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The first order, spin-dependent microscopic proton-nucleus optical potential of Kerman, McManus, and Thaler

is used to analyze 800 MeV polarized proton elastic differential cross section and analyzing power data for
target nuclei ~8Ni, 9o Zr, "6 '~4 Sn, and 2«Pb. Approximately model-independent target neutron density distri-

butions are constructed in order to investigate the uncertainty in the deduced neutron densities resulting from

the statistical error and the finite range of momentum transfer in the experimental angular distributions.
Numerous other experimental and theoretical sources of error and uncertainty are considered to obtain a realis-

tic estimate of the total error in the deduced neutron densities and their root-mean-square radii. The typical
error in the root-mean-square radii is found to be +0.07 fm. Impressive qualitative agreement is found between

the deduced neutron matter densities and the corresponding densities predicted by Hartree-Fock calculations.

NUCLEAR REACTIONS Proton-nucleus scattering, E= 0.8 Gev; targets 58Ni,
GOZr, ~6 ~ Sn, 208Pb. analyzing power; spin-dependent Kerman, McManus, and
Thaler optical potential; model-independent densities; error analysis; neutron

radii.

I. INTRODUCTION

The nuclear radius and the shape of the nuclear
matter density distr ibution have received contin-
ued study throughout the history of nuclear phys-
ics. References 1-21 are some of the more re-
cent works on these topics. A major goal of much
of this work has been to obtain empirical matter
densities unambiguously enough to permit meaning-
ful comparisons with predictions of the shell mod-
el or varipus self-consistent-field mpdels ~ pf
nuclei.

Experiments with electrons and muons have pro-
vided data from which the nuclear charge density
has been reliably determined for stable nuclei
throughout the tabl. e of nuclides. ' ' Generally,
there is good qualitative agreement between the
experimental charge densities and those predicted
by Hartree -Fock calculations. '

Unambiguous neutron density distributions are
much harder to obtain. Experimental data from
which one can attempt to deduce these densities

necessarily involve the hadron-nucleus interac-
tion; thus, scattering experiments with beams of

protons, He, and pions are used to provide the
data for theoretical interpretation. Unfortunately,
a model-independent description of the interaction
and reaction mechanism is lacking. """t" Also,
a correct relativistically invariant equation of mo-
tipn js not available. ~ Because pf these uncer-
tainties, the neutron distributions deduced using
different projectiles and/or different niethods of
analysis are sometimes found to substantially dis-
agree. """ Varma and Zamick offer a brief cri-
tique of this situation. "

The purpose of this paper is to present a thor-
ough investigation of the sources of uncertainty in
the deduced neutron densities found from analysis
of G. 8 GeV polarized proton elastic differential
cross section arid analyzing power data for target
nuclej, 5 Nj. ,

9 Zr xi6, xmSn, and 2osPb. Experjmen-
tal errors, theoretical models, and assumptions,
as well as various systematic errors are consid-
ered. This work offers a more detailed explana-
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tion and an extension of analyses reported ear-
lier.""' The results obtained here, when com-
pared with those from similar "microscopic" op-
tical model analyses of proton-nucl. eus elastic
scattering data at other energies, "'"and with
results of analyses employing rhuItiple scattering
theory, """"indicate that different analyses
of a variety of medium energy proton elastic scat-
tering data give neutron rms radii which agree to
within the limits of the stated errors.

The consistency of the results of analyses of
medium energy proton-nucleus elastic scattering
data is significant and favors the use of medium
energy protons as probes of the nuclear density.
The advantages appear to be (1) less absorption
as compared with elastic pion scattering at ener-
gies near the (3, 2) resonance" ~ ' and with elas-
tic 'He scattering, (2} a better understanding of
the scattering process'4" ""(i.e. , lesser im-
portance of higher-order corrections and off-shell
effects in the optical potential), "'"and (3) lack of
internal many-body complications in the projectile
(as compared to 'He). The disadvantages are (1)
the extra spin degree of freedom of the proton,
and (2) a lack of sensitivity, relative to pion scat-
tering, to the distinction between target protons
and neutrons. """The additional complication due
to spin-effects can be nullified by the simultaneous
analysis of angular distribution and analyzing pow-
er or polarization data. """" As for pion probes
being advantageous because they distinguish be-
tween target protons and neutrons, an examination
of the results of a number of recent surveys of
pion-nucleus scattering, indicates that the sim-
ultaneous analysis of m' and p elastic angular dis-
tributions does not provide the strong and un-
ambiguous separation of proton-related. from
neutron-related effects that some had ex-
pected on the basis of simple arguments con-
cerning the free pion-nucleon total. cross sections.
This is most l.ikely due to the neglect in the anal-
yses of important higher-order corrections and
off-shell effects in the pion-nucleus optical poten-
tial as well as strong absorption. "" The result
is a great ambiguity and model dependence in the
fits to the angular distributions.

%ith few exceptions" all previous analyses of
proton-nucleus scattering at medium energies
have made use of specific functional forms for the
assumed nuclear densities, and have not included
a sufficiently detailed or thorough investigation of
the many possible sources of error, both experi-
mental and theoretical, which affect the derived
result for the neutron density's root-mean-square
radius and overall radial form. In this work, we
show how to construct a nuclear density which is
approximately model independent' ""in order to

permit a determination of the uncertainty in the
deduced neutron density due to the statistical error
and finite range of momentum transfer of the ex-
perimental data. The error in the deduced neutron
density due to numerous other experimental and
theoretical uncertainties is also estimated. Only

by carefully including all important theoretical and
experimental sources of error in the analysis can
meaningful comparisons with theoretical predic-
tions of nuclear matter densities or with results
of other types of analysis of different kinds of ex-
perimental data be made.

In Sec. II, the theoretical model on which the
present study is based is discussed, together with
details of the mode of the error analysis. In Sec.
III, the results obtained from analysis of the
available 0.8 GeV proton scattering data are pre-
sented and compared to predictions of the density-
matrix-expansion variant of Hartree-Fock theory.
The results of the error analysis are also pre-
sented, in full. In Sec. IV, conclusions are drawn
about the usefulness of the medium energy proton
as a probe of nuclear structure details. Suggested
tests of the microscopic theory of the proton-nu-
cleus optical potential are also given, and, finally,
further experimental and theoretical refinements
are suggested.

H. THEORY

The optical model analysis presented here was
done using the microscopic nucleon-nucleus optical
potential formulated by Kerman, McManus, and
Thaler (KMT)~ as modified by Feshbach et al. 28

Since the target nuclei to be considered have A
~ 58, the potential is calculated only to first order
in the nuclear density; various corrections which
contribute in second order, such as the center-of-
mass and Pauli correlations, as well as possible
dynamical correlations, have not been considered
explicitly. "" The (small} effect of such correc-
tions on the predicted nucleon-nucleus elastic
scattering cross sections will, however, be con-
sidered in the study of the total uncertainty in the
deduced neutron matter densities of the target nu-
clei under consideration.

The first order KMT potential, which is referred
to as the Rayleigh-Lax or'RL potential, "is given
in terms of the proton-nucleon scattering ampli-
tudes (evaluated in the proton-nucleus center-of-
momentum system} and the uncorrelated point den-
sities of the protons and neutrons in the target nu-
cleus. The description of the proton-nucleon scat-
tering in general requires five amplitudes. ' How-
ever, if the target nuclei to be considered all have
a ground-state spin of zero, as is the case here,
then the average over the target nucleon spin,
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which is carried out in generati]hg the HL potential,
averages three of the terms to zero. One thus
needs to consider

t„(q') = t',t(q')+it;, (q')(f, + (r,) n, (1)

where j refers to target protons (p) or neutrons
(n), q is the momentum transfer with q= k& -k„
and n=(k, xkz)/~k, xk~~. For incident nucleon en-
ergies near 1 GeV, the spin-independent and spin-
dependent parts of t»(q') are conventionally para-
metrized as' ' '

t'„(q') = (ik,o~~/4v)(1 -iu~~) exp(-B~~q'),

(2)

t ~~~(q') = (ik,8„/4v)(q'/4M')'~'(1 i a»—t) exp(-B»,q'),

where M is the nucleon mass. Unfortunately, in
order to determine the parameters of Eg. (2) un-
ambiguously, it is necessary to know the complete
nucleon-nucleon scattering amplitudes ' over the
range of momentum transfer covered by the pro-
ton-nucleus elastic scattering data. The complete
set (at least nine) of nucleon-nucleon experiments
which provide data from which these amplitudes
may be determined have not been done4' "~' at
energies near 0.8 GeV. The experiments required,
such as spin-correlation, double-polarization, and
triple-scattering4' are difficult, and although such
experiments are planned at LAMPF and else-
where, it will be some time before the complete
set of data is available. Data presently avail-
able ' "at energies near 0.8 GeV include pp and
ppg elastic angular distribution and pp polarization
which is insufficient to determine all the param-
eters of Eq. (2).

However, total cross section" "" and very-for-
ward-angle scattering data" "do determine a ~~
=4.73 fm', o&r„=3.79 fm', and u»=0. 056 (see Table
III below for the experimental errors). In the ab-
sence of precisely normalized p+ n scattering data,
dispersion-theory estimates may be consulted,
which predict u&„= -0.3 +0.15."" Since assumed
values for u~& mainly affect the peak-to-valley
ratios of the predicted proton-nucleus elastic an-
gular distributions, and do not shift the patterns
in angle or affect the overall slope, the uncertainty
in o.» is essentially unreflected in the neutron den-
sity one obtains by a fit to the angular distribu-
tions. For this reason a~„was allowed to vary to
obtain the optimum fit for all nuclei studied so far
at 0.8 GeV, including ""C, ' 'Ca, "Fe, ""Ni.,
"Zr, "' '~Sn, and "'Pb. The resulting value is
aq„= -0.2.

Recent 0.8 GeV p+ p polarizati. on data" together
with complementary cross section data, "as well
as data from other sources, ""have allowed veri-

fication of the adequacy of the Gaussian forms
[Eg. (2)] of the spin-independent and spin-depen-
dent amplitudes out to momentum transfers of 0.5
(Gev/c)'. From these data one determines that
B»+B» is roughly 0.3 fm', and that B»= 0.09 fm'
and B,»= 0.2 fm' give an adequate fit to the p+ p
elastic cross section and polarization data. In ob-
taining these values only the two amplitudes in Eq.
(1) were assumed. A value of B~„=0.12 fm' (taking
B»„=B,» in lieu of p+ n polarization data") repro-
duces recent 0.8 GeV p+n cross sections. """

A simultaneous fit to the p+p cross section and
polarization data only allows one to determine the
quantity 8»(u,» —u») (again neglecting double spin
flip amplitudes), so that 8» is not determined in-
dependently of e,».4' Only "triple-scattering"-
type measurements would allow such a separate
determination of the'two parameters. " If one as-
sumes 8»= 8~„and of,»= u,~„and chooses these pa-
rameters to fit the p+ p polarization data at 0.8
GeV, or alternatively uses values interpolated
from those suggested for other energies by Auger,
et a/. ,

" it is found that the predicted proton-nu-
cleus analyzing power overestimates the overall
strength of the data. ' '" Because the 8~& and a,»
appear in the RL potential in isospin-weighted
sums, the approach adopted here was to defi, ne
isospin-averaged quantities 8, and a» (along with

B») and adjust f~ and u» to fit the proton nucleu-s
analyzing power data. Since there is no reason to
expect the p+ p and p+n spin parameters to be the
same, one anticipates that the isospin-averaged
parameters should vary smoothly with the ratio
N/Z of the particular nucleus. "'" There is no
alternative at present to the semiphenomenological.
treatment of spin-effects adopted here; better and
more complete experimental determination of the
various nucleon-nucleon amplitudes is necessary
before the proton-nucleus phenomenology can give
way to nucleon-nucleon phenomenology.

We begin by considering a conventional model-
dependent analysis, by assuming a specific form
for the point-nucleon matter densities of the target
nucl. eus, namely, "

p&(r) = p,&((1+sop'/R&')/(1+ exp[(r~ -R&~)/g&]]

+ s~ cos(m~r —p~) exp[-d, (r r,~)']-
+ s,'exp[-d,'(r ra~)']), — (3)

where 0= 1 or 2, j= p or n, and p,z is adjusted to
insure normalization to the proper number of tar-
get nucleons. The second and third terms are used
only for the point-proton density of "'Pb, these
being necessary in order to reproduce the sum-of-
Gaussians (SOG) charge density'0 obtained from re-
cent electron scattering data" which extend to
large momentum transfer (3.V fm ').
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Once the RL potential is constructed, it is in-
serted into the Schrodinger equation, "

[d'/dr' —l(l+ 1)/r' —2p U&,~(r)/5'+ k„']g„(r)= 0,

where k„ is the exact relativistic mave number in
the center-of-momentum (c.m. ) system and p, is
the "reduced energy"" in amu (i.e. , p = e,e,/(e,
+ e,), where c, is the total relativistic c.m.
energy of particle i in amu). The representation
of the spin-dependent RL potential in coordinate
space is denoted by U&,"(r},ss' 4 and includes a
Coulomb interaction constructed via a folding mod-
el from the nuclear charge density as determined
from electron scattering. '"

The procedure followed for the conventional cal-
culation is outlined below. First, the point-proton
densities, in the form of Eq. (3), were determined
by unfolding the single proton charge form factor
from the empirical nuclear charge form factors
determined from electron scattering experiments.
The small effect of the neutron charge form factor
has been neglected. ". The resulting proton matter
densities were then kept fixed. For the neutron
densities only the first term of Eq. (3}was con-
sidered. The parameters w„, A„, and z„, as well
as 8~ and n,~, were freely searched for each nu-
cleus to simultaneously fit the differential cross
section and analyzing power data according to the

( y
~

' criterion.
Because of the above procedure, the derived

"neutron densities" (1}necessarily reflect the un-
certainties associated -with the nucleon-nucleon
amplitudes and the omission of higher-order terms
in the optical potential, (2) are model. -dependent,
and (3) are dependent on systematic errors in the
data. Hence, the derived neutron densities are
referred to as the Rayleigh-Lax. (RL) densities to
distinguish them from the true neutron densities.

At this point an investigation needs to be made
of the ways in which the various above-mentioned
uncertainties, as well as those inherent in the
theoretical approach itself, ~ "are reflected in
the derived RL neutron densities. For the analy-
sis of electron scattering data, a number of tech-
niques exist in the literature for evaluating the

uncertainty in the charge density. Friar and
Negele' ~' have shown that a linear Fourier-Bessel
series expansion of the density leads to the full
error matrix' which is expressed directly in terms
of the chosen basis functions, the experimental
error, and a kernel which relates the density to
the observed lepton-nucleus scattering amplitude.
Extension of this approach to hadron-nucleus scat-
tering is not satisfactory because the kernel de-
pends strongly on the dynamics of the hadron-nucleus
interaction, and therefore, is dependent of the specif-
-ic model chosen for the description of the interac-
tion.""

Another popular method for "model-independent"
analysis of electron scattering data is that intro-
duced by Sick. ' In this approach the charge den-
sity is represented by a sum of Gaussians (SOG),
and Monte-Carlo techniques are used to choose
the positions of the Gaussians at random. The
strengths of the Gaussians are adjusted to opti-
mize the

~
y ~' of the fit. All densities which lead

to fits which have ~y ~' below some arbitrary min-
imum are then superimposed to provide an error
envelope which indicates how well the detailed ra-
dial shape of the charge density is determined.
Limited application of this method in the analysis
of proton and 'He elastic data has previously been
made.

The approach taken here for generating error
envelopes for the neutron densities is distinct
from the two techniques mentioned above, although
it does use a Monte-Carlo technique which is
analogous to that of the Sick approach. " The RL
neutron density is generalized to

p„(r) = b[p'„(r)+ Sap (r)],
where p'„(r) is taken to have the form of Eq. (3).
Perturbations to this density, hp„(r), are chosen
at random, as more fully discussed below, and
the strength S of each perturbation is increased
until the fit to the experimental data deteriorates.
The constant b is re-evaluated for each perturba-
tion to insure the proper overall normalization of
p„(r) %5th a suffic. ient number of rancTomly chosen
np„(r) an error envelope for p„(r) emerges.

Two forms for the perturbations r p„(r) are used
here, a sum of Gaussians (SOG} ' and a sum of
Bessel functions (SOBF}4'.

$0

ap„(r) = (2m'~'y') ' g Q,(1+2c,'/y') 'jexp[-(r —c,)'/y']+ exp[-(r+ c,)'/y'] j
j=l

(6)
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For the SOG perturbations, sg is taken to be 12
or less."""" The relative strengths Q, and
the positions c, are randomly distributed over the
ranges 0 to 1 and 0 to gR„, respectively, where R„
is the parameter appearing in Eq. (3) and g varies
from about & to 2. Since Hartree-Pock calcula-
tions predict structure in the nuclear matter den-
sities due to oscillations of the Hartree-Fock state
functions of the indiVidual nucleons, one may im-
pose the condition that oscillations allowed in the
density, Eq. (8), be no smaller in radial extent
than those predicted by Hartree-Fock. "~ This
leads to the condition that y= 1.2 to 1.4 fm
For the present calculations y was fixed to a value

.of 1.39 fm, and it was required that the constants
(L), be positive. "

When the SOBF form is used for &p„(r), the a„
are randomly distributed between -1 and 1, the
number of terms M is 2R/A. „(A, „is the smallest
oscillation allowed in the density and is taken to be
1.5 fm), """'4'andtherange R isgiven as before by
gR„. For both the SOG and SOBF approaches,
p„(r) is not allowed to be negative.

The procedure for finding an acceptable density,
given a set of randomly chosen ()), and c, (or a„},
is described as follows. Starting with the best fit
given by p'„(r} (b = 1, S= 0) the quantity

~do(theory, S=0)/dQ, —do(exp)/dQ,
~

is evaluated at each data point k. Only the angular
distribution data is considered since the analyzing
power data do not impose nearly as severe a lim-
itation on p„(r) at present. The importance of the
analyzing power data is that it allows the effective
spin-dependent terms in the nucleon-nucleon am-
plitudes to be determined (see Sec. IIIB). The
strength of the scale factor S [Eq. (5)] is then in-
creased until

~
do(theory, S V 0)/dQ, -do(exp)/dQ„~

do(theory, S= 0)/dQ, -do(exp)/dQal = &o,„.
(8)

for any data point 0, where Ao„, ~ is the experi-
mental statistical error associated with that point.

Long range variations in the model density po(r)
were treated by varying the parameters se„, R„,
and z„of Eq. (3) about their optimized values until
a relationship analogous to Eq. (8) was satisfied.
No 4p„(r) terms were included in these calcula-
tions.

The approacli described in the preceding para-
graphs has a number of advantages. The uncer-
tainty in the extracted neutron density due to the
experimental error of the data, and the finite range
of momentum transfer covered, ' is evaluated. In-
formation is obtained about how well the neutron

density can be determined in principle from the
data, and also about how well the original model-
dependent analysis which provided p'„(r) did deter-
mine it, since the variation allowed in S depends
strongly on the goodness of fit to the data provided
by the original choice for p'„(r). A further advan-
tage is numerical since it is faster to search on
the single parameter S, which carries one further
and further away from the original density choice,
than to search simultaneously on a dozen or so
Gaussian strengths ()), for each set of randomly
selected Gaussian positions. '

In the next section the results of the model-de-
pendent and model-independent analyses are dis-
cussed.

III. RESULTS OF THE ANALYSIS

A. ModelMependent analysis and comparison with
other results

The results of the initial model-dependent analy-
ses of proton elastic scattering angular distribu-
tion and analyzing power data at 0.8 GeV for tar-
gets "Ni, "Zr, '~"~~Sn, and ' 'Pb have been pre-
sented elsewhere. """ Table I gives the point-
nucleon density parameters for protons and neu-
trons, and the two searched nucleon-nucleon pa-
rameters 8~ and u,~ for each of the five nuclei con-
sidered. Also given are the root-mean-square
(rms) .radii of the point-proton, point-neutron,
and charge densities. For the point-proton den-
sity of "'Pb all terms in Eq. (3) were required, as
m'entioned in Sec. II, to reproduce the model-in-
dependent charge density of Frois et g/. " The
values used for the second and third terms of Eq.
(3) for this case are given by Ray et al."

Figures 1 and 2 show the quality of fits to the
elastic differential cross sections and analyzing
powers obtained from the model-dependent analy-
sis using the parameters of Table I. As seen in
Fig. 1 the fits employing the HI potential are ex-
cellent, except for the slight back-angle discrep-
ancy seen for ' 'Pb.

An attempt was made to improve the fit to the
"'Pb data by including the second and third terms
of Eq. (3) in the neutron density. The technique.
used to evaluate these terms is similar to one that
has been used in analyses of electron scattering
data. "" The quantity

p(, )(q') = p(0)(q')( [do,„,(q')/dQ]/[do, h„(q')/dQ] j'~',
(8)

was. evaluated, where p(»(q') is the Fourier trans-
form of the neutron density given by the first term
of Eq. (3) and Table I, and do, „(q')/dQ is the
cross section predicted by this density. A correc-
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g. The results of the, model-dependent analysis discussed in the text. The first four columns give the numer-
ical values of the parameters of Eq. (3) in the text. The root-mean-square (rms) radii for the point-nucleon density
distributions are listed in the column under (rt)1/1. The quantity (rt)g1 is the rms radius of the charge form factor
taken from electron scattering; Ref. 58 for Pb and Ref. 2 for all others. The last three columns give the numerical
values of the spin-dependent parameters, Eq. (2).

Nucleus (fm) (fm)
(1 2)1/1

(fm)
(&2)1(2

(fm)
8p

(fm2)

58Ni

1188n

1248n

~08Pb

p

p
n

p
n

p
n
p'

-0.13
-0.02

0.32
0.56
0.23
0.32
0.26
0.42
0.36
0.36

4.30,
4.07
4.55
4.49
5.14
5.02
5.22
5.29
6.45
6.19

0.47
0.50
2.41
2.45
2.50
2.70
2.49
2.67
2.65
3.13

1
1

2
2
2
2
2
2
2

3.688
3.652
-4.204
4.289
4.549
4.679
4.602
4.823
5.443
5.625

3.774
~ ~ ~

4.280
~ ~ ~

4.619
0 ~ ~

4.671
~ ~ ~

5.502
~ ~ ~

11.8
11.8
11.2
11.2
10.4
10.4
10.Q
10.0
9.0
9.0

0.50
0.50
0.55
0.55
0.58
0.58
Q.56
0.56
0.63
0.63

0.2
0.2
0.2-
0.2
0.2
0.2
Q.2
0.2
0.2
0.2

Additional correction terms included, see Ref. 31 and Eq. (3).

agrees to within 0.03 fm of the value determined in
this analysis.

In Fig. 2 it is seen that, in general, the theo-
retical analyzing power differs from the data
sometimes near the first and always near the final
maximum. The lack of agreement at forward angles
may be due to experimental difficulties" since it

is not observed for targets such as "'"Ca, ' Fe,
~Ni, and "'Pb. The discrepancy at back angles is
most likely genuine, and is seen for all nuclei
studied so far. The forms chosen for the ampli-
tudes of E11. (1) [given in Eq. (2)] were verified to
be valid out to the largest momentum transfer
covered by the data. Numerous calculations were

TABLE II. Comparison of proton scattering analyses and Hartree-Pock predictions for (r„t)1/1, Ar„& (r„t)1/1—-—
(1 t)1/1 All radii are in fermis.

Method

This

analysis ~

b, r„p from
other {p,p)
analyses

Hartree-

Fock~

(~ 2)1/2

(1 2)1/2

Amp

Ref. 3b

Ref. 6
Ref, 8b

Ref. 9
Ref. 11b

Ref. 12b

(z 2)1/2

(Ir 2)i/2

Amp

(r 2}1/2

(~ 2)1/2

np

58Ni

3.688

3.652

-0.036

-0.043
~ ~

-0.07
~ ~ ~

3.765

3.766

0.001

90yr

4.204

4.289

0.085

0.07

4.243

4.322

0.079

4.14-4.24

4.19-4.32

0.05-0.12

Nucleus
1i8g

4.549

4.679

0,13

4.582

4.703

0.121

124sn

4.602

4.823

0.22

4.627

4.835

0.208

208pb

5.443

5.625

0.18

~ ~ ~

Q.26
~ ~ ~

0.25
0.04 (1.0 GeV)
0.21 (1.05 GeV)
0.21 (0.8 GeV)

5.461

5.660

0J.99

5.37-5.465

5.49-5.68

0.11-0.23

'Typical errors for (1„1)1/1and Ar„/, are a 0.07 fm (see Table III).
b Typical errors are quoted as 0.05 fm.
'Using Negele's DME code, Ref. 26.

Range of values includes those given in Refs. 23-26.
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NUCLEON DENSITY DISTRIBUTIONS FOR Ni
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FIG. 4. Point nucleon densities for Ni. The shaded
band is the error envelope encompassing all the trial
SOG neutron densities deduced with the HL potential as
explained in the text. Only statistical errors in the data,
and model dependence are allowed to contribute to this
error band. Shown also is the DME point neutron den-
sity (dashed curve) and the point proton density inferred
from electron scattering results (no error band given).
Note that the DME neutron density is slightly larger than

: the deuced neutron density envelope in radial extent.

C. Uncertainty in p„"(r)due to statistical error and

finite momentum transfer

The specific procedure adopted for determining
the error envelope for the derived neutron densi-
ties due to statistical error and finite momentum
transfer of the data is discussed below. Using the
SOG form [Eq. (6)], 40 randomly generated point
neutron densities were found for each nucleus by
application of Eg. (8). Six additional densities for

FIG. 6. Same as Fig. 4, except for Sn. Generally
good agreement between DME and the deduced neutron
density is again obtained.

each nucleus were also obtained by varying the
parameters of Eq. (3) as discussed in Sec. II.
Superposition of the 46 densities for each nucleus
then defined error envelopes with widths that
changed rapidly and characteristically with r.'
The error envelopes for the point neutron densi-
ties are shown in Figs. 4-8.

The stability of the error envelopes was then in-
vestigated by generating 25 additional densities for
each nucleus. For all cases the envelopes did not
change significantly. To investigate the depen-
dence of the above results on the form chosen for
the random densities, the SOBF form [Eg. (V)]
was used to generate 30 densities for each nucleus.
The error envelopes found here were the same
for r &1 fm as those found using the SOG technique.
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FIG. 5. Same as Fig. 4, except for 9 Zr. Note the ex-
cel.lent agreement between DMR and the deduced neutron
densities in the surface region.

FIG. 7. Same as Fig. 4, except for Sn. Notice that
the DME neutron density has a greater diffuseness than
what is inferred from the proton-nucleus data.



2650 L. RAY, W. ROR Y COKER, AND G. W. HOFFMANN 18

I I I I I I I I I

Ig —NUCLEON DENSITY DISTRIBUTIONS FOR Pb

0 I2 E3
II

IO

9
M

0 7
80 5—
4

a

2
I

0
0 I 2 3 4 5 6 7 8 9

r (fm)

N

I

IO

FIG. 8. Same as Fig. 4, except for Pb. Note again
the larger diffuseness of the DME neutron density as
compared with the envelope of deduced HL neutron densi-
ties.
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For r&1 fm the SOBF envelopes were somewhat
wider than the SOG envelopes. Thus, except near
the origin, the results obtained are essentially
independent of the form used for n, p„(r) to generate
the random densities.

The dashed curves of Figs. 4-8 are point-neutron
densities predicted using the DME code of Ref. 26.
No attempt was made to determine a "theoretical"
error band, since the intent is simply to indicate
qualitatively the nature of typical Hartree-Fock
calculations. Also shown in Figs. 4-8, as dot-
dash curves, are the point-proton densities ob-
tained from analyses'~" of electron scattering
data. The empirical differences between the pro-
ton and neutron matter densities for the nuclei
considered is apparent.

Overall there is impressive agreement between
the DME predictions for the neutron densities and
the empirical densities found here from optical
model analysis using the RI potential. Including
Pauli correlations would result in a slightly great-
er diffuseness for the deduced neutron densities
and should generally improve the agreement with
the DME predictions. It is interesting to compare
the theoretical and empirical neutron density dif-
ferences for the '6 "Sn isotopes, since it can be
argued that empirical density differences should
be more accurately determined than the densities
themselves because of cancellations of uncertain-
ties in the method of analysis. The shaded region
of Fig. 9 is the '~Sn-"'Sn empirical density dif-
ference obtained here, while the dashed curve is
the DME prediction for this difference. The agree-
ment is remarkably good.

For each nucleus the mean, p„(r), and standard
deviation, hp„„(r), of the random densities were
computed at each radial mesh point r. Typically,

5

r (fm)

FIG. 9. Shown is the difference between the deduced
point neutron densities of ~~ Sn and Sn. The shaded
band is obtained from the error envelopes in Figs. 6 and
7. The dashed curve is the DME result. Qualitative
agreement is obtained, particularly beyond 4 fm.

[n,p„„(r)/p„(r)] x 100% is 7-15% at r=0, 0.Ão at
the position where p„(r) = 0.9p„(0), 0.8% at 0.5p„(0),
1.0% at 0.1p„(0), and rises to 100/o at r
=2.2(r„')'~~. For "'Sn, this quantity is shown in
Fig. 10 as the dashed curve. Also shown as the
solid curve is [(p„(r)—p„„(r))/(2p„(r)))
x 100%, where p„(r) and p„„(r)are the upper
and lower bounds of the error envelope of Fig. 6.
The three arrows in Fig. 10, labeled 90%, 50%,
and 10% indicate the radii at which p„(r) is 90%,
50%, and 10'% of p„(0). Figures 4-10 indicate that
the nuclear surface is the region most accurately
probed by analysis of proton-nucleus eIastic
scattering data at 0.8 GeV. The insensitivity to
the region beyond the surface follows from the
density being vanishingly small there.

Only a few percent of the widths of the error
envelopes originate from the finite range of mo-
mentum transfer covered by the data. " For this
reason, the envelope widths are almost entirely
determined by the statistical errors of the data.
Smaller statistical and systematic errors, rather
than data of the present statistical quality extend-
ing to higher momentum transfer, would be ap-
propriate for reducing the uncertainties in p„"L(r).
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narrower envelope width obtained here cannot be
accounted for by the somewhat higher momentum
transfer considered in this analysis compared to
that in Ref. 10." Rather, it is due almost entirely
to the higher statistical quality of the HRS data.

The nuclear interior is not as well probed
as is the surface region because the RL potential
is strongly absorptive at medium energies through
the assumed dominant quasi-elastic absorption me-
chanism, ' ' and the incident proton waves are
gradually damped out within the nuclear interior.
Estimating the mean free path as d-(par} ', where
p-0.1 I nucleons/fm', one finds d- 1.4 fm for 800
Me7 protons while d-0. 3 fm for 180 MeV pions.
Hence, pion scattering at the (3, 3} resonance
would exhibit even less sensitivity to the nuclear
interior than -1 GeV protons.

Defining the kth moment of the neutron density
as"

FIG. 10. Shown is the uncertainty in the RL neutron
density for ~~6Sn as a function of radial position. The
solid curve results from the envelope in Fig. 6, while
the dashed curve indicates the standard deviation of the
numerous trial densities (see text) . Effects on the de-
duced neutron density due to the various systematic er-
rors (Table III) are not included here.

, I I I

DENSITY MOMENTS

p+ sn 0 8 Gev

I I I I

A comparison of the error envelopes of Figs. 4-8
with that from an analysis ' of 1 GeV p+ 'Ca data
illustrates this statement. The envelope in Ref. 10
is about five times wider at the surface than those
of Figs. 4-8. The statistical errors of the HBS
data are typically 1-2',"while for the data' ana-
lyzed in Ref. 10 statistical errors are 5-109o. The

(y~) ~ —= [(]/N) Jt y "p (g)4gyady]~~~
0

(10)

D. Uncertainty in the RL neutron density due to
systematic errors

the moments for k ranging from -2 to 6 were com-
puted from the random densities for. each nucl. eus,
and the mean and standard deviation for each mo-
ment were determined. Shown in Fig. 11 is the
result for the '"Sn RL point-neutron density; the
total bandwidth pl.otted is 2 standard deviations.
The best-determined moments for "'Sn are. k= 1,
2, and 3. The range of best-determined moments
increases as a function of A, so that the range k
= 0 —2 is best determined for "Ni, while the range
k= 2-6 is best determined for ",'Pb. Hence, for
all cases, the rms radius is an appropriate and
well-determined parameter for comparison with
findings of other experiments, and with predic-
tions of Hartree-Fock theories, as done in Table
II.

I

2
k

FIG. 11. Uncertainties in the various moments of the
RL neutrondensity for ~~~Sn. Notice that the moments
for 1 ~k ~3 are determined best.

A detailed investigation of the effect of system-
atic sources of error on the deduced neutron rms
radii was also made. Considered were, (1) the ex-
perimental error in the absolute normalization
and scattering angle of the proton-nucleus data, '
(2) the uncertainty in the incident proton beam en-
ergy, "(3) the experimental error in the point-
proton densities determined from analysis of elec-
tron scattering data, '" (4) uncertainties in the
parameters of the spin-dependent proton-nucleon
scattering amplitudes, 4' "and (5) the omission in
the analysis of Pauli and short range dynamical.
corr elations. "'"

The procedure adopted to determine the error in
the deduced neutron rms radii due to 1-4 above
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TABLE III. Summary of errors in (r„2) ~2 in fm. All errors are a values.

Source Magnitude 58Ni Zr
Nucleus
"GSn "4Sn 208Pb

+10/g
*0.03'

—+0.01 fm
+2 MeV
+0.5 mb
~0.22 mb
~0.0055 2

+0.022 fm2
+10%'
+10%'

TOTAL

Normalization
68
ap (x)
rh T)~
ho~
Acre„

hBpp
hB~

p?
4(8p, n, B p)
Statistical and mod. dep. ~

, Correlation (Pauli)~

0.019
0.019
0.010
0,017
0.005
0.002
0,007
0.023
0.001
0.002
0.019
0.016
0.025

0.074

0.017
0.021
0.018
0.019
0.005
0.002
0.005
0.020
0.001
0.002
0.022
0.015
0.021

0.072

0.017
0.025
0.005
0.020
0,005
0.002
0.004
0.018
0.001
0,002
0.024
0.015
0.019

0.069

0.017
0.024
0.005
0.019
0.005
0.002
0.004
0.018
0.001
0.002
0.025
0.012
0.019

0,068

0.018
0.028
0.007
0.022
0.005
0.003
0.003
0.015
0.001
0.002
0.029
0.022
0.018

0.075

'See text for explanation.

was to individually alter each parameter and re-
cover the original ~)i~' by variation of the neutron
densities. Several initial neutron. densities were
used as starting points in each search to insure
that the statistical and model-dependent errors
were not incorporated into any of the systematic
errors The e.rror in (r„')'~' due to the omission
of target nucleon-nucleon correlations was esti-
mated from the predicted changes in the overall
magnitude and slope of the cross sections when
such correlations are included in the analysis. "'"

Second-order contributions not explicitly in-
cluded were the center-of-mass correlation, ""
multiple-charge-exchange, "double spin-f Lip, '
possible nucleon intermediate excited states, "~
projectile-target aritisymmetrization, 6' and Fermi
motion averaging. "" These effects are much
smaller than that due to the Pauli correlation.
Third-order terms are also negl, igibly small. "'"
Nonlocality effects should also be carefully con-
sidered for completeness, but such effects are
generally believed to be quite small for proton
scattering at intermediate energies. ""'

Table III summarizes the contributions to the
uncertainties in (x„')'~' due to the systematic er-
rors considered. A. few of the entries deserve
further comment. The uncertainty in the point-
proton density varies according to the results of
analyses' of electron scattering data. The uncer-
tainty in B» was fixed by the range of slopes per-
mitted by the proton-nucleon elastic angular dis-
tribution data, " ' assuming that only the two am-
plitudes in Eq. (1) contribute. Clearly, any state-
ment of the values of the nucleon-nucleon ampli-
tudes is tentative, pending a full determination of
all five nucleon-nucleon amplitudes. " The uncer-

tainty in n» is larger than +10lo if one considers
only what is known from nucleon-nucleon scatter-
ing. "" However, because the peak-to-valley ra-
tios of the proton-nucleus angular distributions
are very sensitive to 0.~, the experimental error
in the proton-nucleus data can be used to limit the
uncertainty in u» to +10'. The problems con-
nected with the spin-dependent parameters were
discussed in Sec. II.

E. Total uncertainty in p""(r) and &r &'~'

The first twelve error-elements listed in Table
III are approximately independent and add inco-
herently. The error due to omission of nucleon-
nucleon (mainly Pauli) correlations is not indepen-
dent of the other errors and is added linearly to
obtain the total error given in Table OI in the de-
duced HL point-neutron density for each nucleus
considered.

It will be noticed that the total uncertainty de-
termined here, of +0.07 fm out of 3.5 to 5.5 fm,
is significantly larger than the uncertainty often
quoted in previous analyses of 1 GeV proton-nu-
cleus scattering data, ' "namely +0.03 to +0.05 fm.
It appears to the authors of this paper that these
smaller errors quoted in the literature take into
account only statistical error and model-depen-
dence, "or alternately, uncertainty in the nucleon-
nucleon scattering amplitudes, ' but fail to include
al.l the sources of systematic error which have
been considered here. It is interesting that in-
clusion of Pauli correlations, particularly for the
heavier nuclei, could reduce the overall. uncer-
tainty to +0.05 fm, the same level that would be
obtained if one eliminated the first four sources
of error in Table III together with the statistical
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and model-dependent error. Note also that without
the spin-orbit potential, an error of +0.03 fm
would have to be added ljneaxly, giving a total un-
certainty in the neutron rms radius of +0.1 fm.

A total uncertainty in pRL(r} due to all the effects
discussed so far (statistics and finite momentum
transfer of the data, systematics and Pauli corre-
lations) was estimated for each nucleus as dis-
cussed below. For each nucleus a model density
[Eq. (3)] was found which had (r„')'/' and (r„')'~'
different from the density given in Table I by the
total uncertainty due to the first 11 systematic er-
rors given in Table III (the errors in the fourth
moment, (r„4)~ 4, are not tabulated in Table III).
The second and fourth moments were used since
the model densities of Table I are essentially
characterized by iwo parameters a radius and a
diffuseness. The difference between this density
and that given in Table I was then interpreted as
the error in p"„"(r) due to systematic errors. In
a similar way, model densities were found whose
second and fourth moments were different from
those of Table I by the uncertainty due to Pauli
correlations, and the differences between these
densities and those given in Table I were inter-
preted as the errors in pR"(r} due to the omission
of Pauli correlations. The total uncertainty in
pR"(r} was then estimated by, (1) adding incoher-
ently the uncertainty in p„"~(r}discussed above for
the systematic errors and the standard deviations
of the error envelopes shown in Figs. 4-8, and
(2) adding linearly to this result the error in p„""(r}
due to omission of Pauli correlations.

The total uncertainty found as discussed above
is typically 8/o to 16' at the origin, 4% at 0.9
p""(0}, 6% at 0.5 pR"(0), 16fo at 0.1 p "(0) and
100fo at r (2r„~)' -2. Within these limits, the neu-
tron densities predicted by the DME calculations
agree well for the five cases studied with the de-
duced RL neutron densities at the nuclear surface.
It also emerges from the analysis that the statis-
tical error in the angular distribution data le@ds
to a limitation of knowledge of p"„~(r} in the nuclear
interior, while the systematic errors lead to a lim-
itation of knowledge of p"„"(r)at the nuclear sur-
face.

As seen in Tabl.e II, there is particularly good
agreement between the DME predictions and the
results of the model-imlependent analysis for the
quantity ar„~= (r„')' ' —(r~')'/' When n.eutron rms
radius differences are determined for isotopes,
most systematic errors cancel, leaving only the
uncertainty in the proton density and the statistical
and model-dependent error. This results in an
error of +0.02 fm for the rms radius difference
for the neutron distributions of " «~Sn. This
underscores the general impression thai compari-

sons between members of isotopic sequences offer
a rather harsh test of Hartree-Fock predictions.

F. Total uncertainty in the imaginary part of the
optical potential
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FIG. 12. Total uncertainty n the central imaginary
part of the p+ ~~8Sn optical potential at 0.8 GeV (see
text).

On the basis of the microscopic theory of the
nucleon-nucleus optical model potential, '" one
can argue that the least ambiguous quantity which
is constructed in the analysis is the imaginary
part of the optical potential, since it is this quan-
tity which is most immediately determined by re-
producing the nucleon-nucleus scattering data.
Clearly, a number of further assumptions are in-
volved in any analysis claiming to deduce reason-
ably unambiguous information concerning the
matter density of a selected target nucleus. The
sources of error which affect the determination of
the imaginary part of the optical potential itself
are the uncertainty in the absolute normalization
and scattering angle of the experimental data, the
uncertainty in the incident beam energy, the un-
certainty in the real and spin-orbit terms of the
optical potential, and the statistical and model-de-
pendent uncertainties. Using the 80G technique
discussed earlier the total uncertainty allowed in
the imaginary. part of the proton-nucleus optical
potential was determined for p+"'Sn at 0.8 GeV.
The results are presented in Fig. 12.

In comparing Fig. 12 to Figs. 4-8, it is impor-
tant to note two important differences between the
nature of the error band of the imaginary part of
the optical potential and that of the RL neutron
density. First, the half -width of the band shown in
Fig. 12 is equal to the incoherent sum of the stan-
dard deviaNons resulting from all the sources of
error listed in the previous paragraph. On the
other hand, in Figs. 4-8, the total envelope of all
%rial densities which fit the available data, based
on its statistical error and on model-dependence
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a1.one, is shown. Second, the volume integral of
the imaginary part of the optical potential is al-
lowed to vary, whereas the volume integral of the
RL neutron density is fixed. It is clear that the
imaginary part of the optical potential is rather
well determined. These findings are readily com-
parable to purely phenomenological analyses of
medium-energy proton-nucleus elastic scattering
data ""'

IV. CONCLUSIONS

By means of the error analysis presented here,
the usefulness of polarized medium-energy pro-
tons as probes of the neutron matter density dis-
tribution of heavy nuclei has been demonstrated.
The uncertainty of the deduced neutron density has
been thoroughly and quantitatively examined. Com-
parison of these results to those obtained, for in-
stance, via 'He elastic scattering" " leaves little
doubt as to which probe is the most sensitive to
the distribution of nucleons in nuclei.

The approach presented here is based on a spe-
cific microscopic theory of the proton-nucl. eus op-
tical potential"'" and although this approach is
widely used and accepted, with the appearance of
high quality data"" it is becoming increasingly
important to test the accuracy and reliability of
the theory itself. A number of tests are possible.
For instance, once the two-nucleon scattering am-
plitudes have been more accurately determined,
absolute predictions of proton-nucleus analyzing
powers for an N= Z, doubly closed-shell nucleus
(for example, 40Ca) could be made. These would

pose a rather stringent test for the KMT theory,
since the predicted analyzing powers are relatively
insensitive to the uncertainty in the neutron den-
sity, and it is known that for such nuclei the neu-
tron density is not greatly different from the known

proton density.
Accurate determination of the ratio of the real to

the imaginary part of the forward, spin-indepen-
dent nucleon-nucleon scattering amplitude over a
range of incident energies, and comparison with

the proton-nucleus elastic scattering data over the
same energy range, has previously also been
shown to make possible a severe test of the de-
tails of the KMT approach, and to provide an indi-
cation of the precise energy range in which the
approach is most applicable. "' " Also a com-
parison of the predicted energy dependence of the
proton-nucleus total reaction cross section with

the experimental results is another important
test. '4 I

Obtaining consistent deduced neutron densities
for a range of nuclei from data covering a number
of incident energies, say 200 to 2000 MeV, can
provide yet another criterion for a successful
theory of nucleon-nucleus elastic scattering.

Eventually, error analyses comparable or su-
perior to those presented here should be incor-
porated into the presentation of results obtained
with protons, 'He and pions, as well as related
information from total cross sections, ' "Coulomb
energies, "and other techniques used to measure
the neutron matter densities of nuclei. This would
greatly facilitate comparisons between alternate
methods and if done properly would provide defin-
itive information as to the best method available
for studying nuclear matter densities. Such com-
parisons will ultimately provide the most severe
test of analyses such as that presented here.

Clearly, we are a l.ong way from being able to
draw conclusions concerning the validity of the
KMT approach. From the quality of the fits to
experimental data obtained here and else-
where' """and the good agreement with theo-
retical expectations, one would not expect very
serious problems to show up at 0.8 to 1.0 QeV.
However, analyses at 0.6 GeV may be another
story entirely. "

In conclusion, we, as well as others" ""have
shown that the proton elastic scattering results
so far obtained at 0.8 and 1.0 GeV, even when
analyzed with rather different approaches to re-
action theory, are in essential agreement. At
least for now, immediate improvements in this
type of analysis can be made by reducing the ex-
perimental systematic errors, and by carefully
including higher-order corrections known to be
important, such as Pauli correlations.
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Note added in proof . Recent second order KMT
calculations by one of us (L.R.) do not indicate any
angular shifts at back angles and as a result these
corrections offer no improvement in the fit beyond
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