h) and (17a)—(17h)
and the LH of Eq. (20), starting from an approp-
riate set of F&&"""' "' The appropriate set
used is that given in the text [see Eqs. (24a)—
(24c)]:

= function of q' only.

Equations (Al) and (A2) yield

mp

e,-+ p, e~+ p.~
(Q-q) k (Q+q) k

(A 10)

(Al 1 )

F(b) m a F)f(q ) )( )f
2m 2m,- 2M&

+ Eyq +—E~q
F((2) P13 (A12)

so that, combining Eqs. (A10) and (All) with Eq.
(20), we obtain

e , + p,, e~+ p.z
(Q —q) 'k (Q+ q) 'k

E(a) a F)((q')
2m, 2M, 2M,

(Al)
mp

e~+ I"~ es+ &s

(Q —q) k (Q + q) k

qE +M-2gm'

(A18)

F q2 + E q2
m, " Q+q k' (A2)

(A8)

MF '=m ' E q'+ —E„q'

F(a) O23

We first note that Eq. (15b) together with Eq. (20)
yields a unique solution for EIba) and E(b) [ see
Eqs. (21a) and (21b)]:

2m,. 2M~

E(a) F 2, M E q.

(A15)

(A16)

= mb'I +v(q')+ F)((q') I(&' &f) (A14)
m~

which, in turn, yield [using also Eq. (Al)]

e,. e~
(Q-a~) k (Q+k) k)' (A4) WithE,', E,a) and E,",) given by Eqs. (A16), (A15),

and (A12), Eqs. (15a), (15d), (15e), and Eq. (20)
give

f 8( 8f
)I, (Q —q) 'k (Q+q) k&' (A5)

Analogously, Eqs. (15g) and (15h), together with
Eq. (20), determine Ea(a), I(, F(a), and j'(;):

E22 =mp Fp q +—F~ q
M 1

mb (Q —q) 'k 2M(

1 p, y

(Q+q) 'k 2Mf

(A17)
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3 . ~~ Evq +

1

(Q+q) 'k 2M~

(A18)

by Eqs. (A6), (A17), (A8), and (A16), Eq. (17d)
leads to

E~(q') e; eq
b 22m (Q —q) ~ k (Q+q) ~ k/

+ Evq + E~q
M

E(d )

(q ) k2M

(q+q) k Ze, (A19)

t p; 1
~q(Q-q) k 2M, (Q+q) k 2M, ~

(A28)

E(d) 1 . 3E 2 1 p, ]"q'(q, ) k2M,.

1

(q+q) k 2M

E(d) 023

E(d) 033

(A20)

(A21)

(A22)

f
(A23)

Equation (A23) and Eq. (20) imply

z)'»==,'im»'z„(q*)((
) 1

while Eq. (17g), with E&t&, E&Q&, EQ&bQ&, and EQ&", &

given by Eqs. (A17), (A4), (Al), and (A21), yields

which is seen to satisfy Eq. (20). Equation (A28),
together with Eqs. (15f) and (20), then determines
E( ) andE()31 00

(q')('- &I»'((Q —») b (Q»») b)

+ Evq + E~q

(q q) k 2M. (q+1) k ~» '

(A29)

Z 2 M

(A30)

Py

(Q+q) 'k 2M

y(d) 1 p, ]E„=2bmb E„(q )
( )

1 P.f
(Q+q) 'k 2m'

(A24)

(A25)

Finally, with E&, and EQ&
& given by Eqs. (A3) and

(A16), Eq. (17a) and Eq. (20) yield

) —~3 E q2+

P, ; 1 Pf
(Q —q) k 2M, (Q+q) k 2M~

1

(Q+q) 'k 2M
(A26)

»

(q)
00 P 2~ 2M 2M

q2 + E q2
M

e&™' ef~u'
(Q —q) k (Q+q) k J'

Further, with E22 E22 p E23»& and E00 specified

We note that Eq. (A19) and Eq. (A24) agree, which
provides a consistency check With E2g E00 and
E&;, & given by Eqs. (A25), (Al), and (All) we ob-.

tain, using Eq. (15c) and Eq. (20),

(A31)

E(.) 3E ~ M E

1 . p; 1

(Q —q) ~ k 2M, (Q+q) k 2M~&

(A32)

which completes the determination of all the rele-
v~t F(a& ~ &b)»&e& ~ &d) in Eqs (25a) (25z)ij

We note that the CVC constraint equations (17e)
and (17h) provide consistency cheeks of the above
results. Further, the CVC constraint equations
(17c) and (17f) which relate E&&&b&, E2&b&&, E&;.&, and

as noted in the text [before Eq. (23)], E&b, &, E&b&,

E,',. ', and F",j' do not contribute to V'"'.
%e proceed next to determine all the relevant

G,'.""'""d'by means of the CEC and PCAC con-tj
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2M,.

""= ""(q')(( -'.)'A (Q'q)'A) ""'
2M, p, ;
m~ '

f f
(A35)

straints of Eqs. (16a)-(16h) and (18a)-(18j) and
the LH of Eq. (20), starting from an appropriate
set gf 6 "~)* ( ' ~) The appropriate set used isig
that given in the text [see Eqs. (27)-(31)]:

( ) 3 2
' 2M .

' 8 ef
'(Q-q) A (Q ) A)

(A47)

while Eq. (A46), together with Eqs. (16f) and (20),
yields

() . 3 2 1 P]G3)zm() FQ(q )
(@ )

Py

(Q+q) k 2Mf

(a) —p22 (A36) (,)
2M e~ ef
m, ' (Q —q), k (Q+q) ki

n ~u
m l((q q) k (i&&+q) ' k

(A37)

We first note that Eqs. (16b), (16g), (16h), and

(18j) together with Eq. (20) lead to

G&'&=-m 'F'- —
~ ~(q) (q-q) k -(q+q) k)

(A38)

Q g' m, 'q„(q')((=) +
( ) I, (Aqq)

(A48)

yj m~

(A49)

We note that Eq. (18e) provides a consistency check
for the above results.

Using G~('& and G,' as given by Eqs. .(A34) and
(A35), together with the fact that, by Eqs. (16d)
and (20), G,' depends only on q', we have from
Eqs. (18b) and (20)

G (c) -P
22

G (c) —P32 7

(A40)

(A41)

G(a) P12

( )
.
2 2 ey+

)LLEWG,; = 2m~ F„(q )
( )

(A50)

, (q q) k-(q. q) k)

(A42)

2M t eq ef
m "((Q —q) A (Q+q) A)'

(A43)

f =-m, '(Z (q')+, q (q'))
m, '

x " +((Q-q) A (Q+q) A)'

2

f =4Mm, (E„(q')+,q (q'))
m, '

(A44)

e~ ef

Eqs. (A33), (A38), (A40), (A42), and (A45), we
obtain, from Eqs. (18d) and (20),

G"&=im ' F (q-q) ~ k 2M (Q+q) ~ k 2Mf

Q)
2M ( eg e)q

m:(((Q-q) A (Q+q) A) '

(A46)

2M
+m~F 'q' ~ 2m, ) My)

f,=(q,(q')+ .q, (q*))(A, —A, )A

whence, from Eqs. (18i) and (20)
2

f, = -im, '(q„(q')+, qq(q'))

Py

(Q —q) A (Q+q) A)'
2

f, =im, '( q( )q+, F (q')(
m~ j

P,y

(Q-q) A (Q+q) A)

(A51)

(A52)

(A53)

(A54)

G(~)-p
22

G(d) —P32

(g) 4 2 2M ' & P jG„=-im Fp(q ),
( i

1
((Q& +q) k 2Mf

(A55)

(A56)

(A57)

Also, with GA( & and G,(2' as given by Eqs. (A35)
and (A50), we get, using Eqs. (16d), (16e), and
(20),
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G,',"= im, 'F~(q') 2M fPlN":""=E'+3E'+2EEV A A

p g 1 py

(Q —q) ~ k 2M,. (Q+q) k 2M&
' (A58)

2 2

+ EP 2 1 2x+ Kmr'
/

Eqs. (A34), (A38), (A55), (A57), and (A53), we ob-
tain G,«2&, in a form consistent with Eq. (20),
from Eq. (18g):

+4F„F, "(1—2 )
2mp

m„'&
+ 2 FQ 1 34)(4 + 3x"2mp)

(Bl)

G «& = gm 'F (q2)
2M

1 pq 1 py

(Q —q) k 2M( (Q+q) k 2M'

(A59)

p~ 1 p~

(Q —q) k 2M, (Q+q) k 2M'

(A60)

G,',"= im 'F„(q')

X

~

~

~

e]+ p, ] ey+ py+
(Q —q) k (Q+q) k.

'

We note that Eq. (18h) provides a consistency
check for the above results.

Finally, with Gpp Gpp G22 and G,", given by
Eqs. (A33), (A34), (A36), and (A37), we obtain,
using Eqs. (18a) and (20),

(A61)

Equations (A59), (A51), and (A34), together with
Eqs. (16c) and (20), yield

G'"' = -fm 'F,(q')
2M

m2 m2 2

mr' 'mr' mp

m2
+ Fp ",F„"(1+Vx —12x')

m r 2mp

2

+4 E„" 1 —2x,
2mp i

m' '
N(p).,(hh) 2 FP- U2 1-3X+BX2

m2 m 2

4. 2F ",F„"(1-x)+6 F~
mr "mp mp

(B2)

2 2 2
~,(i)(rr) E 2 E 2+2E E u+ E1 V A A P 2 Pm 2

m2
+ 4Fp ",F~ " (1 —3x+ 4x')

2
—4E F„2 '(2 —24) —2(F„2 " (2-24)',

(B4)
2 2 2

W(2);on) 4F F~ "2(1 2x)+2 F

G,",& =m, 'F,(q')
2M

e(+ 0( ey+ )&y

(.(Q- q) ~ k (Q+q) ~ k&
'

2

f =4M iF (q)+ F (q)i

e;+ p. ; el+
(Q-q) k (Q+q) k

+2m, q„(q'&(
' +

f

(A62)

—4 E„" 1-,
m'' m2 mW"'""'=4 F " x(-1+3x)+F "F "4x1 Pm 2 m 2mp

gr( );( ) 2 E

m2 2
gr(2);(&&4)

i

F u

(B6)

(B'f)

%e thus complete the determination of all the rele-
vant G,'z'+' "'' ' in Eqs. (32a)-(32z).

m2'.F~ "(1-x)|1-4), (B8)

APPENDIX 8

In this appendix, we list the structure functions
gr (n) —gr ~n); & r r ) + g (n); ~ rh) + ~ (n) i & hh) as derived
from Eqs. (40a)-(42c). Using the notation F»» ~
—= F„„„~(q')and x =—k, /m „(with 0 (x & 1), we have

m2 2
(2) '(hh}= 2 E g 1 -x 1 —2mr'

m 2

+ 2F~ ",F„"(1 -x),mr mp

gr(p);(r r ) 02 (B10)
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m 2 m2 2

W~,')'('h} = (E» —F„)F~ ", — EJ, ", xmr' mr

m2

m2 2 2

(811)

2' 'mm'

—4E„E~ " (1 —2x)
2mp

2

-2 F„" 1 —2x2, (822)

~(z);(t r)
2 7

m 2 2 2

m.' m '
m2 2

W(»:("")= -2 F " x 3-4x'mr'

(812)

(814)

m2 2 m' 2' 'mr' " 'm.' 'm.'

+ (2F„-4E„)F„
2mp

m2
+ 2E~ ",F„"(1 —sx+ Sx')

m2 m 2

+2F~ ", F„"(1 —. 4x)+2 E„
my mp mp

+ F„" -4+ 10x,
mp

(823)

gr(2);(l l ) 02

(815)
(816)

2 2 m2W"""=2(E ' x(t 4x)+R t" t' " (1 4g)
7r

m2 m m22
+(2){th) F U F ~ o (] ) E o (1 x)&m 2 &2m +m2

(81V)

m2 2

W(,'):("")=-2 F, ", 1-x 1-2x'mr'
m2 m2' 'mr' " m'

(824)

m2' 'mK'

(1 -x)+ 2F F
2

{1-x
mm' mp

+ 2E„E„"(1 —3x)
2mp

m2
+ 2E~ ",F„"(1-x)(1—2x)

U x 1 2

2 2

m " 'm.'
m2 2

+ Fz "2 —1+6x —4x + 2F~F~

m2

(816)

{819)

+2F»F„" {1-x)+2E„F„2"(1-x)
mp mp

m2
—2' ",F„"(1-x)(1—2x)

+2 F„" 1-x 1 —2x,m„)'
"2mp]

m2
'mm'

m„'i
+2 E " 1-x 1-2x'

m~ j
2

-2E~ ",F„"(1-x)(3—4x)

+4 F~ " 1-x,

m22
~

(1 -x)(1—2x)

(825)

(826)

(827)

m 2

+2 F„" 1 —3x,
mp

m'' m2 mW{o}:{hh)=2F " (-1+3x)+E " F " Sx~m,' m 2mp

(820)

(821)

gr(o);(t t) gr(o);(th) —gr(o);{hh)
4 4 4

Qt};(rt) gr(t):(th)
4 4

gr(1);(hh) gr(2);(t t)
4 4

gP(a};(th) ~(a):(hh) 04 4 (826)
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m2
W, '" =2F„F„—2E~'+2Et Ep ", (1 —x)mr'

2m
11—2E~FI 2x —2Fv F~ xm' 2mp

—2Er(F„"(2 —3x)
2mp

m2
—2F~ "hF„"x(1 —2x)

mr mp

—2 E~ " 1-x 1 —2x,
2mp j

m2 m2' 'm.' " 'm, '

m22
+ EI "2 1-4x2 + 2Ev —4E~ E@

(B29)

m2 m2
m " 'mr'

+ l(FJ, ", (1 —4x')+ (2E„—4F„)F„

m2
+ 2' ",F„"(1 —6x+ 6x')

2

+ Fg " -4+6x,
2mp

m22 2
W(')'("")=2 E " x~4E u E u (1 —2x)&m 2 &m 2 ™2m

~"2m ) '
p-

W(t);(t t) W(t};(tt)
7 5

m2
'm.'

(B44)

(B46)

m2
+ 2E„",F„"(1 —6x+4x')

mr 2mp

m„')'
+ F " -4+ 6x,

2mp j

mw(o);(hh =2I E u
l x(3 4x)

E ~m,2)

m2
+2F~ ohF„u (1 —2x)

mr 2mp

W(t);(t t) W(&);(l l)
5 3

@-(X);(rh) ~ (2);(&h)
5 3

W(t);(hh) W(u);(hh)
5 3

gr(2):(»)-gr(2);(1h) gr(2);(hh) p5 5 5

@(0);(») ~(o);(»)
6 . 3

W(o);(t h) W(o);(th)
6 3

W(o);(hh) W(o);(hh)
6 3

W(i);(t t) W(t);(t t) W(o);(t t)
6 3 5

W( t);(t h) W(t);(t h) W(o);(t h)
6 3

gr{x);(hh) ~(x);(hh) ~{0);(hh)
6 3 5

W(h);(t t ) W(h);(th) W(h);(hh) 06 6 6

W(o);(t t) W(o);(t t)
7 5

(Bso)

(Bsl)

(B32)

(Bss)

(Bs4)

(B35)

(Bss)

(B3V)

(ass)

(B39)

(B40)

(B41)

(B42)

(B4s)

m.+2 E " 1-x 1-2xmr'

m2",F„2 " (1-x)(1-2x)

+2 E~
m„)'

~ 2mp)

m2
W(1)t(hh) 4F u F u (1+m r p

@(2);(ll ) g7(2);(lh) gp(2);(hh) p7 7 7

W(o):(t t) W(o);(t t) +W(o);(t t)
8 I 1 6

(B47)

(B46)

(B49)

(B50)

m2 m2
mr' mr'

m 2~2 m g+2 FJ, 2) x 3 —2x + 2Fv+ 12F„E
2mp

m2
+ 2F~ ",E„"(2+ sx —10x')

mr 2mp

W(t);(t t) W(t);(t t) ~ W( };(tt)t
8 1 6

2 m2
mr' m.'
m22

+2 E~ "2 1 —2x+4x'
J1Z r

m2
+ 4E~ ",E„~(l—sx+ 5x')- —

2mp

m„+ 2l E~ " (-2+ 5x),
2mp (B54)

+ 2 Ey 3 7x (B51)
mp

m22 m2 m m 2
W(o);(hh) SlF u x2+16F . u F ox+4 F u

rtt m +2m

(B52)

(B53)
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5. 2 2
N'I'™u=2(E " x(1 —6x)

yn 2

+4' ",I"„"(1 —Sx)m g 2&l'p
(B55)

@7{2);(ll) g7(2);(l l) + gr(2);(l l)
8 1 8

~ (2);(l&)
O8

m22
gy(2);(hh) 4 y 0

(B56)

(B5'r)

(B56)
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