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Collisions between nuclei are studied by means of a simple extension of the Glauber high energy
approximation. An expression for the optical phase shift function, exact within the framework of the Glauber
approximation, is expanded in an infinite series and includes the effects of nuclear correlations. The first
term corresponds to the standard optical limit result of the Glauber theory, and the higher order corrections
arise from the processes in which one or more nucleons of either nucleus can undergo multiple collisions. The
center-of-mass correlation is treated consistently so that our results do not exhibit the large-q divergence
which characterizes the usual optical limit. It is shown that with realistic constraints on nucleon-nucleon total
cross sections, the optical phase shift function does not approach the usual optical limit result when the mass
numbers of the colliding nuclei become very large. With a proper treatment of center-of-mass correlations,
the optical phase shift series converges rapidly for light nuclei and allows one to perform realistic
calculations. The effects of higher order corrections on total and inelastic cross sections and on elastic
scattering intensities are examined. The effects of the Coulomb field are included in an average phase
approximation and results are compared with measurements.

NUCLEUS REACTIONS Nucleus-nucleus scattering. Corrections to the optical
limit in high energy approximation. Center-of-mass correlation effects. Cal-
culated g(E, 8), total cross sections, inelastic cross sections, and slope para-

meters.

I, INTRODUCTION

Theories of scattering are perhaps best tested
by applying them to a wide variety of collisions.
Indeed, it would be satisfying if one could describe
both nucleon-nucleus and nucleus-nucleus colli-
sions by means of the same underlying theoretical
framework. At high energies the multiple scat-
tering theory due to Qlauber"' has provided a basis
for calculations which have been quite successful
in describing the collisions of hadrons from vari-
ous nuclear targets ranging from deuterium to
uranium. ' ' One of the early applications of the
theory was to hadron-deuteron collisions and it
was predicted that double collisions would become
the dominant mechanism for scattering away from
the forward direction. ' For heavier nuclei many
additional multiple scattering processes can occur,
and the contributions to the scattering amplitudes
from successively higher order multiple scatter-
ing terms fall off more slowly as the momentum
transfer increases. Consequently, higher order
collisions were predicted to compete with and
eventually become more important than the lower
order collisions as the momentum transfer in-
creased. This has now been well established in
the extensive applications of the theory to nucleon-
nucleus elastic scattering data near 1 Gep and

to the elastic plus quasielastic data at 19.3 QeV. ' '
For pion-nucleus scattering the theory has been
successful, surprisingly, down to rather low en-
ergies. '

If one has confidence in the theory, one can use
it to probe nuclear structure. Attempts to deter-
mine the radii of neutron distributions in this way
have recently been made' for various nuclei. Al-
ternatively, using simple nuclear targets, one can
use the theory to extract information regarding
hadron-nucleon amplitudes. In fact, proton-deu-
teron measurements together with proton-proton
measurements have been widely used to extract
proton-neutron amplitudes. ' "

There exists an extensive literature on the sub-
ject of corrections to the Qlauber approximation.
Evaluation of these corrections is a delicate mat-
ter because of the cancellations" between off-
shell and higher order multiple scattering effects.
These cancellations also occur in the more gener-
al case of heavy ion collisions. " Recently, cor-
rections to the Qlauber theory, which retain the
previously noted cancellations, have been ob-
tained. " In fact, even more subtle cancellations
may be involved in the Glauber approximation.
There is some evidence" that the dominant correc-
tions arising from noneikonal, Fermi motion,
and kinematic effects exhibit substantial cancella-
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tions among themselves. Therefore, theoretical
analyses which remove only one of the above ap-
proximations may be less accurate than those
based upon the conventional Glauber theory. At
incident energies of a few GeV/nucleon (GeV/n),
the combined effects of these corrections become
small, as expected. At intermediate energies,
they can be added on to the full Glauber scattering
amplitude.

In the case of nucleus-nucleus collisions, there
have been a number of theoretical analyses at high
energies based upon the Glauber approximation or
some variants of it."""There have also been a
few attempts" to extend the optical potential form-
alism of Kerman, McManus, and Thaler" to nu-
cleus-nucleus collisions. However, these calcula-
tions have been restricted to first order. %'ithin
the framework of the Glauber approximation, a
solution to deuteron-deuteron scattering was pre-
sented in Ref. 14, and subsequently applied with
success" to the high energy data. The case of
deuteron-nucleus scattering has also been studied
recently. " The full Glauber multiple scattering
series for general nucleus-nucleus collisions was
considered in detail by Czyz and Maximon. " H'ow-

ever, the number of multiple interactions in this
case grows so rapidly that the evaluation of the
full multiple scattering series becomes intract-
able. (Full calculations have been carried out for
n-o. collisions using Gaussian wave functions. '"")
For heavier nuclei, an optical limit approxima-
tion". "is generally used. This optical limit re-
sult has been employed to study total cross sec-
tions and fragmentation cross sections, "and for
testing concepts such as factorization. "" It has
also been applied to medium energy heavy-ion
elastic scattering data. '4

It has been realized"'"'" that a serious attempt
to analyze heavy-ion scattering, in the optical lim-
it, is plagued with difficulties. The cross sec-
tions diverge at large momentum transfers when
the center-of-mass correlation function is re-
tained (as it should be"). Furthermore, recent
total cross section measurements at the Berkeley
Beval'ac" indicate serious disagreement with op-
tical limit predictions for "C-"C collisions. In
view of the recent rapid increase of interest in the
field, it is appropriate to examine heavy-ion scat-
tering and the validity of the optical limit.

In the present analysis we study the problem of
nucleus-nucleus collisions in a theoretical frame-
work where the full multiple scattering character
of the Glauber series is retained. Rather than
work with the full series which becomes intract-
able, we attempt to sum it by introducing an op-
tical phase-shift function (which is related to a
unique optical potential). A series for the phase

shift function is obtained. The procedure is sim-
ilar in many respects to that of Glauber' for the
case of 'nucleon-nucleus scattering. However,
the character of the phase shift series is quite
different in the case of nucleus-nucleus scatter-
ing, due to the occurrence of additional new types
of multiple interactions. In fact the series, which
is usually considered to reduce to the optical
limit in the case A„A,-~, appears to diverge
in that case when realistic limits are taken for
nucleon-nucleon amplitudes. It is, nevertheless,
quite useful for light and medium weight nuclei
and for studying processes which do not probe
small impact parameter collisions. In Sec. II we
derive the results for the optical phase shift func-
tion X„„wherethe first-order term corresponds
to the usual optical limit. Correction terms up to
the fourth order are obtained. In See. III, center-
of-mass correlations are treated consistently by
introducing them in the series for X„„sothat the
resulting cross sections do not suffer from the di-
vergence at large momentum transfers. In Sec.
IV the phase-shift series is evaluated for the case
of Gaussian wave functions and the higher order
terms are estimated in limiting cases. The influ-
ence of higher order corrections on total cross
sections, inelastic cross sections, and nucleus-
nucleus slope parameters, is discussed in Sec.
V and comparison is made with the recent 0.87 and
2.1 GeV/n experiments. The effects of the Cou-
lomb interaction are treated in See. VI. In Sec.
VII we study the elastic scattering intensities and
the results are applied to the 1.37 GeV n-"C data
from Saclay. In. Sec. VIG a short range approxi-
mation for the nucleon-nucleon interaction is con-
sidered, and finally we summarize our results in
Sec. IX.

II. NUCLEUS-NUCLEUS SCATTERING AMPLITUDE

The scattering amplitude operator for collisions
between nuclei with mass numbers A, and A, can
be written as"4

h 8 a «(1 8&x'~(bl(f';I, ( i))) (2 ])
27t

where k is the wave number of incident nucleus,
hf| is the momentum transferred from the pro-
jectile to the target nucleus, {r,.}and {r',.) repre-
sent the coordinates of the bound nucleons in the
incident and target nuclei, respectively, and b
is the impact parameter vector. The nucleus-
nucleus phase-shift function X~,~, can, in turn,
be expressed in terms of nucleon-nucleon phase-
shlft functions Xg~ by
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(2.3)

for the nucleon-nucleon (NN) profile functions,
we obtain

Ag Ag

e'"'A, d]2&""&"&'J"= ] ] [l-l", .(k b- s,. +s',.)]. (2.4)
«~l jul

X„„(b;Pr&), {r&))=g g X,&(k»;b —s,. + s&), (2.2)
«=1 gal

where s, and s& are the projections of the nucleon
coordinates onto the impact parameter plane, and
where k„denotes the wave number of the nucleons
in the projectile. With the definition

I'»»(k», 'b) =1 —e "»»&»'

The profile functions I'» are, in general, oper-
ators which do not commute with each other, and
therefore E&I. (2.4) would be valid only if com-
pletely antisymmetrized wave functions were used
to describe the (A, +A, ) particle system. However,
since we do not deal with the effects of spin and
isospin in this paper, the profile functions do com-
mute with each other and therefore E&I. (2.4) is
valid for more general cases.

The nucleus-nucleus elastic scattering ampli-
tude is given by the expectation value of the scat-
tering amplitude operator in the ground states of
the two nuclei, i.e.,

Ag

F„(g)= —qq(q) f d'q e"' qe „(1—1 [1 (',,(q„;b—s,. ss,'.)]
«al $~j.

(2.5)

where 4„.are wave functions which depend upon
«

3A«coordinates and where a center-of-mass cor-
relation function K(q) has been introduced in order
to remove the constraint due to the center of mass.
This is possible if the wave fun tions 4„«factor-
ize into center-of-mass and int mal wave func-
tions. This case will be discussed in detail in
Sec. III. The expression (2.5) for the elastic scat-
tering amplitude is quite difficult to evaluate for
general forms of nuclear densities and NN scat-
tering amplitudes. We shall, therefore, define
an optical phase-shift function" by

Using the notation

gnf '"'=- f(x)
) =0'

we obtain

x,(b) =f '"

iX2(b) =
2, (-f"' +f"'),

(2.9)

F,(i[) = —q((q) f d'b e' ' (( —e'" & ').
2r

If we define

(2.6)
iX (b) = —(2f'" —3f"f"'+f"')

iX (b) = —( 6f o & + 2f &)-& f &2 & 2f &2 &

Ay Ag

f(') =(q, , ij.i.[[)-s(';,(b-:s;s5')] q,q ),
« =1 j~'1

(2.7)

then, from E&ls. (2.5) and (2.6),

ix:&(b) = »f(x) I.-&

and so on where

Ay A2

(2.1O)

=i x~(b).
gas

(2.6)
and, in general,

Ay A2

1&,g, (b —s, +s, ) ~ ~ ~ I,. s(b s'+sr„)l+.p;&.
«1~ ~ ~ «n Sg ~ ~ ~ ~n

(2.11)

The primes on the summation signs indicate the restriction that two pairs of indices cannot be equal at
the same time (for example, if i, =i, then j,ej, and vice versa). In order to evaluate f, it is convenient
to isolate the terms in which none of the indices are equal and tive terms in which some of the indices may
be e&lual. (These later terms will correspond to the cases in which nucleons of either nucleus may under-
go multiple collisions. ) The terms f&" and f &3& can be written as
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f&» g g (r.,r„)
igk jy l

Ay A] Ag A~

= g g (r,,r„)+gg (r,,r„)+gP (r,,r„,.),
'ilk +l i Pl ilk

Ay Ag

f&'&= g' g'(r, r„r.„)
c~kym j i,n

p (r, ,r„r)+3 g p (r,q„r„„)+3g g (r,,r„r„„)
i gkgm je&Wn

jan
i=kPm j8lfn

jAn
i PkAm j~l An

imam

+6 g g (r,r„,r )+ g g (r„r„r.„)+Q P (r,r„,r.„). (2.13)
i=kAm j=n

jul An

i=k=m j 0 l An
jAn

i 8k0m
imam

Similarly,

Ag Ag

tudes, we have from Eq. (2.1) for the case of NN
collisions

g' (r,r„r„„r„).
i&k&m&p jt l,n, q

(2.14) f„,(a„q)= ' "f @*vs"'r„„(a„;i&&, (2.15)

f"' and higher order terms can also be broken up,
but their evaluation becomes increasingly lengthy
and tedious as the number of possible types of
multiple interactions grows rapidly. We shall
restrict ourselves to terms up to fourth order.
A fourth order calculation, as we shall see, is
adequate for describing collisions between light
nuclei for momentum transfers which are not
too large.

In order to relate the optical phase-shift func-
tion to the experimentally measured NN ampli-

which upon Fourier inversion leads to

r„„(k„;b)=(2vik~) ' d'ye '~'"f~„(k„;Q). (2.16)

We now assume, for simplicity, that all NN

amplitudes are equal, which is approximately
true at high energies. (This, however, is a mat-
ter of convenience and not of necessity. The gen-
eralization of our results to the case fief„~is
tedious but straightforward. ) With Eg. (2.16) we
obtain

f~"(b) = -A, A, C,(b),

f~"(b) =A, A2[(A., —1)(A2 —1)D,(b) + (A, —l)D, (b) + (A, —1)D3(b)],

f "~(b) = -A., A~[(A, —1)(A, —2)(A, —1)(A, —2)E,(b) + 3(A, —1)(A~ —1)[(A, —2)E,(b) + (A, —2)E,(b)]

+ 6(A, —l)(A2 —1)E4(b) + (A2 —1)(A2 —2)E,(b) + (A, —1)(A., —2)E,(b)],

f '~ '(b) =A.,A2((A, —1)(A, —2)(A, —3)(A, —1)(A2 —2) (A, —3)G, (b)

+ 6(A, —1)(A, —2)(A, —1)(A2 —2)[(A2 —3)G2(b) + (A, —3)G,(b)]

+ 4(A, —l)(A2 —1)[(A, —2)(A2 —3)G4(b) + (A, —2)(A, —3)G,(b)]

+ (A, —1)(A, —2)(A2 —1)(A, —2)[24G8(b) + 6G,(b)]

+ 3(A, —1)(A~ —1)[(A~ —2)(A, —3)G (b)+ (A, —2)(A', —3)G,(b)

+4(A, —2)G,O(b)+4(A, —2)G„(b)+2G„(b)]
+ (A, —1)(A, —2)(A~ —3)G„(b)+ (A., —1)(A., —2)(A, —3)G„(b)
+ 12(A, —l)(A2 —1)[(A2 —2)G„(b)+(A, —2)G„(b)]j, (2.1V)

where the functions C„D,, E„andG, are obtained as follows. Let us define the generalized (four-body)
nuclear form factor S„by
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Se (4„/4„20}=f d'r, dr„ezp igpr rr ~Pe (r„.. . , r„)~~'

~ ~
~

~ ~

4
d'r, "~ dree zp) g i), 2,)p ee)(r„.. . , 2,),

g=l

(2.18)

(2.19).

where p„"'is the four-particle density. (If one of the 2I, is zero, for example, then S„,would be the form
factor of the three-particle density and so on. ) Here we have defined the n-particle density as

Pg] = &~l'''d &g +g] rl ~ ~ ~

Let us also define, for convenience, the integral operators

}„}2iz=)r"frrpp, e" '"y(p'0) ~ ~ ~ f d*p„e'e"f(}),}
The quantities C„D„E,, and 6, can be written as

C,(2)=(zerke} fd 0'e' (g)} S('e'„1,0, 0)S0+(- ,tO, 0, 0)0

=I,[S (q„0,0, 0)s~(-$„0,0, 0)],

D,(b) =I,[s„($„|L,0,0)s~(-$„-|j„0,0)],

D,(b) =I [S~(0,q, +'fj„o,0)s~(-tt„-tl,0, 0)],

Ds(b) =D2(S& Sd} )

E,(b) =I,[s„,(|l„g,Q, o)s+(-Q, -Q, -fj„o)],
E,(b) =I,[s„(q,+tL, o,g, 0)s+(-g„-g,-g, o)],

E,(b) =E,(s„—S@),

E,(b) =I,[s„(0,$, +Q, Q, o)s„(0,-Q, -fj, —Q, 0)],

E,(b) =I,[s„(0,0,$, +Q+Q, o)s@(—Q„-Q,—@,0)]2

E,(b) =E,(s„—S~),
G, (b) =I,[s„(g„g,|j„g)s+(-Q„-Q,-|j„-|4)],
G,(b) =I,[s„(Q,+Q, 0, |j„q,)s„(-g„-&,-q„-Q)],
G,(b) = G,(s„,-s~),
G,(b) =I,[s„(q,+ q, +q„o,0, q,)s+(—q„-q„—q„-q,)],
GS(b) = G4(s~ Sd}2),

G,(b) =I,[s„(q,+ |L,0, |j„g)s+(-Q,—q„-@,0, -Q)],
c,(b) =I,[s+(Q, +Q, o, Q, q,)s„,(-g„-g,-Q -Fj„o)],
G,(b) =I,[s„(g,+fj„o,@+@,0)s+(-g„-Q,-Q, -g)],
GS(» = Gs(s~, —S~)
Gio(b) =Is[san(020} 4+f| + fj„k)s~(0, -Q, -|t„-|1„—Q)],
G„(b)=G,o(s~ S~ ),
G„(b)=I4[s~(0,Q, + Q, o, Q+ |j )S@(0,0, -Q —Q, -Q —fi,)],

G„(b)=I,[S„,(0, 0, 0, Q+ Q+ Q+ Q)s„(-g„-g,-Q„-Q)],
G, (b) =G, (S~ —S~)
G„(b)=Is[s„(0,Q, + q, 0, q + q )S@(0,—q, -'|1,—Q, Q)]

G„(b)= G„(s~ S~),

(2.20)

(2.21)

(2.22)
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where the notation (S 8 ) implies the inter-
Ay A2,

change of nuclear form factors.
Equation (2.8), together'with Eqs. (2.10), (2, 17),

and (2.22), provides the expression for the nucleus-
nucleus optical phase shift function which includes
all the effects of nuclear correlations through
fourth order. At this stage if one assumes an in-
dependent particle model for the nuclei, the num-
ber of terms in Eq. (2.22) is significantly reduced.
This case will be discussed in Sec. IV and explicit
analytic formulas for the special case of Gaus'-
sian densities will be obtained in Appendix A.

III. CENTER-OF-MASS CORRELATIONS

The internal nuclear wave functions Ck&.((r,'.
" ))

depend upon 3(A,. —1) coordinates. However, it
is often more convenient to use the wave functions
4'„,(Pr,.)) which contain the center-of-mass depen-
dence. This can be done in the special case in
which the center-of-mass and relative wave func-
tions factorize, " i.e.,

(3.1)

where

Since we have, due to translational invariance,

(-» ibbt j P, (bk() )e(a ~ (R y-Rq)

(3.3)

we ean write

&+~+., l 8q;(r;1, Pr,"r)l+.p.,)
= &4„c„le (q; {r,'."'),Pr,'."'))lc„c„)
x

& ff„P„,le"" -'"li~„P„,) . (3.4)

This relation, with the definition

ff(v) =(&Ji p&, le" (' ' ) lfi„p„,) )-b, (3.5)

leads immediately to Eq. (2.5). This is the con-
ventional way" of treating the center-of-mass
correlation in the Glauber approximation. We
have retained it in the previous section in order
to make contact with the earlier calculations.
This procedure is exact if Eq. (3.1) holds (which
is the case with Gaussian and harmonic oscillator
wave functions) and if the scattering amplitude is
translationally invariant (which is true for the full
Glauber amplitude). However, this procedure
can lead to serious difficulties when approxima-
tions are made to the scattering amplitude. In
fact, in the usual Glauber optical limit, the factor
K(q) leads to an unphysical divergence in the
cross sections at large q."""The problem
would disappear if all the higher order corrections
to the optical limit were calculated. In actual
practice, as we shall see, the convergence of
series (2.8) is often slow and the divergence due
to this inconsistent treatment of center-of-mass
motion persists.

One obvious way to avoid this problem is to in-
clude the c.m. correlation to the same order as
the optical phase-shift function. This can be done
by noting that the elastic scattering amplitude may
be written a.s

Ag

E,; (tk)=, d'be'' k,k, ( —H fl(l-I', ,(k„;b-k,'"'+k,'."'))) k,k~),
»k 1=1 j=l

One can define a modified optical phase shift X, , by"

ikF (q) = d' f)e'" (1 — *"eo'(()el

(3.6)

(3.7)

and, proceeding in a manner similar to the previous section, obtain

i)i.p((fb) =i Q y,.(fb),
j= 1

(3 8)

where the )i, are again given by Eqs. (2.10) and (2.17) with the quantities C„D,', E;, and G; replaced by the
new quantities C„D;,E;, and G;. From these equations we have, for example, "

C, (5) = &4'„,C'„,lr, , (b —s,. ' + s,'. ') le„,e„,)

=(2«i~) ' d'&.e '""f(q )&4'~+~. l
e "'"* (3.9)

Now using Eqs. (3.1), (3.2), and (3.5), this can be replaced by



COLLISIONS BETWEEN COMPOSITE PARTICLES AT MEDIUM. . .

C, (b) =(2vik)d) ' d'q, e 'Q&' f(q, )(@„bl„)e'.(]&'&'& 'P]4„ix„)K(q)x

= I,[S„(q„o,0, 0)S„,(-q„o,0, 0)K(q, ) ], (3.10)

which is the expression for C, in Eq. (2.22) except
for the extra factor of K(q,). Similarly, in the
higher order terms, D; has the same form as D;
except for an extra factor of K(q, +q, ) in the in-
tegrand. The expressions for E,. and G,. with extra
factors of K(q, +q, +q, ) and K(q, +q, +q, +qd), re-
spectively, in the integrand yield the new E; and

G, . Thus, referring to Eq. (2.22) we obtain, for
example,

D, (b) = I,[s„(q„q„o,o)

x S„(-q„-q„o,0)K(q, + q, )],
E,(b) = I,[S„,(q„q„q„o)S„,(—q„-q„—q„o)

xK(q, +q, +q, )],
G (b) =I.[s~,(q„q„q., q., )

x S~ (-q& -q2 -q3 -qd)
r

xK(q, +q, +q, +q, )] . (3.11)

The rest of the functions 0, , E;, and G; can be
obtained from Eqs. (2.22) by similar modifications.

A second (and equivalent) way of obtaining the
new phase-shift functions X& is by simply equating

e "o)('] =(2v) ' d'qd'b'e '" ' e'"Q]" K(q)

d.(db))((d)d db f Z.(db')
0 0

x e' "opt~

This is equivalent to the relation

Q;(b)= f d( d)b(xx)iddd

(3.12)

.( ')Q(') ' (3.13)

where Q; stands for the quantities C„D,, E„G„
and Q& stands for the similar barred quantities.
This second procedure [Eq. (3.13)] is particularly
useful for obtaining X, (b) if one already has ana-
lytic expressions for X, (b).

Once the X&'s have been calculated the y s may
also be obtained directly from Eq. (3.12). We ob-
tain

Eqs. (2.6) and (3.7) which yields, immediately, the
relation"

i X,(b) = (2m) e'"' iX,(b')K(q)d'b'd'q, (3.14)

X,(b) =(2 )
'' '"'" "[X.(b') --'X,'(b')] K(q)d'b'd'q+-'X, '(b), (3.15)

iX (b)=(bx) ' f e
' '

i(iX (b') —X (b')X (b') —xiX(b')] ( )d, b'idi' d+( ( )dX'( b)+X—,'ibX'(b)], ,(3.16)

ix.(b) =(») ' ' [iX.(b') --' X.'(b') -X,(b') X.(b') --' i X,'(b') X2(b') ——'. X,'(b')] K(q)d'b'd'q

+ [-'Xs'(b)+Xb(b) X3(b)+~2 i Xb'(b) X2(b)+ 3'. X,'(b)] (3.1V)

For more complicated nuclear densities and NN

amplitudes, where integrations have to be per-
formed numerically, it may be more convenient to
use the first procedure [i.e., Eqs. (3.10), (3.11),
etc.]. ,. (P))I'= II ly( )I',

J= 1
(4.1)

tions, let us assume that the nuclei can be de-
scribed by an independent particle model, i.e.,

IV. GAUSSIAN WAVE FUNCTIONS AND LARGE A LIMITS

As we have pointed out, the optical limit result
of the Glauber approximation corresponds to the
first term of the series (2.8) for X, , In order to
illustrate ihe effects of the higher order correc-

which leads to the simplification

(4 2)s„.(q„.. . , q)=s„,(q,)" s„.(q,).
(This is equivalent to neglecting all correlations
except for those due to the center-of-mass con-
straints. ) We shall further assume that
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2 2-q R~ /4
1

(4.3) where we have defined the pair correlation func-
tion

Although such a form factor is realistic only for
light nuclei, it leads to analytic results which are
quite useful for studying the convergence proper-
ties of the optical phase-shift series. Further-
more, if the parameters 8& are chosen to corres-
pond to the experimental rms radii, Gaussian
form factors can yield reliable results for scatter-
ing at small momentum transfers (and hence for
total cross sections, for example).

For NN scattering amplitudes, we shall take the
usual high energy parametrization

C~(r„r,) = p"'(r„r,) —p'"(r, ) P"(r,) . (4.6)

2 2

iy, (b)= —Aye ' ~";

Now for an uncorrelated wave function of form
(4.1), C„=Oand the coefficient of the surviving
term in iX, is A (which is also the coefficient in

iX,). More explicitly, for Gaussian wave functions
and NN amplitudes described earlier, we have

k&o (i+P) e-Ad l2
4m

(4.4)
o(1-iP)

2mB
(4 'f)

The quantities C„D&,E&, G&, C„D&,E;, and
G; can now be evaluated analytically and explicit
formulas are given in Appendix A.

z y, (b) = (z y, ) ~2 ye
' ",

and, in general, from Eqs. (2.10) and (2.11) we
have

A. Particle-nucleus scattering

Before studying nucleus-nucleus collisions, let
us first consider the case of a single particle in-
cident on a nucleus, i.e., A. , = 1, A2=A, andA,
= 0. [Since we are interested in the limit A -~,
in which case K(q)- 1, we shall ignore the c.m.
correlations in the rest of this section. ] We ob-
tain from Eqs. (2.10) and (2.11)

(4.8)

The expansion parameter for the phase-shift is
proportional to y. Since 8 ~ A.

' ', we have y
fx:A.

' ' and the optical limit result i X, ,= i X, be-
comes a good approximation for large A in the
case of particle-nucleus scattering. "

is(b) = -A f, d rI', (b - s, ) 'pi',I(r,),

is(b) = —
I ,f d'r d'r, I', (b —s )I', (b —s,)

x [Api'(r, ) p'"(r, ) —(A —1) p "(r„r,)]
d'r, d'r, r, b —s, r, b —s,

B. Nucleus-nucleus scattering

Let us now turn to the case where both colliding
objects are nuclei. %e have now

ix, (b) = —A,A, fd rd r I„PIP'(r)'P'PI'(r'),

x [pi2)(r„r,) —AC„(r„r,)], (4 5) where 1',
~

—= 1'„.(b- s, + s&) and

(I,(b)=-, A, A, f d'r d'r'd'r, d'r', I'„I,((I —A, —A, ) PIP(r„r)PIP( r') +Ar, A, C, ,(r„r,; r'„r')]

+ d'r, d'r', I'„A., —1 d'r2I'»p„', r, p„',r'„r,' + A, —1. d'r, I'„p&,r„r,p„',r',

where

(4.10)

Cz,„,(r„r„r'„r,') = p„',(r».r,) p„',(r» r', ) —p„',(r,) pz, (r,) p„',(r', ) p„',(r,') . (4.11)

Again, for an independent particle model, C&,&,
=0. The leading terms which survive in ill, (let us
assume A, =A, = A for simplicity) are proportional
to A. ', whereas iX, is proportional to A'. There-
fore, the term ix, is not necessm&Ey small com-

pared with ix,. In order to estimate the higher or-
der corrections let us again take the case of Gaus-
sian wave functions a.nd NN amplitudes. The de-
tailed expressions for ix». . . , iX, are quite
lengthy. But for the special case A, = A, »1,
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= 8,'»a, they simplify to

v(l -iP)
ix&(b)= -A'ye ' '", y=

A =2R 17

iX,(b) =i X,(b)(Ay)(e /" —1 33.e / ),
ix, (b) = iX,(b)(Ay)'(1. 67e " /" —4e '

+ 2 e b/B -+ 0 67 b&/-2R)

ix4(b) = i X,(b)(Ay) (3.5e / —12e
-2b /R + 4 -5b /3R

+267 -3b2/m2 64 7b2/~2

027 " ) (4.12)

X,(o) 0 33A X2 ) 0 59
x,(o)

' ' x,(II)

The second term in i X, comes from two new kinds
of multiple scattering in which one nucleon of nu-
cleus 1 interacts with two nucleons of nucleus 2
and vice versa. The first term in iX, corresponds
to two different nucleons of nucleus 1 interacting
with two different nucleons of nucleus 2. This
term is the counterpart of the i X, term in the par-
ticle-nucleus case. We note that even this term in

iX, is proportional to (Ay)iX, and does not vanish
in the limit A„A,-~. Id order to look more
closely at the expansion parameter, let us evalu-
ate the X& at b =0, b = A, and b =2K. We obtain

ies (2.8) for the phase-shift function appears fo
diverge.

Weshould point out that these estimates are ob-
tained from Eg. (4.12) which is valid in the limiting
case A„A,-~. We have considered this case be-
cause it has been argued in the past thy, t iX, , iX,
as A„A,become large. That this is not true is
evident from these estimates.

For finite nuclei, one can evaluate X„.. . , X4 Qy

using the formulas of Appendix A. In Figs. 1-3 we
present the real parts of i X,p,(b) and i X, ,(b). In the

. figures we have used the notation

x(&)= +xi
and a similar notation for the modified phase
shifts X(N). The results for ix, , in "0-"0colli-
sions are shown in Fig. 1(a). The higher order
corrections to 2X1 are most important at small b

and their effects ten/ to become smaller at large

O

—!0
(D

X,( R) 0 333A X,(0)
x &(2~)

' ' x.(o)

x.(@) x&(2R)
'(~)

- -0.53Ay, '(2 )
- -0.329A, y,

X2 8 Xz 28

X4( ) 1 5/I ~x( ) 0 9A
xb(0)

' x.(&)

x.(2&)
(2 )

0 321Ay (4.13)

/

—l5 —~' ~

—20

(

X (4)

&(fm)
4 6 8

We notice that, unlike the case of particle-nucleus
scattering, here the series is oscillatory. This,
again, is due to the occurrence of new types of
multiple scattering in the nucleus-nucleus case.
Furthermore, the expansion parameter now is Ay,
which is proportional to A' ' and which may be-
come greater than unity for large A. In order to
make qualitative estimates, let us take 8&
= ( ', )'/'(r ) '/' w—here (r') '/' is the nuclear rms
radius. This would insure that the resulting nu-
clear form factor would be accurate at small mo-
mentum transfers. At an incident energy of 2.1
GeV/n, o = 42.7 mb and therefore, for the case of
Pb-Pb collisions, Ay -3.3. In fact, . we find that
in the limit A „A,-~ (with o = constant), the ser-

CL
O

-IO

CY ~ ~
&re ~ ~ + I

lg
g /

FIG. 1. The real parts of (a) iX &
and (b}iXbb& as a

function of impact parameters for bO-~bO collisions at
2.1 GeV/n. The notation X(+), for example, denotes
Xf+ ' ' '+ XN.
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b(fm)
0 2 4 6 8 lO

I I

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

b(tm)

CL
O

(D
Cl

-40—

b (fm)
2 4 6 8 IO

r/ r
2Q ' ~ .' 4OCa —4OCa

/r ~ ---- x. (I )I
/ r ~ ~ & ~ ~ ~ X, (p)

//i ——X.(3)
-60- ~ (a) x {4)

CL
O

IH -4Q — .. 'rr
.~ '

~ ~ ~ ~ ~ ~ ~~ 4 ~ ~ ~ ~ ~ Oi r r' ---x, (~ )

~ ~ ~ ~ Q (p)

——X, (5)

~ (4)

FIG. 3. The real parts of gyp t for Ni-+Ni collisions
~ at 2.1 GeV/n.

CL
O

I 8 4Q

CI

~ ~ /.-.'' /r
~ ~ O I.~ ~ ~ ~ ' '/

/r

(b)

%. (I)
~ ~ ~ ~ ~ ~ g (p)

—.—X, (5)

x, (+)

I

series for y, ,=Z; y~ is truncated at even j.
In order to investigate what region of impact pa-

rameters the cross sections are most sensitive to,
it is useful to plot the nucleus-nucleus profile func-
tion

I'(b) = 1 —e x,pt( ) (4.14)

FIG. 2. The real parts of (a) ixp~t and (b)Qpyt for
4 Qa-4 Ca collisions at 2.1 GeV/n.

b. In Fig. 1(b) we show the results for the modif-
ied phase-shift functions X„.. . , x,. We see that
the proper treatment of the center-of-mass cor-
relation significantly improves the convergence of
the series for the optical phase-shift function. We
also show the results for X, , and X,~, for the case
of ' Ca-"Ca in Fig. 2 and for X, , for "Ni-"Ni col-
lisions in Fig. 3. We notice that even in the case
of "Ca-"Ca collisions the series for X,„,and y,„,
are diverging near 5 =0. For "Ni-"Ni, the re-
sults shown in Fig. 3 illustrate the divergence of

X, , for large nuclei, as expected from our previous
qualitative estimates. As these figures illustrate,
the series does converge at larger impact parame-

terss

and it may be possible, therefore, to use it
even for large nuclei for calculating cross sections
which depend mostly upon peripheral processes.
However, one. has to be cautious in such calcula-
tions because for large nuclei iX, , can (and does,
as shown in Fig. 3) take on unphysical values at
small impact parameter (e.g. , l

e'" [& 1) when the

In Fig. 4 we show the results for Rel'(b) and
Re[bI'(b)] for "Ca-"Ca collisions. We notice that
the effects of the higher order phase-shift correc-
tions f„.. . , X, on ReI'(b) are noticeable only at
large impact parameters. At small b, ReI'(b) = 1.
For heavy nuclei, if one assumes that there is
strong absorption in collisions at small impact pa-
rameter, Rel'(b) can be replaced by unity inside
some critical impact parameter b, . For b, one
can take the maximum value of the impact pa-
rameter for which the 1"scorresponding to X (1), g(2),
and X (3) are all approximately equal to unity. We
find, a range of values for b, below the particular val-
ue which yields roughly the same final results for
cross sections. This procedure, , though reasonable
for total cross section calculations (which are pro-
portional to integr ale over Re[b I'(b)] and pick up most
of the contributions from large b, as shown in Fig. 4),
could lead to lar ge inaccuracies in results for large
angle- elastic scattering angular distributions
(which may probe smaller impact parameter colli-
sions). In that case the effects on cross sections
due to small variations in b, should be carefully
investigated.

We should point out that if the colliding objects
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1.0
I I

Q

0.5—

"Ca — Ca

--- %.(i)
"-" X (2)

X, (4)

=4p He
'

].-e' opt~

p

(5.1)

and the inelastic cross section can be obtained
from the relation

elastic scattering amplitudes by means of the opti-
cal theorem

v... = (4m/k) ImF, )(0)

0
I

2 6
b(fm)

8 10 12

&inel & tot &el

~ —e'" p«" 'bdb.
0

(5.2)

I I

Ca- oC(j

(5.3)

and the differential cross section by

Very near the forward direction the nucleus-nu-
cleus elastic scattering amplitudes may be para-
metrized by the form

~.,(q) = ~(0).-""'""',

-l~(0)" -"
dQ

The slope parameter B~ is then given by

(5 4)

0 2 4 6 8 10 . 12

1(fm)
F&G. 4. The real parts of (a) I'(b) and (b) gp(b) as a

function of impact parameter for Ca- Ca collisions.
The results for X(3) (not shown) lie between those for
X(2) and y(4).

are hadrons, which are considered as being com-
posed of an infinite number of constituents x, then
the appropriate limit is 0„„-0as A. y A2 ~ with
O,„A,A, —constant. Under these conditions, the
parameter A.y -A ' and X,„,approaches the optical
limit X, for A „A,-~. If one further assumes
that the constituent interactions have zero range, "
then the optical phase-shift function becomes
equivalent to the Chou- Yang model, "which has
been quite successful in describing hadron-hadron
cross sections at high energies.

V. TOTAL CROSS SECTIONS, INELASTIC CROSS
SECTIONS, AND SLOPE PARAMETERS

In this section we investigate the effects of higher
order phase-shift corrections and the consistent
treatment of c.m. correlations on the calculations
of total cross sections, total inelastic cross sec-
tions, and the slope parameters for nucleus-nu-
cleus forward elastic scattering amplitudes. These
quantities have recently been measured at the
Berkeley Bevalac at incident energies of 0.87 and
2.1 GeV/n for collisions between light nuclei. "

Total cross sections may be obtained from the

Bz = lim He
-2(a Ii„/aq')

q~ P cl

f (1 efx()p b)ti)5 3db

2 j (1 ix»t(&)) dh

(5.5)

(5.6)

Although Eq. (5.1) is valid with either X, , or the
unmodified phase shift function X,„„weshould
point out that Eqs. (5.2) and (5.6) are strictly valid
only for the modified phase-shift function y,pt.
These formulas can also be used for X„„(b)in the
approximation where the center-of-mass correla-
tion function K(q) is neglected. Thi.s approxima-
tion (which has been used in the past) underesti-
mates cr„and hence overestimates g,.„„.

In our calculations the parameters for NN scat-
tering amplitudes are taken to be" 0 =42.4 mb,
a = 5 (GeV/c) ', p=-0.2 at 0.87 GeV/n and @=42.7
mb, a=6.2 (GeV/c) ', p=-0.28 at 2.1 GeV/n. The
rms radii which we use are taken from electron
scattering measurements~' and are listed in Table
I. Upon correcting for the finite proton size and
the c.m. recoil, the parameter R, is given by

R = —', ((r„,') —(y~') )/(1 1/A, ) . (5.7)

In Table II we show the results for total cross sec-
tions for A, and A, ~ 40, at 0.87 and 2.1 GeV/n
together with the recent experimental measure-
ments. The errors are statistical only. For n-
"C collisions, the two measurements correspond
to ~-"C a,nd to "C-~ collisions. Since they should
be equal, their difference gives a good indication
of the probable systematic errors. " For com-
parison, the results for both X„,(b) and y„,(b) a,re
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TABLE I. Nuclear rms radii.

12 16 24 40 58 116 208

(y ) ~ (fm) 0.81 2.17 1.71 2.453 2.71 2.98 3.50 3.80 4.55 5.49

shown. It is interesting to note that even for total
cross sections, which depend on F„at-q=0 where
the c.m. correlation function If'(q) is unity, the
proper inclusion of the c.m. constraint in each X;
improves the convergence of the cross sections
quite significantly. For example, for the 'He-'He
collisions at 2.1 Geg/n the exact Glauber multiple
scattering result yields 386 mb. [This is obtained
by computing E„expli citl yfrom Eq. (2.5), which
can be done for very light nuclei, A»A, &5.] The
usual first order optical limit result yields 429
mb. The first optical limit result obtained with a
consistent treatment of the center of mass cor-
relation is 386 mb." (This result is the same as
the fourth-order result and is equal to the exact
Glauber result. ) For 4'Ca-"Ca collisions, the
usual first order optical limit result is 4941 mb,
and the corresponding fourth order result is 4512
mb. The first order optical limit result obtained
with a consistent treatment of the center of mass
correlation is 4845 mb, "which is considerably
closer to the corresponding fourth-order result
of 4535 mb. Thus simply treating the center-of-

mass correlations consistently significantly im-
proves the first order optical limit result. Sim-
ilar improvements are seen to occur for the higher
order results. In passing, we might point out that
the fourth o-rder results [last column, X(4)j are
generally in better agreement with the measure-
ments (sixth column) than are the usual first order
optica, l limit results [second column, y(1)]. The
large dis e repancy" between "C-"C total cross
section measurements and earlier optical limit.
predictions is quite significantly reduced by the
inclusion of c..m. correlations and higher order
phase-shift correction. In addition, our first-
order results [seventh column, y(1)] are also
generally in better agreement with the measure-
ments. than are the usual first order results
(second column). Except for the very heavy
nuclei, calculations for o„,can be performed
to third order without any difficulty and the re-
sults are shown in Table III. In fourth order, how-
ever, iX„ttakes on unphysical values near b = 0,
as pointed out in the preceding section. However,
as shown in Fig. 4, Rel'(b) = 1 up to fairly la.rge

TABLE II. Nucleus-nucleus total cross sections. The numbers listed in parentheses are for 0.87 GeV/n, whereas
all the other values are for 2.1 GeV/n. The second through fifth columns show the theoretical predictions obtained from
Eq. {2.6), and the seventh through the tenth columns show those obtained from Eq. (3.7}. The sixth column lists the ex-
perimental measurements {Ref. 33); The two experimental values in the second row correspond to He- C and C- He

collisions, respectively.

Nuclei
Ag-Ap

o.«t (mb} with X~t equal to
X(1) X(2) X(3) X(4)

o«. (mb)
experiment

o'tot {mb) with Xopt equal to
X(1) X(2) X(3) X(4)

4 4

4-12

4-16
4
4-40

12-12

12-16
12-24
12-40
16-16
16-24
16-40
24-24
24-40
40-40

429
(42o)
902

(885)
1097
1387
1939
1605

(1580)
1880
2272
3010
2180
2607
3402
3077
3949
4941

384
(373)
788

(767)
961

1217
1720
1365

(1329)
1599
1931
2584
1855
2212
2916
2607
3385
4307

387
(377)
810

(792)
989

1260
1778
1453

(143O)
1712
2086
2786
1996
2406
3165
2861
3698
4662

386
(375)
802

(781)
979

1244
1757
1420

(1384)
1669
2026
2709
1942
2332
3071
2765
3577
4512

408 +2.5
(39O ~4.2)
835 + 5, 826 + 5.9

(820 + 13, 790+7)

1347+ 25
(1256 ~31)

386
{377)
834

(817)
1023
1307
1851
1518

(1493)
1789
2180
2914
2087
2512
3305
2983
3854
4845

388
(377)
809

(79o)
987

1254
1768
1431

{1403)
1679
2034
2709
1951
2335
3O61
2754
3542
4440

387
(376)
806

(7ss)
985

1252
1767
1433

(1406)
1685
2047
2736
1962
2356
3101
2793
3613
4557

386
(376)
805

(785)
983

1249
1764
1431

(1402)
1682
2043
2730
1958
2352
3094
2787
3601
4535



COI LISIONS BETWEEN COMPOSITE PARTICLES AT MEDIUM. . .

TABLE III. Nucleus-nucleus total cross sections. The
notation is the same as in Table II.

Nuclei
Ag-A2

0... (mb)

Xoyt = Xg

crtot (mb) with Xoyt equal to
X(1) X(2) X(3) X{4)

4-58
4-116
4-208

12-58
12-116
12-208
24-58
24-116
24-208
40-58
40-116
40-208
58-58
58-116
58-208

116-116
116-208

2 385
3 612
5 383
3 584
5 145
7 381
4 616
6407
8 949
5 692
7 682

10470
6 503
8 633

11598
11077
14409

2 292
3 510
5 275
3488
5 046
7 278
4 522
6 314
8 856
5 6(00
7 591

10 379
6 414
8 548

11514
10997
14 332

2 187
3 346
5 026
3 236
4 674
6 730
4 144
5 769
8 057
5 113
6 915
9423
5 830
7 743

10 381
9 959

12 987

2 187
3 350
5 038
3 276
4 750
6 860
4 246
5 950
8 360
5 279
7 193
9 863
6 065
8 135

11002
10 559
13 841

2 182
3 344
5 028
3 268
4 734
6 829
4 227
5 909
8 280
5 243
7 121
9 731
6 007
8 015

10780
10 322
13445

b even when the phase-shift series is diverging
near b = 0. In fact, near 5 = 0 deviations in ReI'(b)
from unity occur only when the optical phase-shift
function begins to approach unphysical values
( ie'"~t

i
)1). In these cases we simply replace

I'(b) by unity as discussed. The results are shown
in the sixth column of Table III. We also show the
total cross sections obtained from the usual first-
order optical limit X, (column 2). We note, by
comparing columns 2 and 7 of Table II and by com-
paring columns 2 and 3 of Table III, that the cen-
ter-of-mass effects decrease with increading A„
A„asexpected. For n-e scattering, the dif-
ference in the first order cross sections is ll%%up&

whereas for '"Sn-20'Pb scattering it is only 0.5%
Qn the other hand, the effect of the higher order
phase-shift functions becomes important for medi-
um and large A„A,. For n-n collisions, the
fourth order calculation for 0 is 386 mb and the
first-order calculation is 386 mb, so that there
is negligibly small effect. For '"Sn -' 'Pb col-
lisions, the fourth-order calculation for 0 is
13.445 b and the first-order calculations is 14.332
b, so that there is an effect of -6/0.

Since it is possible to calculate deuteron-nucleus
(d-A) total cross sections exactly in Glauber the-
ary, 32 it would be interesting to see how rapidly
the results for the d-A total cross sections con-
verge when using the series Eci. (3.8) for the op-
tical phase shift-functions y, (b). In Table IV we
show deuteron-nucleus total cross sections for
target nuclei denoted by their mass numbers A.
In column 2 we show the results obtained by using
y(1), the standard first-order optical limit result,
for the phase-shift function. In columns 3-6 we

. show the results obtained by using the new and
higher order results of this paper. In column 7
we present the exact Qlauber theory results and in
column 8 we give the measured values.

We see that the new first-order results of y(1)
are significantly closer to the exact results than
those of the standard first-order result of y(1) in
all cases except for d-d collisions (A, =A, =2).
Furthermore, the fourth-order results of X(4) are
all within O. l%%uo of the exact Glauber values. Since,
as we see from Eqs. (4.7) and (4.8), the series for
y~, in particle-nucleus scattering is rapidly con-
verging for large A, it is expected that the series
would also converge rapidly in nucleus-nucleus
collisions when one of the nuclei is very light, as
is the case for d-A collisions. This is clearly
confirmed by Table IV.

TABLE IV. Deuteron-nucleus total cross sections at 2.1 GeV jn. Column seven gives the
exact Glauber theory results. The remaining notation is as in Table II.

Target
nucleus

A
~«, (mb)

Xoyt = x(1)
o«t (mb) with X,~& equal to

X(1) X(2) X(3) X(4)

0.«t (mb)
exact

a... (mb)
exp.

12

16
24
40
58

116
208

161.7

293.7

729.0

910.4
1208
1724
2162
3300
4857

154.1

267.2

642.5

801.4
1057
1523
1918
2983
4493

159.4

264.7

622.2

776.9
1021
1476
1858
2904
4407

159.7

263.6

621.3

776.6
1022
1481
1866
2917
4417

159.8

263.3

620.4

775.5
1020
1478
1862
2912
4412

159.8

263.3

620.5

775.5
1021
1478
1862
2911
4410

158 +0.8
271 +1.5
262 +1.8
644 +3.5
617 +3.0
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TABLE V. Nucleus-nucleus inelastic cross sections. The notation is the same as in
Table II.

Nuclei
A g-A2

Oinel (mb) with Xo&t equal to
X(1) y(2) X(3) X(4)

0.~„(mb)
experiment

4-12

4-16
12-12

12-16
16-16

265
(260)
532

(524)
644
916

(906)
1070
1237

263
{258)
518

(509)
625
876

{863)
1021
1178

263
(257)
517

(508)
625
879

(866)
1025
1184

263
(257)
517

(508)
625
879

(866)
1025
1184

276 + 3.7
(262 + 13)
547 + 3, 523 +4.6

(542 ~16, 516 ~5.3)

888+19
(939+17)

In Table V we present theoretical predictions for
the total inelastic cross sections for the lighter
nuclei together with recent measurements. " The
errors are statistical only. Again, for n-"C
collisions, the two measurements at each energy
correspond tp Qf-' C a,nd tp ' C-~ cplljsjpns, and
should be equal. Their difference (24 mb at 2.1

GeV/n and 26 mb at 0.87 GeV/n) gives an indica-
tion of the probable systematic errors. Qur re-
sults show that the higher order corrections vary
from -1/o for n ci collisio-ns to -4.5% for "0-"0
collisions. The fourth-order predictions are in
reasonably good agreement with the data.

In Table VI we show the theoretical predictions
for the slope parameters BR in nucleus-nucleus
forward elastic scattering, together with the values
extracted" from the Berkeley measurements.
Some theoretical analysis was used to extract the
slope parameters from the data, and the errors
assigned to the measured values include only the
uncertainty in the fits used. " Again, for n-"C
collisions, the two measured values at each energy
correspond to a-"C and '~C-n collisions,
and should be equal. Their difference [12 and 8

(GeV/c) ] gives an indication of the probable sys-
tematic errors. Our results show that the higher

order corrections vary from -l%%uz for o& @col--
lisions to -4% for "0-"0collisions.

VI. EFFECTS OF THE COULOMB FIELD

It has been pointed out' that the Coulomb inter-
action has a significant effect on the elastic scat-
tering angular distributions. While the Coulomb
contributions are crucial at the minima, they can
alter the cross sections substantially even at the
subsidiary maxima. Here we shall obtain a simple
formula for the inclusion of the Coulomb inter-
action which employs an average phase approxi-
mation and includes the effects due to center-of-
mass correlations.

When the Coulomb interaction is included, the
full scattering amplitude can be written as'

&.,(e) =f (e)

ik
dobe& q' n[eiX~P (b& eiX~(b&+i &&(Xo&]'2w

(6.1)

where the point charge Coulomb phase shift is
given by y', (f&) = 2n in(kb), where n = Z,Z,e'/hv is

TABLE VI. Nucleus-nucleus slope parameters. The notation is the same as in Table II.

Nuclei
Ag-Ap

Slope (GeV/c) with p»t equal to
X(1) X(2) X(3) X(4)

Slope (GeV/c)
exper iment

4-4

4-12

4-16

12-12

12-16
16-16

59.9
(58.4)

{
109.6

(107.7)
131.2
180.4

(177.8)
209.6
241.2

58.9
(57.5)
107.1

(105.0)
128.0
173.5

(170.6)
201 ~ 0
230.7

58.9
(57.4)
107.0

(105.0)
128.0
174 ~ 1

(171.3)
201.9
232.0

58.9
(57.4)
107.1

(105.1)
128.0
174.1

(171.3)
201.9
231.9

70+4
(63 ~10)
129 +4, 117+2.4

(120 ~13, 117~3)

204+11
(254~18)



18 COLLISIONS BETWEEN COMPOSITE PARTICLES AT MEDIUM. . .

fgt( ) +-2liqqln(g/22)-argr(1+In)l
C q2

(6.2)

the usual Coulomb parameter and the point charge
Coulomb amplitude is

The extended charge Coulomb phase shift function

}t,(b) can be obtained in an average phase approxi-
mation which consists of averaging the point charge
phase-shift function over the ground state of
the colliding nuclei. '" This yields

21 S
2

x(b)= (ssk„,Z Q q Is(bib-s,"'+s'Pl) ss k„,).
i~1 ~ 1 V

(6.3)

If the colliding nuclei are described by Gaussian
wave functions

(+R 2/~ )2/2 (+R 2)-2/2 +-I'/ /8]
)~1

(6.4)

(6.5)

where E,(z) is the exponential integraP' and

(6.6)R'=R, '(1-A, ')+R,'(1-A2 ') .
The full nucleus-nucleus elastic scattering am-
plitude may finally be written as

F„(q)f( )+I =qJJk(qb)(kb)"

x (I e& (II& k (& / &2 &+x(g) t (& & &)b db

(6.7}

%e notice that for Gaussian wave functions, the
effect of center-of-mass correlation on the Cou-
lomb phase shift function X,(b) is merely a shift in
the nuclear radius [R&'-RI'=R,.'(1 —1/A;)].—This
is the consequence of the fact that only single par-
ticle densities are required in the evaluation of
Eq. (6.3). The effect of integrating over 3(/I —1)
coordinates in Eq. (6.4) with the 6 function is sim-
ply to replace the parameter R,' (in the single
particle density wheri the c.m. correlation is ne-
glected) by R,'. Since the first-order modified
phase-shift function }(, (for strong interactions)
also requires only single particle densities, it
too can be obtained from g, by merely letting 8,'
-R, 2 (for Gaussian wave functions). (This is also
true in case of harmonic oscillator wave func-
tions". )

where the 6 function describes the center-of-mass
constraint. Equation (6.3) can be evaluated in .
closed form with the result

IO

I
I I I

[
1 T ~ T I

C — C 2.IGeV/n )Qp

IO
I I

C4

IO

0
10

I I 0 2

b

IO

0 002

0-5

IO I I I I I I I I I I I ] I I
'

I I I I I

of Eq. (2.6) or, alternatively, by means of Eq.
(3.7). In either case the optical phase-shift fun-
ction, X„,(b) or }(„,(b}, is given by means of the
expansion (2.8) or (3.8). The calculation of X/(b)
or }(/(b) in these series rapidly becomes exceed-
ingly tedious as j increases. Wee have calculated
the results for j~4.

As we have pointed out, unless the full (infinite)
series (2.8) is retained for X,(b), the elastic
scattering amplitude given by Eq. (2.6) increases
without bound for large increasing q. [We again
note that Eq. (3.7) does not suffer from this prob-
lem. ] This unphysical result a,rises from the fac-
tor K(q) in Eq. (2.6) which increases rapidly with
increasing q and the fact that the integral in that
equation does not decrease rapidly enough if the
series (2.8) is approximated by a truncation. De-
spite this divergence for large q, at any fixed q
Eq. (2.6) can provide reliable results provided a
sufficient number of terms Xz(b} are retained in
the truncated series for }(,(b). What constitutes
a sufficient'number of terms depends upon the

VII. ELASTK SCATTERING ANGULAR DISTRIBUTIONS

0, 0.08 O.I6 0.24 0.32 0.40
—t, (GeV/c)

The differential cross section for nucleus-nucle-
us elastic scattering may be calculated by mearis

FIG. 5. C- C elastic scattering at 2.1 QeV//'n, in-
cluding corrections up to fourth order for the unmodified
optical phase-shift function.
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FIG. 6. Same as Fig. 5 for theimodified optical
phase- shift function.

nuclei involved, the momentum transfer of inter-
est, and the accuracy desired.

In Fig. 5 we present the differential cross sec-
tion do/d If I

as a function of the squared four-
momentum transfer t, for "C-"C elastic scat-
tering at 2.1 GeV/n, using Eq. (2.6) and the series

, = Zy& for the unmodified phase-shift function
as given by Eqs. (2.8), (2.10), (2.17), and (2.22).
Since we are interested in the effects of the higher
order phase-shift corrections on the elastic scat-
tering intensities and are comparing theoretical
expressions, we ignore Coulomb effects at this
point. The four angular distributions shown cor-
respond to truncations of the series (2.8) after
one, two, three, or four terms. It is clear that
beyond the forward peak the dashed curve, cor-
responding to the usual optical limit approximation

, (b) =X,(b), is quite inaccura, te. Furthermore,
beyond —f = 0.2 (GeV/c)' even the fourth-order
result can only be described as perhaps being at
best a qualitatively accurate result.

In Fig. 6 we again present do/d It I for "c-". c
elastic scattering at 2.1 GeV/n, but this time
calculated from Eq. (3.7) and the series y„,(b)
= ZX~(b) for the modified phase-shift function. It
is apparent that the angular distributions are con-
verging much more rapidly than in Fig. 5, and
that the fourth-order result is quantitatively ac-
curate even beyond the fourth maximum.

In Fig. 7, we show d /doIt I for "C-"C at 2.1

GeV/n for the cases y, = y(1), X,= y(4), y,
„

=y(1), and y~, =y(4). For the first two cases,
Eq. (2.6) is used to calculate do/d) f I, and for the
second two cases Eq. (3.7) is used. We also show
the result obtained by using X t = y, in Eq. (2.6)

CU

O
Q)

IO

IO
I

lOO

l02—

I I I l
/

I i I ) I / I I I ( f I I I

l2 l2

Z. l GeV/n

-3b~lO

io-4-

io-'
0

X, (4)
X, (4)
%. (I)
x, (I)
& (I) with K(q) ~ I

I I I I I I I I I I I I

Ql Q2 CQ

—t (GeV/c )
2

FIG. 7. ~ C- C elastic scattering at 2.1 GeV/n.
Cross sections obtained from the unmodified and modi-
fied phase-shift functions are compared.

and arbitrarily setting K(q) equal to unity. (This
has on occasion been done in the past. ) We see
that the usual optical limit, y, =y(1), does not
lead to a reliable angular distribution [with or
without the factor K(q) in Eq. (2.6)]. The results
obtained from the unmodified fourth-order optical
phase-shift function are in qualitative agreement
with the results obtained from the modified fourth-
order optical phase-shift function y(4).

In Fig. 8 we present do'/dIt I for 'He-'He elastic
scattering using Eq. (2.6) and the series for the
unmodified phase-shift function X„,. %e see that
the first-order result is quite inaccurate beyond
the forward peak, and that the fourth-order re-
sult is unreliable beyond the second minimum.

In Fig. 9 we show do/d If I
for 'He-'He elastic

scattering using Eq. (3.7) and the series for the
modified phase-shift function y„~.e see that
the first-order result is very accurate up till the
second maximum, and the fourth-order result is
quantitatively accurate beyond the third maximum
and qualitatively reliable up till the third min-
imum.

In Fig. 10 we show do/d it[ for 'He-'He collisions
for the cases y„,= y(1), y„,= X(4), y, = y(1),
X t =y(4). We also show the result obtained by
exactly summing the Glauber multiple scattering
series implicit in Eq. (2.5), which can be done
when the nuclei are very light (in practice, when

A„A,~ 5). We see that the usual optical limit

X„,= y(1) leads to an unreliable angular distribu-
tion before reaching the first minimum [with or
without the factor K(q) in Eq. (2.6)]. The results
obtained from the unmodified fourth-order optical
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and p„~= 0. In Fig. 11 we show the results of our
fourth-order calculations for X,„„withand without
the Coulomb interactions, together with the data.
Also shown, for comparison, is the usual optical
limit prediction (dotted curve) which yields cross
sections that are much too large. The effects of
the Coulomb interaction were neglected in the
analysis of Ref. 39. It is clear from Fig. 11 that
these effects are quite important and they signifi-
cantly improve the agreement with the data near
the second minimum. The Coulomb effects are not
negligible even at the maxima. Coulomb effects,
however, make the agreement with data worse for
8& 15'. But 6|-15 corresponds to g'-10. 5 fm ',
where the Qaussian form factors for the nuclei
are quite unrealistic. The high theoretical predic-
tions occurring at the maximum near 9- 7' are not
entirely surprising. A similar discrepancy is ob-
served in the case of P-"C scattering and can be
removed by introducing a deformation in the ground
state of carbon. "

lO

VIII. ASYMPTOTIC APPROXIMATIONS FOR THE OPTICAL

PHASE-SHIFT FUNCTION

IO

IO t5
Q, ~ (deg)

20

FIG. 11. Theoretical predictions, together with the
data of Ref. 39, for n-'2C elastic scattering at 1.37
GeV.

Furthermore, since the attempts to describe the
1.37 QeV u-"C data in terms of the "double fold-
ing" model (which is closely related to the usual
Glauber optical limit) have met with little suc-
cess, ' it is worthwhile to investigate the effects
of the higher order phase shift corrections and to
see if they improve the agreement with the mea-
surements, at least qualitatively. We should em-
phasize, however, that the Gaussian parametriza-
tion of Eq. (4.4) for NN amplitudes is unrealistic
at 343 MeV/n, and that both the n and "C charge
form factors are known to exhibit minima, a fea-
ture which is not described by the simple Qaussian
form factors which we have assumed.

Good agreement between Qlauber theory predic-
tions and measurements for 344 MeV/n deuteron-
deuteron elastic scattering has been obtained by
Alberi, Bertocchi, and Bjalkowski. " Therefore,
for NN amplitudes we have taken the parameters
from Ref. 31. They are o» = 34 mb, 0„~= 27 mb,
a» =0.44 (GeV/c) ', a„~=2.0 (GeV/c) ', p» =0.6,

As we have seen, the expressions for the higher
order corrections to the optical phase shift func-
tion become increasingly complicated and require
evaluation of multiple integrals. While the inte-
grals can be evaluated in closed form for nuclear
wave functions described by Gaussians (or sums
of Gaussians), these are realistic only for colli-
sions between light nuclei. It is therefore worth-
while to investigate some approximation schemes
which may allow one to estimate the higher order
corrections for general forms of nuclear densities
in a relatively easy manner. A zero range approx-
imation for the nucleon-nucleon interaction has
been used in the literature for both nucleon-nucle-
us and nucleus-nucleus collisions in the usual opti-
cal limit calculations. Although this approxima-
tion, by itself, can lead to errors, ' its accuracy
improves significantly if one does not correct the
measured nuclear charge form factors for the
finite size of the proton (since the two approxima-
tions tend to partially cancel each other). For ex-
ample, the first-order optical phase-shift function
involves the product P=S~ (q)S„(-q)f(q)of nucle-
ar form factors and the nucleon-nucleon ampli-
tudes. Using the charge form factors S&". and cor-
recting for proton size, we have

&=S~",(q)S~", (-q)[Sp(&)j 'f(q),
where S~ is the proton form factor. For small
momentum transfers S~(p) is well described by the
form e ' ~'. Using Eq. (4.4) for th'e NN amplitude,
we have
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Q —$0h (q )$0h( q)f(0)e (a-C)/2
1 2 (8 2)

A proton rms radius of 0.81 fm corresponds to
C=(0.66 fm)' = 9.5 (GeV/c) '. At high energies the
value of a varies typically between 10-11(GeV/c) '.
Thus there is almost complete cancellation due to
the two aforementioned approximations. Further-
more, the first-order phase- shift function g, or. g,
is proportional to the integral over P of Eq. (8.2}.
Since both the nuclear charge form factors are
sharply peaked in the forward direction, the small
remaining q dependence due to f(g} has little effect
on the integral ~

One should keep in mind, however, that the use
of an NN amplitude whic h is not peaked in the for-
ward direction is inconsistent with the Qlauber ap-
proximation. " This show s up clearly in the fourth-
order phase-shift function where the term G»(b)
(which has a structure similar to the quadruple
scattering term in deuteron-deuteron collisions)
diverges in the limit a - 0. This term, which is
O(1/A;) relative to the leading term in y„is never-
theless not negligible for light nuclei and is also
significant when one is interested ig details of an-

=g d spy s pA2 s —b (8.3)

where

P (g)=f des;((e ee) i), g=2ef(0)fik

(8 4)

In higher order terms, the expressions look simp-
ler in coordinate space where the approximation
f(q) =f(0) is equivalent to

F;f(b —s, + s,') = g6'(b —s; + s,'.),
which yields (upon straightforward integration),

gular distributions. However, as long as this term
is evaluated carefully, the rest of the quantities
C„D;,F.;, and G; can be greatly simplified in the
zero range approximation. We obtain, in the inde-
pendent particle model [Eq. (4.1)j

C(b)=(2eik„) 'f d'qe 'e PS (0)f(q)S„(-0)

—(2esk ) f(0) f d'q e "'S,,(0)S,,(-0)

r
D,(b) =g' d's p„,(s )p„'(s—b ), D,(b) = D,(1 —2),

g(b)=g'f d'eP '(s)P„,'(s —0), g(b)=g'J d'sPA(2)Pe, '(s-b), g(b)=g(1 2),

(8.5)

G„(o)=g Jd'PP„'(s)P.,'(g-b), G„(b)=G,(( 2), G„(b).=g Jd'eP, (s)P, (s —0),

G,q(b) = G,s(l 2), G„(b)= GM(b), G,s(b) = G„(b).

The other D;, E;, and G; occurring in Eq. (2.11)
are related to the above quantities by Eq. (A1) in
Appendix A. The quantities C„D;,E;, and G;
which are required for calculations of the modified
optical phase- shift function g,„,can be obtained
from Eqs. (8.5) and (A1) by means of the relation
(A3).

It is worth pointing out that a unique optical po-
tential can always be obtained from the optical
phase- shift function by means of the relation'

AV 1 d " '

y,G2(b)V ( )=
( '~) bdb

r

The first-order optical potential corresponding
has a form similar to that of heavy-ion po-

tentials at lower energies in the "double folding"
model. ' The potentials corresponding to higher
order phase-shift corrections provide corrections
to the double-folding model and arise frhm the pro-'

cesses in which one nucleon of the incident nucleus
can interact with two or more nucleons of the tar-
get (and vice versa). The effects of the higher or-
der corrections on the optical phase shift function
(and hence on the optical potential) are to reduce
its depth (this is true for real as well as imagin-
ary parts). It is interesting to note that the theore-
tical heavy-ion potentials obtained from the double-
folding model do give potentials which are too
deep. ""While it should be emphasized that the
approximations inherent in the Glauber theory
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break down at low energies, the qualitative esti-
mates of the size of higher order corrections (i.e.,
the reduction in the depth of the potential) may not
be unrealistic.

XI. CONCLUSIONS

APPENDIX A

When nuclei are described by independent parti-
cle models, the terms occurring in Eq. (2.17)
simplify considerably. Equations (4.1) and (4.2),
when used in Eq. (2.22), lead to

We have studied the case of nucleus-nucleus
collisions in the Glauber approximation. The usual
optical limit result for the phase-shift function is
the first term of an infinite series for y,~, (b). lts
use leads to a nucleus-nucleus scattering amplitude
which diverges at large momentum transfers.
This divergence is avoided by introducing the cen-
ter-of-mass correlations in each order of the op-
tical phase-shift function. Use of the first term
in this modified phase shift series leads to signifi-
cant improvement in the results for total cross
sections, inelastic cross sections, and nucleus-
nucleus slope parameters. When higher order
terms in the series are retained we obtain even
greater improvement in these results. These high-
er order terms are also crucial for studying the
elastic scattering angular distributions. For colli-
sions between light and medium nuclei, the higher
order phase shift corrections provide a basis for
realistic calculations. For heavier nuclei, the
phase-shift series diverges at small impact para-
meters. However, for cross sections which de-
pend mostly upon peripheral collisions, approximate
results can be obtained. Since the higher order
phase-shift corrections involve complicated multi-
ple integrals, we have also obtained simplified ex-
pressions for them in an approximation where the
nucleon-nucleon interaction is treated as having
zero range. A simple formula is also given for
the inclusion of Coulomb interactions, which are
shown to contribute significantly to these collis-
ions even at angles away from the forward direc-
tions. Theoretical predictions agree well with the
Bevalac measurements at 0.87 and 2.1 GeV/n
involving collisions between light nuclei.

Note added zn proof: The unphysical divergence
of y„,for small b, discussed in Sec. IV, is re-
moved when Pauli or dynamical short range cor-
relations are treated. See V. Franco and W. T.
Nutt [Nucl. Phys. A (to be published)], G. K. Varma
[Phys. Rev. C (to be published)], and V. Franco
and W. T. Nutt (unpublished).

D,(b) = C 2(b),

E,(b) = C,'(b),

E,(b) = C,(b)D,(b),

E3(b) = Ci(b)D, (b),

G,(b) = C,4(b),

G,(b) = C,'(b)D, (b),

G,(b) = C,'(b)D, (b),

G4(b) = C,(b)E,(b),

G,(b) = C,(b)E,(b),

G (b) = C,(b)E (b),

G7(b) =D2(b)D (b),

G, (b) =D,'(b),

(Al)

G,(b) =D,'(b) .

C, (b) =(o'/R')e ' ~R;

o'=a(1 —ip)/2v, Jt' =A,'+R, '+2a,

(b) (gt2/Ql ) 2eb /(R p+)R. ~ it4 ft 4

D,(b) =D,(1—2),

The other parameters in Eq. (2.17) can be evaluated
analytically for nuclear form factors and NN am-
plitudes of the forms (4.3) and (4.4), respectively,
with the results'
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2g2
E,(b) =(o "/Jt'o.„)exp —,1+

12

G12 = Q1 —A2

Q2 2p 2

E,(b) = (o"/o-', P, ) exp —,1+
Joe 1
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2 P2 Q2
p, =R2 —R,', E,(b) =E,(1—2), G„(b)=(v"/R'P, n, ) exp —b' —,+,' +

l 1

1 R [ 12 Pl 1 1

Q, =R '[2a —P,'R, 'n, '].,

T=R'n n '- nR 'n 'R'(1+R'n ')'

bG (b) —,„, ~ —, exp —,, + ~ +
1(n1 —R1 p, ) + Q~

tr, = P,(n, —P,R,')/[R'(n, + P,R,'), V, =R-'[n, -2P, 'R,'/(n, + P,R,')],

G, (b) =G„(1—2), G„(b)=(c"/R'n, b, ) exp -b', +

y = P R ' —R '(R' +R ') '
&, =n,R 2-R'R2~n, ', G, (b) =G„(1 2). (A2)

IC(»f) = exp[»I'(R, '/4A, +R2'/4 22) ] . (A3)

If we let Q; denote C„D»,Z;, and G» than all the
Q; are of the form

Q;(b) = u, e (A4)

Equations (A2) and (Al), when substituted in Eqs.
(2.I'l) and (2.10), yield the series for the unmodi-
fied phase-shift function y, ,(b). The series for the
modified phase-shift function 1, »(b) can be ob-
tained from the same equation by merely substitut-
ing the quantities C'„D;,F-;, and G; in place of
„D;, &;, and G;. For nuclear wave functions
corresponding to Eq. (4.3), the center-of-mass
correlation Z(»I) is given by"'"

I

and we obtain from Eq. (3.13)

Q (b)»»» 22'»,,(, 1 R1' R,'

(A5)

where Q» stands for the new C„D;,E„andG;.
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