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Molecular particle-core model and its application to *C-3C scattering*
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On the basis of the two-center shell model a theory is developed for the excitation of loosely bound
nucleons in heavy ion collisions. These nucleons move in the two-center shell model potential generated by all
the nucleons and are described by molecular wave functions. The model is applied to calculate the cross
sections for the elastic and inelastic '*C-13C scattering. The cross sections show intermediate structures
caused by the excitation of quasibound resonances in the molecular nucleus-nucleus potential.
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I. INTRODUCTION

In this paper we study the dynamics of loosely
bound nucleons in heavy ion collisions. We assume
that the loosely bound nucleons move in mole-
cular orbits during the reaction. Collective mole-
cular effects in nucleus-nucleus collisions are
observed in systems such as 2C-2C and 2C-!%0
in resonances which have been interpreted as
arising from nuclear molecules.!™® Molecular
single-particle effects are not yet well established
in heavy ion collisions. Recently molecular wave
functions were used to describe polarization ef-
fects in proton transfer reactions.*

The theory of molecular orbits in nucleus-nu-
cleus collisions began with the introduction of the
two-center shell model (TCSM) by Holzer ef al.’
Up to now the two-center shell model was mainly
applied for static calculations of nucleus-nucleus
potentials.®”” Dynamic treatments of molecular
orbits in nucleus-nucleus collisions were in-
vestigated by Park et al.,® von Oertzen and
Norenberg,® and Becker et al.'° In this paper we
extend the theory of Park ef al.® to a state of
practical applicability. The theory is based on the
idea that the loosely bound nucleons move in a
two-center shell model potential generated by all
nucleons. The nuclear surface defines a rotating
body-fixed system with its z’ axis fixed in the
direction of the relative coordinate. In complete
analogy to the Nilsson model we assume a strong
coupling between the loosely bound nucleons and
their shell model potential.

The quantum mechanical treatment of molecular
orbits in rotating coordinate systems is exten-
sively studied in atomic physics. In contrast to
atomic physics we treat the relative motion also
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quantum mechanically. Therefore, in our for-
mulation all asymptotic transition matrices van-
ish. This causes problems in atomic physics
where special asymptotic translation factors have
to be introduced to correct the asymptotic transi-
tion matrices.!

In Sec. II we formulate the theory of the particle-
core model in the framework of the symmetric
TCSM. The formulation of the theory does not
depend on the special type of molecular wave
functions. The formalism is applied to the
3C-13C collision in the framework of the har-
monic two-center shell model.>'*®* The *C nuclei
can be described by a 2C core and a neutron. The
two neutrons move in the symmetric TCSM poten-
tial generated by the *C nuclei. We study the ex-
citations of the neutrons leading to excited *C
states after the reaction. Transfer reactions are
easily included in the theory, but have been left
out of the discussion. Finally, in Sec. III we com-
pare the coupled channel calculations for the
elastic ¥*C-13C cross section with the experimental
data of Helb et al., which have measured the
elastic 90° excitation function up to E,, =13.75
MeV. The predicted inelastic *C-C cross sec-
tions show similar intermediate structures as the
experimental inelastic *C-'2C cross sections.'"®

II. THE PARTICLECORE MODEL IN NUCLEUS-NUCLEUS
SCATTERING

The scattering of *C on '*C is studied in the
frame of the particle-core model. The **C nuclei
are thought to be built up of '2C cores and neutrons
[Fig. 1(a)]. For simplicity we have restricted the
theory to the elastic and inelastic scattering of
3C on **C without the neutron transfer.
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FIG. 1. (a) Schematic sketch of the particle-core
model. (b) The two-center potential (cut along the z’
axis). The hatched area indicates the levels occupied
by the nucleons of the cores. (c) The definition of the
laboratory z axis and the intrinsic z’ axis fixed by the
direction of the relative coordinate.

A. The particle-core model

The model describes the nucleus-nucleus scat-
tering with two cores and N extra particles.? The
Hamiltonian of the system is given by

N
H=Tg +To +We o (To o)+ h(i)
1 2 16217 6,62 4

i=1

N
+Z Vii=T . - (1)

i<i=1

The first three terms of H are the kinetic energies
of the cores C, and C, and their interaction We,c,
Wh1ch depends on the relative distance 7, 1Ca
—Rc1 —R02 of the cores (Fig. 2). The k1net1c
energy of the center of mass is subtracted. The
extra particles are described by the coordinates
r;. They move in a time-dependent, average field
generated by the cores. Their dynamics is de-
scribed by the sum of single-particle Hamiltonians
and by two-body interactions acting between the
extra particles. The single-particle Hamiltonians
are taken in the form of the two-center shell
mode15

2

h(@) =3

+ U(I‘,, rc!cz, pu S ) (2)

The formulation of the following theory does not

depend on the exact form of the two-center poten-
tial U. It can be taken as realistic Woods-Saxon
wells as used by Pruess and Lichtner? or in the
form resulting from self-consistent Hartree Fock
calculations done by Flocard®® or Zint and Mosel.”
For reasons of simplicity we assume a two-center
oscillator [Fig. 1(b)]. In that case U contains also
a /2 term in addition to the spin-orbit interaction.
The harmonic two-center oscillator for identical
nuclei is discussed in Appendix B.

The two-body interactions in Eq. (1) are partly
included in the two-center potential if we assume
that the single-particle potential U represents the
average interaction between all nucleons and not
only the average interaction between an extra
particle and the core nucleons. Assuming that U
is the average potential generated by all nucleons,
we have to replace the two-body terms in Eq. (1)
by the residual interaction. The residual inter-
action becomes important for the neutron transfer
process in the *C-'3C scattering where asymp-
totically the C nucleus consists of a '2C core
and two neutrons. To reproduce the *C states a

~ residual interaction between the extra neutrons

has necessarily to be taken into account.

Since we assume in Eq. (2) a two-center poten-
tial for the extra nucleons, we anticipate that
the extra particles move on molecular orbits
during the collision of the nuclei. A molecular

" picture for the scattering process is justified if

the relative velocity of the centers is smaller
than the orbiting velocities of the extra nucleons.
At relative velocities much higher than the or-
biting velocities of the nucleons the nuclear mat-
ter becomes compressed during the interpene-
tration of the nuclei.’® At that energy the first
stage of interpenetration may be described in
terms of atomic states (one-center states) cen-
tered around the two moving nuclear centers.

A= N, <G, ' Ay Npe L
227~

FIG. 2. The definition of the various coordinates of
the particle-core model. ﬁmm.=c;enter of mass coor-
dinate, T=relative coordinate, S;, Sy=center of mass of
nucleus with A;, A, nucleons, ch Scy=center of mass
of the cores with C,,C, nucleons, viA 1» y=nucleon co-
ordinates measured from Sj, S,, ¥;om =nucleon coord-
inates measured from the center of mass.
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However, in the *C-!3C system at energies
slightly above the Coulomb barrier, the reaction
and orbiting times are of the same magnitude of
order, so that the molecular picture has to be
applied. Transitions of the extra nucleons oc-
curring outside the interpenetration region are
sufficiently well described in terms of atomic
states. However, for reactions happening in the
interpenetration region, molecular states have
necessarily to-be taken into account. Although
the atomic states centered at the nuclear centers
form a complete set of states for the extra par-
ticles, they do not possess the unique advantage
of the molecular states to include the average
interaction of the extra nucleons with all the nu-
cleons.
In the Hamiltonian (1) we have assumed that

- the cores remain unexcited. It is straightforward
to include in Eq. (1) the core excitation according
to the method outlined in Ref. 16. For that we have
to introduce the collective kinetic energy
Tclcz(agf,,) , a3, T¢,c,) depending on the multi-
pole deformation parameters «,, of the nuclear
surfaces and the core-core distance. The mass
parameters in the collective kinetic energy can be
calculated with the cranking model as shown in
Ref. 25. Also the core-core potential and the two-
center potential will depend on the intrinsic core
coordinates, e.g. W, ¢, (Fc c,y @', @), and
include all the potential terms needed to describe
the collective rotations and vibrations. For rea-
sons of simplicity and clarity we have omitted the
core excitation in the present work.

B. The kinetic energy in molecular coordinates

In Egs. (1) and (2) the single-particle coordi-
nates are measured from the coordinate origin of
the laboratory system. Since we want to describe
the extra particle motion in the framework of the
two-center shell model, we introduce molecular
single-particle coordinates measured from the
center of mass of the total system (see Fig. 2):

F‘c.m. =F,' —ﬁc.m. (3)
with

- 1 -

Rem =— A (Cchl RC +Z ) (33)

The system consists of C1 and C2 core nucleons
and N extra nucleons. The total number of nu-
cleons is A. The relative coordinate is given for
the partition of the extra particles ¢ <N, to nu-
cleus A, and N, +1 <7 < N to nucleus 4, by

F=AL( CR, +§: )——t—(CRC + Z )

|N+1

(4)

As shown in Appendix A the total kinetic energy

of the system can be transformed into the co-
ordinates R, , T, and Ty, and their canonically
conjugate momenta P, , P,, and Pjcm and re-
sults in

- N
P 1., 1 .
T= P 2“' + oM izzlpicm
1 N
( M Zﬁic.m. - M ﬁzcm ) ﬁ'r
i=1 2 i=Ny+1

1 i=
1 [ 2
- m( Z §ic.m\) . (5)
i=1.

Here, i=A,A,M/A is the reduced mass. The
first term in Eq. (5) is the kinetic energy T cm.
of the center of mass which is subtracted out in
Eq. (1). The second term is the kinetic energy of
the relative motion, the third term the kinetic
energy of the extra nucleons in the center of mass
system. The last term in (5) can be neglected for
N;/A; <1, whereas the fourth term has to be
taken into account which can be recognized if P,
is replaced by uv,:

A Ny A N
(—AL Z Picm — —AJ“ E 5ic.m.> V. (5a)
i=1

i=M+1

This term regards the effect of the relative velo-
city of the nuclear centers on the motion of the
extra nucleons. The term vanishes only in the
limit of small relative velocities V,. For very
small relative velocities the orbits of the extra
particles change adiabatically from the one-cen-
ter orbits to the molecular one. The neglect of
the term leads to unphysical excitations of the
extra nucleons in the asymptotic region.!! The
progress of this work lies in the consistent treat-
ment of the kinetic energy, so that no difficulties
with unphysical asymptotic transitions occur.

C. The rotating coordinate system

Since the two-center shell model is conveniently
written in a coordinate system in which the cen-
ters lie on the z axis, it is advantageous to intro-
duce a rotating coordinate system with a z’ axis
along the direction of ¥ [Fig. 1(c)]. The rotating
coordinate system is fixed with respect to the
laboratory system by the Euler angles ¢, 6 which
are the spherical polar angles of the relative co-
ordinate ¥. The third Euler angle ¥, describing
a rotation about the z’ axis of the rotated system,
is irrelevant and has no physical significance.

The canonical transformation to the relative co-
ordinates 7, 6, ¢, the particle coordinates ¥;.,,
in the rotating frame and their canonically con-
jugate momenta, yields the following expression
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for the kinetic energy, which is derived in Eq.
(A15) of Appendix A:

_ﬁc.m.2 n® 1< 0 P 2(__8_ )
T= 2AM T 2u v?\ or *D)r ar +D

N
(T-3.? 1 .
fC.m.
2 ur? 2M &
1 a -, 2 1 N ., \e
_ZAM< pxcm) 2AM< pzcm)
=1 i=N +1
(6)
with the abbreviations
1 ( N F) >
(6a)
ZrtAlxptcm + Z rtAzxpicm +ES,,
i= Ni+1
(Gb)
- - A, . S, . A,
ri,Al =r:{c.m. - 'A_ r, riA2 =r{c.m.. +_~A—L r. (60)

The atomic coordinates ¥/, , F{Az are defined in
Appendix A and depicted in Fig. 2. The operator
T is the total angular momentum operator of the
system and operates on the Euler angles. The
operator (- J,)? is the square of the angular mo-
mentum operator of the relative motion and has
only asymptotically the eigenvalues I(I +1)72.

We note that the kinetic energy operator in the
form (6) does not induce unphysical transitions
for large separations of the nuclei.

With the kinetic energy in the form of Eq. (6)
and assuming that the core-core potential Wclc2
depends approximately on the relative coordi-
nate instead of the core-core coordinate we re-
write the Hamiltonian [see Eq. (1)] as follows:

H=H,+H, (7
with
__ (2 2<_a >
Ho--gﬁ;?(ay +D)" oy D
r-3,7
(2M ) +We,c,(7), (7a)

N
Hy=Y Wi)-E

N >/
B U(F . Blom. » 8 7) = Ewa. (1)
i=1
In H we have neglected the last two kinetic en-
ergies in Eq. (6), which are small corrections

for N;/A; <1, and the two-body interactions
between the extra nucleons. The Hamiltonian H,
is the two-center shell model Hamiltonian of the
extra nucleons, written in the rotating coordinate
system. The centers of the cores lie on the z’
axis. For equal cores as in the *C-3C system
the centers have the coordinatesz’ =z, withz,=7/2.
The precise form of the single-particle Hamil-
tonian % is given in Appendix B. In H, we have
subtracted the asymptotic energy E_ of the ground
state of the extra particles.

D. The wave functions

For the elastic and inelastic scattering of the
two C nuclei we introduce the following ansatz8
for the,wave function with total angular momen-
tum I :

Vr=A1,2) D Raa M Y(6,0)®3,0 .  (8)

a,l,d

The radial functionR,, ;,(») depends on the orbital
angular momentum 1, the channel spin J, and the
angular momentum 7/ of the system. The function
¢ . describes the intrinsic degrees of freedom of
the nuclei. Since the '2C cores are assumed to be
unexcited, it is unnecessary to introduce intrinsic
wave functions for the cores.. Therefore, the
function @ ,; depends only on the coordinates of
the two neutrons and the relative coordinate ¥.
The operator A(1, 2) antisymmetrizes the wave
function for the exchange of the two neutrons. In
addition the wave function should be antisym-
metric for the exchange of the *C nuclei.

The channel spin J is asymptotically fixed by
the spins of the nuclei J =T, +I,. For unexcited
2C cores the channel spin of the 3C nuclei is
given by the sum of the angular momenta of the
extra neutrons: J = ]l +]2

1. Wave functions in the rotating coordinate system

The transformation of the wave function (8) on
the rotating coordinate system is outlined in Ref.
8. The relation connecting the laboratory in-
trinsic function ¢ ,,, with the intrinsic function
® (s n in the rotated system is given by

‘baJM:ZD;ﬁ'((p, 9, ¢)¢ ol JIM' (9)
n

The parentheses around the quantun number J of
the channel spin should indicate that J is a good
quantum number only for large internuclear dis-
tances. We use Eq. (9) also in the reaction region
where & «(7) 18 no longer an eigenfunction of the
channel spin J. Equation (9) is assumed as the
definition of the intrinsic wave function for arbi-



trary internuclear distances.
Inserting Eq. (9) into Eq. (8) we obtain the fol-
lowing form:

V=AL,2) Y (2“1) IR g g1 (7)

a,l,J

X 2 (@oam’ | 1)
g

X DEEAP, 6, DB agryur+ (10)

Here we have used the identity

2 EmIM=m [ IM)Y 1D i
M

'=<2i_;1—) (ogM’ | IM)D x,.  (10a)

Since the operator T of the total angular momen-
tum operates on the Euler angles only, one veri-
fies immediately that the wave function (10) has
good angular momentum / and good projection M
on the space-fixed z axis. Since the intrinsic wave
function @ ,(,) has asymptotically the good quan-
tum number J, the wave function (10) becomes
asymptotically an antisymmetrized superposi-
tion of eigenstates of the orbital angular momen-
tum 72 =(T-J,)? in addition to I?. Since the ef-
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fects of the antisymmetrization operator A(1, 2)

on the ¥ coordinate are small as long as transfer
processes are disregarded we neglect these effects
in Eq. (10) and commute A(1, 2) with the ¥ depen-
dent factors of the wave function. For con-
venience we introduce the following abbreviation
for the antisymmetrized intrinsic wave func-

tions:

B4 1 ul(1,2,7) =A(1, 2)@ o 5y (1, 2,7). (11)

2. The intrinsic wave functions 5 ‘: M

The two neutrons are described by the single-
particle functions ¢ ¢ (¥fcm. , +7/2) in the
rotated system. The angular momentum j is only
asymptotically a good quantum number. For large
separations the neutron functions are concen-
trated at the nuclear centers which lie at z’=+»/2
on the z’ axis of the rotated frame:

wx(j)m(r'ilc.m: ﬂ/z)::(ijm(xl,c.m, »Yicm.» Ziem. ¥7/2).
(12)

The single-particle functions will be specified in
terms of two-center wave functions in Sec. IID3.
Using the functions ¢,¢;)» we can wrlte the in-
trinsic wave functions as

‘bé(J)M(l’ 2’ T) W A(l 2) (pr! (rlc.m.”r/z)@ﬁpaz(irz/c.m.’ "7/2)

- (—1)l<pa1(Fz’c.m. s = 7"/2) ® (paz(f)fcm ’ 7/2)])[”]] (13)

with the abbreviations

C!i={>\,',(]',')}, a:{ai’ az}' (133.)

The wave functions (13) are antisymmetric for’
the exchange of the extra neutrons. It is straight-
forward to generalize these functions to describe
the neutron transfer. When the *C nuclei are ex-
changed, the direction of the z’ axis is reversed.
The effect of this operation on the intrinsic wave
function can be obtained by rotating the intrinsic
coordinate system by the angle 7 around the x’
axis. It results with the operator Py for nucleus
exchange:

PydApul1,2,7) ==(=1)"* 7244 ) (1,2,7).  (14)

»

1 +(_1)I+l'

=D (6, b
2T 7545 L

A TA
(@ ou(J)M[‘I’ a'l'(J')M’> =

r

Here we have used the following phase convention
of the single-particle wave functions:
<p)\(j)m(x” _yly —z’—r/2)

=("1)j-2m(p>\(i)—m(x,y y,’2’+7/2)- (15)
In carrying out the antisymmetrization operation
in Eq. (13) we neglect the fact that also the rela-
tive coordinate T is affected by the exchange of the
extra particles. Also the antisymmetrization of
the extra nucleons with the core nucleons is

neglected for simplicity. The wave functions o4
are normalized as follows:

oo azaz_(_1)”h”z-"balaz,éuqu,]é,',,ﬁuul. (16)

For deriving this result we have used the normalization of the single-particle wave functions
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f OE Gm E 7/2)0 2, (yymp (K, £7/2)dT=3 (1 £1)855,0

As can be recognized from Eq. (16) the wave
functions &* are orthonormalized when we re-
strict the quantum number a={a,, @,} on'the sub-
set with @, < a,. The subset of wave functions
with a, < a, is superfluous because of the relation

S oo u==(=1)" T RTIBL (18)

3. The single-particle wave functions ¢, (i)m

The single-particle wave functions ¢,;,, needed
for the intrinsic wave functions (13) have to ful-
fill the asymptotic condition (12), the phase condi-
tion (15), and the orthonormalization (17). The
wave functions ¢,(;,,, are asymptotically concen-
trated at z’=7»/2 or z’= —r/2. However, the eigen-
functions of the symmetric two-center model used
for the 3C-13C system have good parity and, there-
fore, are concentrated asymptotically at both cen-
ters. To obtain the required asymptotic behav-
ior we subtract and add the asymptotically degen-
erated eigenfunctions x of the two-center Hamil-
tonian:

- 1 - -~
‘»"xu)m(’f"’zo=7’/2)=7—2‘(X‘i(nm(r':Zo)L+ X'{u)m(r'yzo))’

g0)«(.1)»1(?,: _zo=-7/2)=£%—;)‘!“ (19)

x (xi(j)m(fl’zo) - X:(J)m(-f"zo» .

= 1

!11'26"'1"‘2 . (17)

r

The functions x¥ and x* are the eigensolutions of
the symmetric two-center shell model for even
and odd parity, respectively,

h(?',zo)X?IZ?) m =€§'(lj‘)iml (Zo)xiz’;)m N (20)

The single-particle Hamiltonian of the symmetric
two-center shell model is discussed in Appendix
B. The phases of the wave functions x¢ and x* are
chosen under the condition that ¢ and x* become
equal for z,~ < and z> 0. The phase factor (-1)**
in Eq. (19) is the parity of the asymptotic single-
particle wave function ¢, ;,.(¥’,+2,) with respect
to the centers at z’=xz,, where [_ denotes the
asymptotic quantum number of the orbital angular
momentum. The phase factor is obtained from the
asymptotic properties of the two-center wave func-
tions [see Eq. (B8) of Appendix B] and is needed in
order to fulfill the relation (15) which connects the
phases of the single-particle wave functions
Crnm(T’+20) and @, 5 (T, -2,).

Inserting Eq. (19) into the wave function (13) we
obtain finally

5::(.)’)M___“‘(l,2)5‘1(,/),4 . (213)

with

@acrull, 2,1’)=W[(—1)’“2(X§1(1)+X'&l(l))®(x‘;2(2) ~Xa,(2)
. 172

— (=10, (2) - x4 (2D 8 (6, (1)+ x (DI (21b)

In order to calculate the matrix elements with the
wave functions 4 we expand the two-center wave
functions ¥ in the eigenfunctions of the symme-
tric two-center harmonic oscillator as discussed
in Appendix B:

L

Xy m= )B: A a2 )00, ©,232,) (22)

with B={n,,N,,m’,m ,=m -m'}.
The basis functions , can be expressed in terms
of higher analytic functions.

E. The coupled equations

In this section we derive the system of coupled equations for the relative wave functions R,,, defined in
Eq. (8). The scattering wave function has to fulfil the stationary Schrodinger equation: H¥ =EV¥. The
coupled equations are obtained by projecting with the channel wave functions

([i'Y,99, ) |H - E|¥)=0.

(23)

Inserting the Hamiltonian given in Eq. (7) and substituting R, ,(r)=¢""ul, ;(r)/r we find the following sys-

tem of coupled equations:
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0=(- k> +W(r,E,1)_E)u;(r)+ >

20 dr® v

x {_25M'M"

(= 1)3=0" M7 =4" (Ipgn g — M7 |10)IM'T! — M |1°0)

9 ~ d
<5-;-+D> d’k:Ml> W

n2 [/
5;7[2<@””'

-~ 32 2 -
+ <‘1>le <*a—1:2— +D > '1’:'/4'>
= 9 = 2I+1 1
+ 2<<I>k w | 5y D |®, M,>] + B2 IR
XD By |(T =T ,)2| DI*. 34,0 + H.c.]

+ B0y Oy B lHll(ii:'M'”“g' ) (24)

with 2={a,1,J}, k' ={a’,1I’,J'}.

The complex potential W(r, E, I) will be discussed
in Sec. III. The intrinsic wave functions, given in
Eq. (21), are used in their antisymmetric and non-
antisymmetric versions in the matrix elements.

In deriving this result we noticed that the Hamil-
tonian commutes with the antisymmetrization op-
erator and took the antisymmetrization of the rel-
ative coordinate approximately into account in or-
der to obtain Hermitian coupling potentials. In the
13C_13C case the operator D is given as

D=l<a __a). (25)

2\d8z; 8z

The operator J, is the sum of the angular momenta
of the extra neutrons measured with respect to z’
=+r/2,

J.= @ - 7/28,) x|+ 8, + (F5+7/28,.)
X 5; + §; (26)

It can be replaced by the difference J,=J" - J, ac-
cording to Eq. (A12) of Appendix A. The operator

J

'

r

J’ is defined as the angular momentum of the ex-
tra neutrons measured with respect to z’ =0:

F=3i+75 (262)
Jo=7/28,. X (3} - Bs). (26Db)

The system of equations (24) for the unknown func-
tions «f has to be solved numerically. From the
asymptotic behavior of the radial functions uf we
obtain the S matrix and then the cross sections
which are derived in Appendix C.

F. Matrix elements

The matrix elements in the coupled equations
(24) are easily evaluated by reducing them to the
matrix elements of the symmetric two-center os-
cillator. In this section we present only the im-
portant points in the calculation of the matrix ele-
ments. Further details can be found in Ref. 12.

1. The matrix elements of H,

With H, defined in Eq. (7b) and the eigenvalues
€% defined in Eq. (20) we obtain (k={a,l, J})

@ Hy &)= 0410000 2 (L (1)) 37 (Gumyjgmy | IM)Gymyjoms | M)[5(€2 + € el vel)-E.]

my,m2

with y={x, (j), m}.

@17)

In the actual calculations we take only states with j, =j,=3 into account. For this special case the sum-
mation over m, and m, can be immediately carried out, since the two-center energies depend only on |m [

&, H, 18 ,.)= Opm 05000 1+ (D) ][5(e 51"' €+ 652‘*' E:Z) -E.]. (28)

Inserting this result into Eq. (24) we find that the matrix elements of H, in Eq. (24) are diagonal. Abbrev-
iating these matrix elements by E, we obtain for j, =j,=%

=1(ct
E,;=2 (leu/zn/z'* 6:1u/2)x/2+€f2 a/zn/2t 6;fzu/z»u/z) -E.. (29)

2. The matrix elements of 3/ or +D

The sum of the coupling terms with the operators 8/9» and D in Eq. (24) is Hermitian, but not so for the
single terms. We rearrange these terms such that the resulting terms are individually Hermitian. It fol-

lows that
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~ 3. = d - 32 - -~ 9 |~ i
4<<I’kM <’J+D) q>k'M>'d-,;+2<q>kM (ayz +D2> ‘I):'M>+4<‘I’m D}}' q>k’M>=Akk’M+ Bururs (30)
d d
A1y =2M e () oI (Mo (7)), (30a)
-~ a -~
Moy =2( P py o +D) Dpey), (30b)
- 8 - 9 - ) ~ '
Bkk,M=_z<D<p;;M <§; +D> ‘@k,,,>_2<5; &,y (5; +D> @;‘.M> . (30¢)

The operators A,,.,, depend on the transition potentials M,,., and their first derivatives. These potentials
are easily reduced to matrix elements of the two-center wave functions defined in Eq. (19):
(=1)lapay(l+ (~1)1* *la lajtla, g )
M =
kk’M('V) 2(1+ 6a1a2)1fz(1 n 50‘1&'2)1/2

2
X Z Z (j1m1j2M—m1|JM)

ml.m'l igd=l

X (jimij;M —m; IJ'M)(_I)(HL +logHay)i=f) 5;i7}
1 I'4 & u u
X5 \\ K Xyge )+ Xoi Xys
1 9
*Z <<X51 x'y‘j'> + <X 7 ’W, Xi,:>)] (31)

with7,=7,= {az;y m, t y Yo=Y1= {au ml} .

With the aid of the expansion (22) of the functions x4'* the matrix elements in (31) can be reduced to the
matrix elements between the states of the symmetric two-center oscillator. The coupling potentials
M,,.,, vanish asymptotically because of the relation [7=2z,, see Eq. (B8)] '

]
oy

or

7]
9z

lim 1 ] 1 2 9 1 9 - .
7> \/__2—<ﬂ + E W>(x§jm+xu7\jm)=<~a—,; + § —327-> QOMjm(I‘l —1’/26,, )=0. (32)

The same method can be applied to calculate the matrix elements of the potentials (30c).

3. The matrix elements of(i -.7a)2

The angular momentum operator I- 3a )? has to be written in components of the intrinsic coordinate sys-
tem. With the properties of the D functions we obtain for the matrix elements needed in Eq. (24)

2I +1 ~ > = - 14+(=1) ¥
W [( DIIA’II ékM |(I— Ja)z |D£;;o q);"M'> +H.C.] = GMMI6JJD ——‘—2'_—‘—

-l +1) = MM +1)]/2

X 8o B |97 | Bposgar) =7l T +1) MM ~1)]"/ 25,

XU By |77 | @posger) +5 s By [T +T377) |8y
+H.c.). (33)

Asymptotically the intrinsic wave functions <f>kM are eigenfunctions of the square of the angular momentum
operator J,:

lim J23,,=J (J + 1123, . (34)
>0

Gaal(I(l + 1) —Mz)h’z

In that case the above matrix elements (33) can easily be evaluated. Inserting the asymptotic matrix ele-
ments into Eq. (24) we obtain the usual centrifugal potentials
n(l+1
m 3 = WD (35)

2
Lt I TV 2ur

In complete analogy to Eq. (31) we get the following expression for the matrix elements of 30:
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(B |7, | By = &

—1)ey*tag[1 F (=) e Hay Hajtle] ]

2(1 + 5‘!1&2)1/ 2(1 + aa;a'z)llz

2
X 33 G My [ TG G507~ |3 M 1) a0

myemy i,J=1

X055, (2 ((XE; |77 [X850) + (X% 3" | X0p))
—578 o (X5 [B X500 + (g [B [X6,0) (36)
Using Egs. (26a) and (26b) we rewrite the matrix elements of 'jaZ in a more explicit form:
. T, - - - - 2 = |- -y - -
(@ IJaz |‘I’f:'u> +H.c.=2( Dy |(JI+J;)2 |<I)£'M> Y (@ |(ez' X (p; —p;))zlq’gw
[ (B | (G +INE 0 X B, =DL) | Bpoy) +H.c.] . (37)

The reduction of these matrix elements to expres-
sions with two-center wave functions is straightfor-
ward. Inthe actual calculations presented in Sec.
III we have replaced the orbital angular momentum
in :I’a defined in Eq. (26) by an expression which is
also used for the calculation of the 1§ and 12 po-
tentials of the two-center shell model (see Appen-
dix B):
2
Fo=30= 20 2%l + (12 | -7/2)%] 5 + 54

i=1
=J, 478, X [0(-20)D - 6(z)D4].  (38)

The operator 38 has the advantage to be symmetric
in the particle coordinates and gives the same
matrix elements as ja for large and small relative
distances 7.

III. APPLICATION TO THE !3C-13C SCATTERING

In this section we apply the theory to the **C-
13C gcattering. Figure 3 presents the states of the

CORE NEUTRON CALC

320 81 g yg —.
2t _,—76*—' L g’ 2531122

s,

g: 1ds,

37 mllz
" 0* sy, —
7 "y,  —

FIG. 3. Spectrum of 13C from Ref. 17. On the right-
hand side of-the figure, the 183G states are interpreted
with the collective excitation of the *C core and the
excitation of the loosely bound neutron. The last column
presents the neutron states of 13C calculated with the
shell model parameters given in Eq. (42).

r

13C nucleus and their explanation in terms of the
excitation of the *2C core and the valence neutron.
The strongest transition from the ground state

is of E1 type and connects the 3~ ground state (gs)
with the first z* (3.09 MeV) state. As shown in
Fig. 3 the transition is caused by the valence neu-
tron going from the 1p to the 2s3 state. In the
present calculation we have restricted the channels
to the elastic one (gs,gs), to the single excitation
of the 3* state in one of the **C nuclei (gs,3*) and
the mutual excitation of the 3* state in both **C
nuclei (3°,3*). As already stated, we disregard
the neutron transfer and core excitation channels.

A. The complex potential

The complex potential W(#», E,I) in Eq. (24) con-
sists of the complex interaction between the '*C
cores and of an absorptive potential for the inter-
action of the extra particles with the cores:

W(r,E,I)=V(r)+iW, (r,E,])+iW,(»). (39)

The real and imaginary potential between the cores
is completely determined by the elastic and in-
elastic '2C-'*C scattering. The additional imagin-
ary potential W,, is caused by the neglectedtrans- )
fer and inelastic channels of the extra particles.

1. The real potential V(r)

The real '2C-'2C potential is taken from Morovié
and Greiner,” who have calculated real potentials
for the scattering of identical nuclei. They used
the Strutinsky method with single-particle energies
of the symmetric two-center shell model (TCSM).
The potential of the symmetric TCSM is given in
Appendix B and shown together with the correspon-
ding miclear shapes in Fig. 4. In the adiabatic ap-
proximation of Morovié and Greiner’ the resulting
potential energy surface of the *3C-!2C system de-
pends on the distance between the centers (7 =2z,)
and on the inner barrier height % defined in Fig.

4. This potential energy surface (PES) is shown in
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FIG. 4. The two-center shell model potential with
the corresponding nuclear shapes for two different
two-center distances. Left side: compound nucleus.
Right side: separated nuclei (from Ref. 7).

///7\\4-/;[;\ N

_—
z

Fig. 5. The main feature of the PES is that the
Coulomb barrier is situated at »=5.4 fm. The
PES minimum at »=3 fm and 2= 0 reproduces the
#*Mg ground state. One estimates »=3.16 fm for
the measured quadrupole moment of **Mg in terms
of the two-center distance of the TCSM. In the -
PES of Fig. 5 we have indicated the adiabatic path
chosen for the 2C-'2C collision. The resulting
core-core potential is shown by the heavy line in
Fig. 6.

2. The imaginary potential W,

As suggested by Helling et al.'® and Fink ef al,,*
the imaginary potential for the elastic channels can
be written

adiabatic, B=1

r{fm]

FIG. 5. The potential energy surface for the 12C-1%C
system in adiabatic approximation as function of the
two-center distance 7 and the height # of the inner
barrier of the potential defined in Fig. 4. The values
of the equipotential lines are given in units of MeV.

The dashed line is assumed as the path of the *C nuclei
in an adiabatic collision (from Ref. 7).
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ADIABATIC POTENTIAL !
FOR THE ELASTIC |
130-BC CHANNELS

=10

=7
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VIiMeV]

— - potential

— B¢-B¢ elastic potential
with single particle
energies and centrifugal
potential
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FIG. 6. Selected potentials for the elastic *C-13C
channels. The adiabatic core-core potential (heavy
line) is obtained from the PES of Fig. 5 (path along the
dashed line in Fig. 5). The !3C-13C elastic potentials
(light lines) are calculated by adding the »-dependent
single-particle energies of Fig. 9 and the centrifugal
potentials to the *C-12C potential. Asymptotically the
potentials are degenerated for fixed orbital angular
momentum I,

2I +1
P

x exp(2{a[E - V(#)
—I( + V)72/26(r)]}2)  (40)

ch (’}’, E,I )= (XN(’V)

with
N@#») =A(l —-v/d)?*(1 +v/2d), r<d - (40a)
8(r) [ E - VI 1/2
0'2(1,.) = —h—(T’r) <_aﬁ) , (40b)
0(r) = u(z R*+7%), (40c)
a=0.035(A —12) MeV~'=0.42 MeV™. (404)

For 6 we have assumed the moment of inertia of
two equal rigid spheres with the **C radius R=3.11
fm and relative distance ». The excitation energy
E*=E - V() of the precompound nucleus is mea-
sured with respect to the adiabatic potential V(#)
shown in Fig. 6. The function N(7) is the number
of nucleons in the overlap region of two spheres
with homogerneous densities. The touching distance
d is chosen so that it agrees with the position of
the Coulomb barrier, namely d=5.4 fm (see Fig.
6). Finally we have fitted the only free parameter
a to the experimental 90° cross sections for elas-
tic '2C-'2C scattering.
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FIG. 7. The 90°-differential cross section for elastic
120-12C scattering. The experimental data are taken
from Ref. 24. The calculations are carried out with
the real 2C-12C potential shown in Fig. 6 and the ima-
ginary potential given in Fig. 8. Since we have coupled
the single and mutual excitation of the first 2* state in
12C to the elastic channel, the theoretical cross section
reveals intermediate structures.
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FIG. 8. (a) The imaginary 12C-12C potential for various
total angular momenta at E, , =15 MeV. (b) The addi-
tional surface imaginary potential for **c-13C,

Figure 7 shows the theoretical 90° cross section
for elastic '*C-'2C scattering obtained by fitting
the free parameter @. It results in a=-0.1 MeV.
In the calculations we have coupled the single
and mutual excitation of the first 2* state in '*C
according to the method described in Ref. 16. The
imaginary potential used for the elastic channels
is drawn in Fig. 8(a) for E, ;, =15 MeV.

3. The additional imaginary potential W o

Since we treat only a very restricted number of
channels for the extra particles in our calculations,
we have to approximate the disregarded single-
particle channels by an extra absorptive potential
in the elastic **C-13C channels. This potential
arises partly from the neglected neutron transfer
channels. Therefore, we localize this potential
in the touching zone by the following ansatz:

Ky —7v) (v, -7)

W)= Wo (ro-7)* 7

vy Sr<7v, (41)

=0 otherwise.

The parameters W,, 7;, and 7, are taken as the
only free parameters to fit the experimental elas-
tic cross section of '*C-*3C. The resulting
surface-absorptive potential is drawn in Fig. 8(b).
It is assumed that this additional potential gets
strongly reduced if the neutron transfer channel is
explicitly included in the system of coupled equa-
tions (24).

B. The TCSM for the extra nucleons

The theory formulated in Sec. II is independent
of the special type of the two-center shell model
(TCSM). To simplify our calculations we assume
an harmonic two-center oscillator for the potential
of the extra neutrons. The simplification does not
influence the gross structure of the radial and ro-
tational coupling potentials, and is justified as
long as we disregard polarization effects and the
neutron transfer channels.

The parameters of the TCSM described in Ap-
pendix B have to be chosen such that the asymptotic
single-particle states are reproduced. As shown in
Fig. 3 the '°C states have the peculiarity that the
2s 7 state lies lower than the 143 state. Kurath and
Lawson'” have explained the spectrum assuming
weak coupling between the deformed **C core and
the neutron. Since for simplicity we do not take
any core deformation into account, we have to
adjust the asymptotic parameters Zw(y -~ ©) =fw,,
K, and k, of the TCSM in order to reproduce the
relative positions of the 1p3, 2s3, 1d3, and
1d3 states in the '°C spectrum (see Fig. 3).

It results in )
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gl ADIABATIC EXCITATION ENERGIES
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FIG. 9. The sum of the adiabatic single-particle en-
ergies for the channels (gs,gs), (gs,3"), and (5" ,3)
calculated according to Eq. (29).

7w,=6.95 MeV, k,=0.127, p,=-0.479. (42)

The small value of the oscillator frequency in-
dicates that the extra neutron is loosely bound to
the *C core and simulates the effects of the de-
formation of the *C core. Figure 9 presents the
excitation energy of the neutrons in the considered
channels calculated with the single-particle en-
ergies of the adiabatic TCSM which are inserted in-
to Eq. (29).

C. The coupling potentials

Using the TCSM wave functions for the neutrons
we have calculated the various coupling potentials
in Eqs. (24) by the methods outlined in Sec. II F.

Figure 10 shows the constituents of the radial
coupling matrix element given in Eq. (31) for a
special transition. As already mentioned the
asymptotic radial coupling matrix elements van-
ish. In the present calculations we have taken only
the radial matrix elements of Eq. (30a) into ac-
‘count and disregarded the higher order terms
given by Eq. (30c).. The radial coupling matrix
elements of Eq. (30a) have no diagonal contribu-
tions.

The matrix elements of the angular momentum
operators are calculated according to Eq. (33)
where the angular momentum 3‘, of the extra neu-
trons is replaced by the symmetric operator 33
defined in Eq. (38). This replacement is done
only for numerical simplification and will be re-
vised in future calculations.

The matrix elements of (T - J,)? have diagonal
contributions since they approach the values
I(I+1)72 for »~=. In Fig. 6 we have added the
centrifugal potential and the single-particle ex-
citation energy for the elastic channels (see Fig.

08
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FIG. 10. The radial coupling potential for the special
transition
§:~ (&4@gs,gs), 1=1, J=1, M=—-1|D, | $4(gs,%"),0,1,
-1

with the following choices of D,,: Curve 1: D;=28/87.
Curve 2: D,=08/8z{ —9/0z%. Curve 3: D3=D;+D,.

9) to the adiabatic core-core potential. Asympto-
tically the potentials are degenerated for fixed
orbital angular momentum, whereas in the over-
lap region the potentials split for different total

o R
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FIG. 11. Selected nondiagonal matrix elements of the
rotational coupling;

1 .
ppee (Y, ©8, H1 [T =T )2 (Y 1 ®FG0yy 11,
k ={a”|j}i k={(gs,gs),l,l)},

k' ={(gs,3"),2,0}.



angular momenta I. This effect removes the
degeneracy of the virtual and quasibound reso-
nances. Therefore, the resonance states are
spread over all energies and are not so well
separated as the *C-'?C resonances (see Ref. 3).
The richness of resonances in the potentials of
Fig. 6 leads to an enhancement of the intermediate
structure in the '*C-'3C cross sections. Figure 11
shows nondiagonal matrix elements of the opera-
tor (T—fs )? which increase rapidly at smaller rela-
tive distances because of the 1/#* factor.

D. Results of coupled channel calculations

Coupled channel calculations have been carried
out with the above selected '3C-'3C channels
(gs,gs), (gs,z%), and (z*,3")

In Fig. 12 we compare the calculated elastic 90°
differential cross section with the experimental data
of Helb ef al.’* In this calculation we have fitted
the strength of the absorptive surface potential
given in Eq. (41). As shown in Fig. 12 the 90°-
excitation function can be reasonably reproduced in
the measured energy range between 7 and 13.75
MeV. The angular distributions are compared
with the experimental data in Fig. 13.

The inelastic '3C-'*C cross sections for single
and mutual excitation of the z* (3.09 MeV) state
in 3C are drawn in Fig. 14 (solid lines). As in
the inelastic **C-'2C cross section the inelastic

mUL ne-13g ]
) ELASTIC CKOSS SECTION |
3¢ = 90°
|
| MOTT
510
E -
£
=
1 =
F---Exp
— Calc
- coupled: (gs,gs), (gs,';), (1", 15")
011 I 1 I L I 1 L !
79 1 13 15 7 19 21 23

FIG. 12. The 90°-differential cross section for the
elastic Y*c-13c scattering. The experimental data are
measured by Helb ef al. In the calculation we have

1+ 1+

coupled the channels (gs,gs), (€s,3°), G ,37).
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c.m. ENERGY [Me V]

v
I ELASTIC CROSS SECTION ¢-'3¢
r---Exp
— Calc.
coupled: (gs,gs), (gs.1;"), (117", 1,")

i 1 - 1 1 L 1 I
20 40 60 80 100120 40 60 80 100
cm. SCATTERING ANGLE [deg]

FIG. 13. Angular distributions of the elastic 13C-13%C
scattering. The experimental data are measured by
Helb et al. (Ref. 14). The same channels as in Fig. 12
have been coupled. i

130 _13C excitation functions reveal intermediate
structures which arise by the excitation of quasi-
bound resonances via the double resonance mech-
anism.'® Up to now no experimental data have
been published for a comparison with the theoret-
ical curves.

To investigate the influence of the radial and
rotational coupling potentials we have calculated
the inelastic excitation function separately with
the radial coupling and with the rotational one. As
shown in Fig. 14 the rotational coupling is of
minor influence on the inelastic cross section. The
strength of the radial coupling grows with increas-
ing relative velocity since the radial matrix
elements in Eq. (30a) are multiplied by the rela-
tive momentum p,.

The influence of the channel coupling on the inter-
mediate structure in the elastic 90°-excitation
function is illustrated in Fig. 15. When only the
ground-state channels are coupled [dashed line in
Fig. 15(a)] the elastic excitation function is com-
pletely smooth. On the other hand when all con-
sidered channels are coupled [ solid line in Fig.
15(b)], the excitation function shows strong in-
termediate structures.

IV. CONCLUSIONS

The intention of this paper was to develop a
practicable method for the use of molecular single-
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FIG. 14. The 90°-differential cross section for the
single (a) and mutual (b) excitation of the first %' state
in 13C (solid line). The cross sections shown by the
dashed and dotted-dashed lines demonstrate the effects
of the radial and rotational coupling separately. One
notes the importance of the radial coupling.

particle wave functions in nucleus-nucleus
collisions. The molecular method has the advan-
tage that the mean interaction between all nucleons,
represented by the potential of the two-center

shell model, is treated correctly. A further
advantage is that molecular single-particle states
are orthogonal. On the contrary, single particle

10 E— 130413
ELASTIC CROSS SECTION
r Bep=90°

-

CROSS SECTION [mb/sr]

T

coupled channels:
—(gs,gs). (gs. ;")
~---(gs.gs)

o 79 nm B BT W9 N A

c.m. ENERGY [Me V)

1[][]_ ETREy

- ELASTIC CROSS SECTION
L Vem = 90°

CROSS SECTION {mb/sr]

coupled channels:
—(gs,gs), (gs, "), (%", u7")
---(gs.gs),(gs."2")

1 Il 1 1 L
79 W B % 7 9 223
cm. ENERGY [MeV]

FIG. 15. The dependence ofthe intermediate structure
on the number of coupled channels in the 90°-differential
cross section for elastic !3C-13C scattering. The coupled
channels are (a) (gs, gs) (dashed line), (gs,gs) and

01

i (gs,é*) (solid line); (b) (gs, gs) and (gs,%+) (dashed line),

(gs,gs), (gs,3"), and ¢ ,3") (solid line).

states, concentrated around different nuclear
centers and widely used in reaction theories, do
not possess this orthogonality. However, the
molecular wave functions are referred to a
body-fixed, rotating coordinate system and, there-
fore, rotational coupling enters the Hamiltonian.
Qur calculations (see Fig. 14) show that the diagon-
al part of the rotational coupling is the important
one. A much stronger coupling arises through the



dependence of the molecular wave functions on the
two-center distance. The radial coupling leads to
the excitation of nucleons when their states, at
first centered at the individual nuclei, pass into
the molecular states of the compound system.

The model can be extended in two main direct-
ions: the inclusion of the transfer channels and the
excitation of collective states of the cores. The
treatment of the transfer channels needs a careful
investigation of TCSM potentials. Various kinds
of realistic TCSM potentials as given in Refs. 4,
5, 26, and 27 should be tested. Also the change
of the relative coordinates in the entrance and
final channels has to be taken into account.?® The
core excitation and its coupling to the single-
particle motion leads to a dynamical treatment of
polarization effects.

The molecular single-particle states can be ex-
perimentally verified by measuring inelastic ex-
citation functions. As shown in Ref. 21 the inter-
mediate structures in the inelastic cross sections
depend quite sensitively on the position of the
resonance states in the nucleus-nucleus potentials.
Analyzing the S matrix we can explain the origin of
each individual structure in the calculated in-
elastic cross section shown in Fig. 14. As a re-
sult we find that the positions of the structures de-
pend on the molecular core-core potential, the
excitation energy of the nucleons in the molecular
orbits, and the centrifugal potentials.

Further work has to be done to reveal specific
signatures in the inelastic cross sections which
arise from the molecular single-particle states.
Especially the study of crossings of molecular
levels can become an important tool for detecting
molecular single-particle effects in heavy ion
collisions. At points of level crossing the ex-
citation of nucleons becomes enhanced. This
effect was studied by Fano and Lichten®? for the
analogous excitation of electrons in atomic col-
lisions.

We thank Professor Jae Park for fruitful dis-
cussions.

APPENDIX A: KINETIC ENERGY IN THE PARTICLE-CORE
MODEL

The degrees of freedom in the particle-core
model are described by the coordinates of the two
cores, Re, and R¢,, and the coordinates T,,..., Ty
of the N extra particles which are measured from
an arbitrary coordinate origin. If we denote the
momenta canomcally conjugate to the coordinates
by Pc Pcz, and p,, the kinetic energy in the
partxcle core model can be expressed as®
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B, B &
2C,M ' 2C,M *f\_;:

2

Ipi

T-=

(A1)

<

The cores have C;=A,; - N, nucleons (i =1, 2) where
A, is the atomic number and N, the number of ex-
tra particles of each nucleus. The relative motion
of the two nuclei is described by the relative
coordinate T between the nuclei. Since the relative
coordinate is not symmetric in the particle coor-
dinates, all coordinate transformations using the
relative coordinate T lead to expressions for the
kinetic energy which are not symmetric in the
coordinates of the particles. For the partition

of the extra particles i< N, to nucleus A, and

N, +1<i<N to nucleus A, the relative coordinate
is given by

N,

-01<" 1-—>

r=—/|C,R;. + r
N

1/, = -
_72(0ch2+ > r,). (A2)

{aN 1+l

In the following we consider two canonical trans-
formations of the kinetic energy. We transform
the coordinates R¢,, Rc,, and T, to the center-of-

~ mass coordinate

R, jl(c +Re, +C,Re, +Z ) (A3)

with A=A +A4,, to the relative coordinate T and
N independent particle coordinates. Depending
whether we use atomic or molecular coordinates
for the extra particles we distinguish the following
two cases.

(a) In the first case, the coordinates of the ex-
tra particles are measured from the centers of
the individual nuclei at Ry, and Ry, (see Fig. 2):

N
- 1 ) - = .
=T, _T<Z r,+C1Rcl> for i<sN,,
1\ §=1
. . (A4)

N
-F, -%—( D f‘+czﬁcz> for i>N,.
2\ {=N +1

The atomic coordinates (A4) are useful if one de-
scribes the motion of the extra particles by one-
center shell model states concentrated around
each center at RA1 and RAz Introducing the mo-
menta P m.s p,, p,Al, and p d Py, canomcally con-
jugate to the coordinates Rc ms T r,Al, and ¥ Tiay
respectively, the kinetic energy (A1) becomes



280 TERLECKI, SCHEID, FINK, AND GREINER 18

po 1 s o 1o, 1%1:*2
=SAn Feom * oM P, + M & Pia,

1 N ' 1 Ny 2
+ oM iz piAg ?.AIM (; piA1>

=N1+1
2

_Z;M <2Nj 5,A2>, | (a5)

4=N101

where p isthe reduced mass of the relative motion.

(b) In the second case, the coordinates of the ex-
tra particles are measured from the center of
mass at R, (see Fig. 2):

-

Fic.m. = Fi - Rc. (AG)

m, °
The molecular coordinates (A8) are applicable if
the motion of the extra particles is described by
two-center wave functions, as we have done in our
calculations. If the momenta canonically conjugate
to T,,.,. are denoted by B, ., , the kinetic energy
is given by®:

1 - 1., 1 }A:,
- 2 A w2 1 2
T_ZAM pc.m. +21J_pr +2M E Picom.

1 Ny 1 N
+<A1M Picom. = Z 37 iZ pic.m.) "P,

§=1 =N, +1

1 (v 2
‘ ~m< 2 plc.m.) : (AT)

In Eq. (A7) the last term can be neglected when
the number of the extra particles is small com-
pared to the number of nucleons in the cores, i.e.,

N,/ -N;)<1, i=1,2. (A8)

The fourth term in (A7) contains the coupling be-
tween the extra particles and the relative motion
and has to be taken into account for large relative
velocities. Although the masses of nuclei A,M

- and A,M stand in the denominators of this expres-
sion, the term is not negligible for small ratios
N,/A, <1 as can be seen by the following argu-
ment: Replacing B, = 1V, one recognizes that the
fourth term in Eq (A7) is proportional to the rela-
tive velocity and the difference of the momenta of
the extra particles.

As discussed in Sec. IIC, it is conveniént to in-
troduce a rotating coordinate system with the z’
axis coinciding with the direction of ¥. The par-
ticle coordinates in the rotating frame are denoted
by Ti4,, Tia, and ¥}, . . Here the coordinates
F;Al and ?242 are measured from the nuclear cen-
ters and F;c_m. from the center of the total mass.
The transformation from the space-fixed system
to the rotating system can be carried out by re-
placing the momenta B4, D;a,, and Py, by the
corresponding momenta B, , Bjs,, and Pj,p, of

the rotating frame. The momentum of the relative
motion transforms as follows:

NSRS S
B =585 ——tx T-T) (A9)

with € =&,., the total angular momentum T and the
angular momentum J’ of the extra nucleons. When
the coordinates ¥}, and T,, are used, J’ is the
sum of the angular momenta of the extra particles
including their spin with respect to the two nu-
clear centers:

Ny N N
- - - - > -
J’:EriAlxp$A1+ Z r’lAzxp€A2+ ZS; (A]‘O)
i=1 4=N1+1 i=1

_{n molecular coordinates the angular momentum
J’ of the extra particles is measured from the
center of mass in the rotating frame,

N
3= ?:c.m.xﬁsc.m.fiés- ' (A11)
=1

With the angular momentum':IA of the extra par-
ticles measured from the center of mass of the in-
dividual nuclei, the angular momentum ¥ given in
Eq. (Al1l) can be written in the form

Jr=3,+73, (A12)

with

Ny N N
- -, -/ E - - Z -
Ja - Z riAl X Picom, + r'iAz X p;c.m. + S; ’

i=1 {:Nlu {=1
. 1 LS N (A13)
JO:XrX<A2;p;c.m._A1 Z pic.m.)’

iaN +1

1

Here we have used the relations

A
- )
Tleom=Tia, + =T for i<N,

A
and (A14)

A
F ) Ly i
Tieom. =Tia, = r for {>N,.

Inserting (A12) into (A7) and using the relation
(A9) we finally obtain the following expression for
the kinetic energy (AT):

1 =, Al 1/3 2f 9
TesgrPom’- 2“[72<ay+u>y <ay +D>

-~ - N
. (I—J )2 . 1 5: 2 -
2“,},2 oM vt ic.m.

Ny N
L o S N iF
ZALM ~ fc.m. 2A2M 1 ic.m,

(A15)

1 ( 3 X 3
D=— (A — A — ). (A16)
A 22 azic.m., li§1+l 8‘thc-m. )
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If we replace D, by Dj4, and Dj,, and
(7/3)(8/% + D) by (%/i)(8/87) in (A15) we obtain the
analogous expression of the kinetic energy T writ-
ten in atomic coordinates. The kinetic energies
in the atomic and molecular coordinates differ

in the radial part of the operator p,?, since the
molecular single-particle wave functions depend
on the relative distance 7 in contrary to the cne-
center single-particle wave functions.

APPENDIX B: THE TWO-CENTER SHELL MODEL

The wave functions of the symnietric two-center
shell model solve the Schrddinger equation:

n?
< 2MA+V(p’Z Zo)+V +V12‘€§('1u)lml>

X Xhm(ps ©,2;2,)=0.  (B1)

According to Maruhn et al.?® the potential V(p, z; z,)
in (B1) is given for identical and spherical nuclei
by

|z| <z, Vo, 2;2,)
= sMw(zy)[p® + 2", (1 + c2’ +dz"?)], (B2)

|z]>20: Vo, 2; 2,) = $Mw?(2,)(p° + 2°) (B3)
‘with
z'=|z| - z,,

where M is the nucleon mass. The potential and
the corresponding nuclear surface are depicted

in Fig. 4. The constants ¢ and d are fixed by the
condition that the potential and its derivative are
continuous at z=0. The parameter f, may be ob-
tained by minimizing the liquid drop energy of the
nuclear system.” For simplicity we have calculated
the wave functions of the extra particles with the
two-center oscillator potential, i.e., ¢=d=0 and
fo=1.

In the adiabatic approximation the oscillator fre-
quency w(z,) is determined with the condition of
volume conservation. In that case the equipotential
surface describing the nuclear surface has the
value

V,=iMw,R?. (B4)

Here R, denotes the radius: R,=7,(4/2)'/? of the
separated nuclei and w, the asymptotic frequency:
w, =w(z,~=). In the sudden approximation the fre-
quency w is independent of » =2z, and is set equal
to its asymptotic value w, also in the interaction
region.

In addition the realistic two-center shell poten-
tial in (B1) includes the spin-orbit potent1al Vis
of Thomas-type

- . 2k7e

VT, p,8)=~ Mo (VVXp)'S (B5)

and a I* type term

2
Vpa(F, p) = —ﬁwoxu[(glg'ﬁ(pz +2") X 5)

! (B6)

The second term of (B6) is diagonal in the basis
states of the two-center oscillator defined in (B7)
because of the Kronecker symbol §,;. N=N,+n,
denotes the principal quantum numbers of the two-
center oscillator. The parameters w,, k, and u
are interpolated between the values. of the united
and separated systems as proposed in Ref. 23.

The eigenfunctions and eigenvalues of the two-
center shell model are obtained by diagonalizing
the Schrédinger equation (B1) with the eigenfunc-
tions of the symmetric two-center oscillator given
by

n?
<_ S A+ EMw?(2,) (0% +2'%) - €ngN i ml )

xd’ngNnmmg(P, ¥,2;2,)=0. (BT)

The functions ¥ factorize in the coordinates p, ¢,
and z and the spin part. They can be written in
terms of Laguerre polynomials and confluent hy-
pergeometric functions as shown in Ref. 5.

Asymptotically the wave functions X5¢4ym approach
a superposition of solutions ¢,},, of the one-center
oscillator shell model:

xi'(;‘)m(?vzo"‘w)
ﬁ[%,,m(r 208,) £ (=1)'0y ,;m(F +2,8,)]. (BS)

The phase factor (~1)? is the parity of the functions
‘qum(F) with respect to the center of the oscillator.

APPENDIX C: THE S MATRIX AND THE CROSS SECTION

The total wave function (8) can be written asymp-
totically in the form?®

v= ) AMB.J, —SL,04)
. RoK'y Iy M

X[V © 85 4,0(1,2, D] . (C1)

The abbreviations are k={a,,a,,,J} and J, and
O, for the ingoing and outgoing Coulomb functions.
Sk is the S matrix, Y, the orbital wave functions,
and the intrinsic wave functions are taken as
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axa

- (‘l)lgoal(-fzc.m. ’ -F/2)® <éocxz(-flc.m. ’F/Z)]f}“ ’

In the one-center wave function ¢, we denote the
positionof the cores by +¥/2 to which the extra par-
ticles 1 and 2 belong. The coefficients A;¥ are de-
termined by the asymptotic form of the wave func-
tion ¥. The wave function (C1) has incoming and
outgoing waves in the channels k, whereas in all
other channels only outgoing waves are present.

To specify the initial conditions we assume that

the nuclei are in the initial states, defined by the
quantum numbers u,={x,,I,=4,,M,} and p,

={1,,1,=j,,M,}. These conditions are fulfilled by
J
Y=3{u
1 ,Ll'-I-l
= [m(21
2 ui;ﬁz,u Fey + 5«'1&'2
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a].uzJM(l 2 I‘) —(—_'_}_‘)W?A(l 2)[‘Pa (rlc.mnr/z)@‘?a (rzc.m. ?/2)

o, ={n, =5}, (C2)

the coefficients

A”"=——[1r(21+ 1)(1+84,q,) ] %

al,(klll)aaz,(lzlz)

X (10JM | IMYI,M I,M,|JM) . (C3)

Inserting (C3) into (C1) and using the definitions of
the Coulomb functions J,,0, and the wave function
uc(9) for the Coulomb scattering of two point
charges we get the following expression for the
asymptotic wave function (C1):

(S)A(l 204, (Froume » T/2)0 ) (Focuma » =7/2) —ue(m = 9)AQ, 2)0,, (Foeum, s ~T/2)0, (Frem, s T/2)}

1 TCTAY
+1)]1/2<1+—6".1_.?_> (11M112M2IJM)(I{M(IWQIJ'M’)

X (I0JM [IM)(U'm'J"M" | IM)(€2%°1'5 1, — SL)Y 10,4(R)0,

X A(L, 2){90“3(?“.,“_ ’F/Z)q’u'g(yzc.m. ’ _?/2) - (—l)l,wui(yzc.m. ’

- oe={L,d,00,m’,J" M I,M}.
The Coulomb phase is denoted by o,.

_.f/z)<pu'2(?lc.m.’?/2)} ’
(c4)

The sum represents the waves scattered by the nuclear interaction.

The nuclear part of the scattering amphtude for the scattering from the initial states u,, u, into the final
states uf, us is derived from wave function (C4) according to the method given in Refs. 12 and 16:

Lik2(9, @)= Z —[1r 21+ )]2[(14 64 0 1+ Bagag)]/ 20, M 1M, | IM)

(MM T MY LOTM | IM) (L' T M | IM (€% By, = St 1o e (9, ) - (C5)

With the Coulomb scattering amplitude f,(9) we
finally obtain for the differential cross section for
the scattering from the initial states u, and u, in-
to the final states u] and u) observed in the direc-
tion 9, and m -9, ¢+ 7, respectively:

do '
<E§>u1u2—> ningy= Ifc(s)édlu 16u-’2u2 ~folm ~ S)Gu'luzﬁu‘zul

+fuk2(9, @) |2, (C6)

142

Since usually the magnetic quantum numbers are
not measured, we have to average over the initial
states and to sum over the final states:

do I
as 1% *e " (21, + 1)(2,+ 1)

T (
TR A ULy PR

(c7)
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