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Two-dimensional and three-dimensional time-dependent Hartree-Fock calculations have been performed
over a wide range of angular momenta for '0 + %0 at E,,, = 105 MeV and for “°Ca + *°Ca at E,,, = 192 MeV.
In all of the two-dimensional calculations it is assumed that the nuclear system is axially-symmetric about
the line joining the mass centers of the colliding ions. Two very different two-dimensional, axially-symmetric
models are considered. (a) In the first case, it is assumed that after the two ions interpenetrate the moment
of inertia of the system attains the rigid-body value. (b) In the second model, each single-particle wave
function is assumed to be multiplied by an extra phase factor which depends upon the azimuthal angle. This
model yields an irrotational fluid flow. The results of time-dependent Hartree-Fock (TDHF) calculations with
both of these models are compared with each other and with three-dimensional TDHF results. It is concluded
that the two-dimensional calculations reproduce reasonably well the three-dimensional results for values of
the angular momentum both below and above the three-dimensional fusion window. As the laboratory
bombarding energy is decreased, there is better agreement between the two- and three-dimensional
calculations, including cases in which the angular momentum is within the fusion region.

NUCLEAR REACTIONS !%0(0,x) and °Ca(’Ca, x) in 2- and 3-dimensional
time-dependent Hartree-Fock calculations. Comparisions between 2~ and 3-
dimensional results. Fusion and strongly damped collisions.

I. INTRODUCTION

Over the last few years a variety of time-depen-
dent Hartree-Fock (TDHF) studies have been re-
ported.'™* Most of these involve light-ion reac-
tions which include both two-dimensional
(2D)% 315617413114 and three~dimensional
(3D)* 910111314 paleylations. One crucial question
that needs to be answered is how well does exact
TDHF relate to experiment. By exact TDHF we
mean those equations derived from a variational
principle with a single determinantal wave function
and without further ad hoc assumptions.”® Some
recent 3D TDHF calculationg!®!¥*1% are encourag-
ing since they show that the calculated %0+ °0
fusion cross sections are in excellent agreement
with the experimental data.

One expects that TDHF with its inherent mean
field approximation should be more adequate for
heavy rather than light systems and at relatively
low energies above the Coulomb barrier. For
heavy systems 3D calculations are at present

prohibitively expensive, but studies that simulate
3D physics within the context of a 2D model are
manageable and are being pursued.!®*!” However,
a prerequisite to delineate the validity- of the 2D
programs is a proper comparison with 3D results.
Some such comparisons have already been
made.!1*131418 The purpose of this paper is to
offer a detailed intercomparison between various
axially -symmelric 2D models and accurate 3D
calculations, with particular emphasis on under-
standing how valid the 2D models are for calcula-
tions of very heavy-ion reactions.

In Sec. II of this paper we discuss two completely
different two-dimensional models. ‘Both assume
that the densities of the colliding nuclei remain
axially symmetric about the rotating line joining
their mass centers.*»®” In the first model an as-
sumption is made about the moment of inertia,
which becomes discontinuous when the two ions
“clutch.”®%7 Clutching occurs when the two ions
just begin to strongly interpenetrate one another,
so that the density at the center of the system ex-
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ceeds some critical value. One assumes that be-
fore clutching the moment of inertia is that of two
separated point masses, while after clutching it
is given by the vigid-body value. We also discuss
several variations of this model which are signi-
ficant improvements over the original version
used in previous calculations.?%7

In the second model, each single-particle wave
function is multiplied by an additional phase func-
tion which depends in a nontrivial way on the azi-
muthal angle.!? Additional variation of this phase
function yields a differential equation coupling it
to the density. All quantities of physical interest,
such as the orbital angular momentum, the rota-
tional energy or the moment of inertia are ob-
tained by calculating expectation values of the
corresponding operators. Thus, effects from the
Coriolis term @ * I or the rotational part of the
kinetic energy Ez/ 29 are taken into account in a
natural way. This model has the appealing fea-
ture of being completely self-consistent, with
both the single-particle wave functions and the
phase function being determined from a variational
principle.!? If the same phase function is used for
all single-particle wave functions, then the model
gives an irrotational moment of inertia.!® 20

In Sec. III we present TDHF results from the
various axially-symmetric 2D models for the reac-
tions 0+ '°0 at E,,, =105 MeV and “°Ca+“°Ca at
E,,=192 MeV. These results are compared with
those obtained from exact 3D calculations.® In
order to ascertain the validity of 2D TDHF for
a very heavy system, we picked the “°Ca+%Ca
laboratory bombarding energy according to the
following prescription. This energy, E,, =192
MeV, gives a relative velocity above the Coulomb
barrier which is equal to the corresponding velo-
city for the *Kr+ **Bi system at E,, = 600 MeV.*
Thus, we feel that the *°Ca+ *°Ca comparisons
give some measure of the validity of the axially-
symmetric 2D models for calculations of the scat-
tering of heavier ions. :

Finally in Sec. IV of this paper we summarize
our conclusions.

II. AXIALLY-SYMMETRIC, TWO-DIMENSIONAL TDHF
MODELS

A. Rigid-body moment-of-inertia (clutching) model

The basic model, which we denote as R1, has
been thoroughly discussed in previous refer-
ences, %7 which give details regarding computa-
tion of the total energy, the single-particle poten-

, tial, and the rigid-body moment of inertia. The
main features of this model, are described as
follows. The TDHF calculation is performed in

two nontrivial dimensions, assuming that the col-
liding nuclei remain axially symmetric about the
rotating line joining their mass centers. We as-
sume an ansatz for the moment of inertia. When
the two ions are far apart (both before “clutching”
and after “declutching”), the moment of inertia
9[p] is assumed to be that of two point masses

where u is the reduced mass of the system, R is
the separation coordinate®®” of the two ions, p,(#)
is the (time-dependent) density at the center of
mass, and p, is a (constant) clutching density.
The notation 9[p] indicates that d is a functional
of the density.® When p, exceeds p,, the nuclei
are assumed to have “clutched” and the moment
of inertia is taken to be that of a rigid body

g[p]:gR[p]’ p()(t)zpc’ (2)

where 9, [p] is the rigid-body value. We take p,
=0.07 fm™, which is approximately one half of
the saturation density of nuclear matter for the
effective interaction® used in our calculations.

The rate of rotation of the symmetry axis is
given by

240 Ly (3)

where L, , is the conserved fotal angular momen-
tum along the rotation axis perpendicular to the
scattering plane. The final center-of-mass scat-
tering angle 6Y) and the asymptotic value of the
total center-of-mass translational kinetic energy
Eé’ ». are calculated by matching to a point Cou-
lomb trajectory after the collision. In this model
R1 we note that after declutching, the intrinsic
angular momentum vanishes, so that L, , is the
exact orbital angular momentum along the asymp-
totic Coulomb trajectory. .

The discontinuity in the moment of inertia at
the time when clutching occurs results in a loss
of collective energy. This energy is absorbed in-
to internal rotational degrees of freedom which
are not explicitly taken into account in the axially-
symmetric model. Thus, this loss in calculated
collective energy may be related to a physical
process. It is not expected to feed back into col-
lective relative motion. However, there is also a
discontinuity in the moment of inertia at the time
of declutching, which causes the collective energy
to abruptly incrvease. This effect, we believe, is
unphysical and is a major weakness of model R1.

This completes the description of the basic mo-
del R1 used in all previous rigid-body, clutching
calculations.*®7 We now present three variations
of this model which correct various deficiencies
in R1 and can lead to significantly different values



of the final scattering angle 6Y) and the final
kinetic energy EY), .

Prescription R2 is the same as R1 except that
9[p] remains the rigid-body value until the two
systems completely separate, so that there is no
discontinuity in either the moment of inertia or
the rotational energy at the time when p,(t) be-
comes less than p, again. Thus, one major weak-
ness of model R1 is corrected. In this model there
is nonzero intrinsic angular momentum after sep-
aration, so that it is important to compute the final
scattering angle 6) and the final energy EYf).

immediately after the ions have separated, using
the true orbital angular momentum

Lorb= “sz ’ (4)

where w is given by Eq. (3).
Prescription R3 is the same as R1 except that
after declutching [py()<p,],

o= L uRt, ®)

where L{%® is the orbital angular momentum just
before the system has declutched. Also, 6¢)
and EYf) are computed using L{%® for the final
Coulomb trajectory. This model is very similar -
to R2, as we will show in the next section.

Note that prescriptions R1, R2, and R3 all give
rise to exactly the same time evolution of the
system before clutching occurs and during the en-
tire period during which p,> p,. The three pre-
scriptions differ only after declutching has ocurr-
ed. Thus, R1, R2, and R3 give exactly the same
results for cases in which the system never sep-
arates (fusion) or if the system never clutches
(peripheral scattering).

R4 is a prescription which is based on R2 but
allows for a continuous change in the moment of
inertia before clutching occurs. It is assumed
that

9[p]=a(t)uRr®)+B(t)5 (o], (6)

where

B()= (4/m)tan[py(t)/p,], for pt)<p, (72)
1, for py(¢)= p,
and '
a()=1-8(t). (o)

For p,< p, we see that 9[p]= uR2, while for p,

= p, we have 9[p]=9;[p]. After clutching occurs
and for the remainder of the calculation, it is as-
sumed that 9[p]=9,[p]. Thus, there is no sudden
jump in the moment or inertia or in the rotational
energy at the time of clutching. As in prescrip-
tions R1, R2, and R3, there is a net loss of col-
lective energy over the time period when the ions
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start to overlap until they clutch. However, in
contrast to the other models, this loss occurs con-
tinuously rather than suddenly at the time of
clutching. In order that intrinsic rotational energy
not be fed back into orbital motion, we impose

the condition that 8 is never allowed to decrease.
Thus, in the case of a peripheral collision, when
no clutching occurs, g reaches a maximum value
Bmax and for the rest of the calculation, g=8,
and @=1-8_,.. Also, in this prescription, 9?,1,
and EY) are computed using Eq. (4) with w ob-
tained from Eq. (3). Obviously, R4 gives differ-
ent results from the other models for all L val-
ues, but the differences are expected to be es-
pecially pronounced at larger L values where fus-

ion and orbiting occur.

B. The self-consistent phase model

It is possible to extend axial symmetry to col-
lisions with an impact parameter not equal to
zero by also allowing the wave function to have an
additional phase.!? The method will now be de-
scribed briefly. A coordinate system {x,y,z}is
chosen such that the z axis is given by the line
which joins the mass centers of the colliding nu-
clei (see Fig. 1). The total center of mass lies
at the origin and the y axis is perpendicular to the
reaction plane. Cylindrical coordinates {r,z, ¢}
are introduced with

o= arctan%, z2=2z.

y= (x2+y"’)1/2,
For an axially symmetric system, each single-
particle wave function may take the form

hr,z, @)= fl)l(r,z)e‘"l°e'x1""'°’ . - (8)

Here 7, is an integer and x,(r,z,¢) is real, where-
as z/?x(r,z,¢) is complex. Then |¢,|? is a function
of only » and z. Since the wave function has to be
continuous for ¢ =0 and ¢ =27, X(r, z,¢4¢) has to /

FIG. 1. Coordinate system for the rotating frame
approximation.
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be periodic. The most general form would be

N,z,9)= i: [&3(r,z) coskd + [ (r,z) sinke] .

k=1

(9)

We choose x, to be

X\7,2,0,t)=g,(r,z,t)cosé . (10)

This allows the system the freedom to have a mo-
mentum in the x direction. With

iox i 7 8¢

px=—.——-(cos¢i—lsin¢—a~), (11)
one obtains

s |y=r7 [ v araz |zp1|2(§51+ lgx), (12)

o v

where g, and |¥,|® are functions of only the coor-
dinates » and z. This can be easily understood
for the following simple example:

A
ZPA(’V,Z )e‘kx = J‘A(’V,Z )eikr cos® )

for which we find that g(r,z)=kr and (3, |p, | ¥y
=7k if §, is normalized to unity. The term
filr,z,t)*sing would correspond to 2 momentum
in the y-direction perpendicular to the reaction
‘plane which is supposed to be zero.

The single-particle equations for 17),‘ and g, are
obtained in the usual way by requiring that the
action

t2
a=f (¥*|(ifed /ot — H)| ¥y dt (13)
t
be stationary under variations. ¥’ is a Slater
determinant written in the inertial frame {x’,y’,2z’}

(see Fig. 1). This transforms into the rotated
frame {x,y,z} by

Do\l" =¥, D,= eli/meLy ,

(14)
L,= 2 (FrXBy)y -

Assuming H to be rotationally invariant, we ob-
tain

t2
@= f (¥| [Dyi7i(8 /26)D,™ - H]|w) dt
121 N
or from Eq. (14)
2010 80
a=f (| (i78 /8t + WL, —H)|¥) dt, w=22. (1)
t1

For simplicity we assume that all single-particle
wave functions ¥, have the same phase x, result-

ing in a collective kind of motion for the rotation. *

Due to this assumption, the Hartree-Fock poten-
tial Vyp used in this paper does not depend on x.

Therefore we find that
t
8 > - >
G= f NN (ih‘—+h’w-(rx )X
5 at

+ Eﬁ% [V - (")) - Vnr) [ddt,
(16)
with

hr,z,0)=P(r,z)en®

and

QX

(J
t

|

'D_ -
D=8,

Q

where €, is a unit vector in _Ehe y direction. Terms
like (9, | (8/8¢)x |4 and (| Vx * V|9,) are zero due
to the integration over ¢. Varying @ with respect
to i,‘, we obtain the TDHF equations

LN 72 /8% 1 8 8% n2\a
e o= e (8 29 9 My
z77{31?1/)7‘ 2m(87'2+781’+8z2 r’)w’ﬁ-vm"a"
17
& l[(ta_g)z (ag)z (&)2 ? )
*om 2l\or) *\oz/) *\» r (17p)
1f (%2 .&\_, % : 1
_h‘wz[z(ar+r) TBZ]%" (17¢)

The first line (17a) is the same as for central
collisions. The second and the third lines (17b)
and (17c) represent, respectively, the rotational
energy part and the Coriolis part @*L of the TDHF
Hamiltonian. Varying @ in Eq. (16) with respect
to x (i.e., with respect to g), we obtain an equa-
tion for x

?nfe <(pVy) BB - (Fx p)=0, (182)

or written in terms of g,

bpog 200 (v 1og 0% 1
or or 0z 0z P\or® Ty or 022 ¥

_me( % 8o
=% (z o~ oz ) (18b)
Equation (18) turhs out to be a type of continuity
equation for the additional rotating flow pVx where
the change in time of p due to the rotating frame
velocity field @ x T is given by
L o= (@x7)Fp=0(Fx Fp).

Equation (18) shows that g is linear in w. There-
fore, we first solve (18b) at each time step for g

=(1/w)g. Next we find w by calculating the con-
served expectation value for L,



L=<L,>=ﬁ;<z'ﬁx[<fx$x>y|$x> : (192)

or

L= h’wf [(81' 7) rg]m'drdz. (19p)

The quantity g=wg is then used in the TDHF equa-
tions (17b) and (17c) for the additional rotational
potentials.

Equation (19) also results in a natural definition
for the moment of inertia 4

9= Trﬁf [(2"; f) g‘g—]rdrdz. (20)

The rotational energy is given by
ﬁz - -~
ONCAFICUTN (21)

Using Eqgs. (18)—(21), one can show that the usual
relation

L2

E_ .= 29 (22)

is satisfied. The above approximation to the full

three-dimensional picture is exact in the cases of
central collisions (L =0) and two spherical nuclei

passing each other without touching. (A more de-
tailed discussion is given in Ref. 12.)

In the phase model we have allowed the system
to have another “degree of freedom” in the form
of the additional phase x. This is the simplest
possible assumption one can make in order to de-
scribe a rotation in which one obtains a nonvan-
ishing ¢ -averaged current in the x d1rect10n
( f jd®#0). The additional current i due to this
phase is (h’/m)(vx)p with the related velocity field
¥=]/p=(n/m)Vx. Since Vx¥=0, it is clear that
the rotation around the y axis is descrlbed by an
irvotational velocity field. Thus, the moment of
inertia g given in Eq. (20) is an irrotational mo-
ment of inertia in contrast to the clutching model
where we assumed the rotation of a rigid body.

We obtained irrotational flow because we as-
sumed the same phase x for all single-particle
wave functions. The velocity field for different
phases would be

. (7/m)2 5 B, 12Vxy

(23)

Here VX ¥ is not necessarily zero. However, dif-
ferent phases x, would cause quite complicated
equations, mainly because ¥, la.s defined by Eq.
(8)] is not orthogonal to ¢, if ¥, is orthogonal to
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ﬁ“. In the simple single phase model described
above both P, and z',bu are sets of orthogonal func-
tions.

III. RESULTS

The 2D models discussed in Sec. II provide us
with examples of the two limiting cases of rigid-
body rotation and irrotational fluid flow. We now
compare results of calculations using these axial-
ly-symmetric 2D models. We also compare with
exact 3D results,!®!* in which one expects the
type of rotation to be somewhere in between that
of a rigid-body and irrotational flow.

A. Calculations of 160 + 0 at E,,,, = 105 MeV

The two-body potential used in all of our calcula-
tions is the zero-range, modified Skyrme inter-
action of Ref. 1, plus the Coulomb potential.®

Before comparing the two different axial appro-
aches with 3D calculations, one has to first make
sure that there are no differences in the results
due to the different methods of numerically treat-
ing the TDHF equations. The main difference lies
in the size of the mesh spacings. In the axial
codes we use Ay =Az =0.4 fm and a three-point
formula for the second derivatives in the kinetic
energy.»®” For the three-dimensional code we
use Ax=Ay=Az=1.0 fm and a five-point formula
for the second derivatives.!® Detailed information
on the two different numerical approaches can be
found in Refs. 6 and 10.

R (fm)
|
n
o

|60+|So
Eou=52.2 MeV —o
L=0 .

| | | | | | | |
02 03 04 05 06 07 08
t 102" sec)

FIG, 2. The separation distance R (¢) in fermis and
EY) (¢) in MeV for 10 +1¢0 for E.m=52.2 MeV and L =0.
The full and dashed curves are, respectively, for 2D
and 3D TDHF calculations. The initial energy of 52.2
MeV was the value actually used in the 3D calculation
(see Ref, 10).
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FIG. 3. Final center-of-mass energy vs initial center-
of-mass energy for central collisions of 160 +160, The
dark points and the open circles are results of axial 2D
and 3D calculations (Ref. 10), respectively, The full
line connects the 2D results.

In Fig. 2 we compare for a central collision
(for which both codes should give the same results)
the distance R(¢) of the mass centers as a func-
tion of time. The second curve shows the project-
ed asymptotic kinetic energy of the fragments

AV A
R({)

CEY) (f)= % B(@&)P+

CeMs

At ¢=0 EY) (?) is the initial energy, E_,, =52.2
MeV. Then the nuclear attraction sets in and in-
creases the velocity slightly after which the ener-
gy dissipation slows down the fragments to a final
energy of 14 MeV. Up to very small deviations
both the 2D and the 3D codes give the same result.
The same close agreement between the two codes
can be seen in another comparison shown in Fig.
3 where we display the final energy for central
collisions as a function of the initial energy. For
low initial energies up to 9 MeV in the center-of-
mass sytem we obtain Coulomb scattering. When
the system is able to overcome the Coulomb bar-
rier, it fuses in an initial energy range between
12 and 24 MeV. For higher energies up to about
75 MeV all of the available kinetic energy is dis-
sipated and the final energy is the Coulomb ener-
gy of about 14 MeV, independent of the initial en-
ergy. For initial energies above 75 MeV the en-
ergy loss is less than the available energy.
Figure 4 shows a comparison of deflection func-
tion and energy loss curves for %0+ 0 at E_,,.
=52.5 MeV. The 3D calculation!® shows a fusion
window between L =13% and L =28%. At this en-
ergy the system never fuses for either the phase
or the clutching model. For the axial approxima-
tion we observe only orbiting behavior. The phase
model exhibits orbiting near the lower edge of the

160+ 160

T T T T TTT T
|

40k 4
- Ecm=525MeV
>
) ! B
2
1]
8 20 B
[V}
o oy
o] 10 20 30 40
L(h)
180f;

o(deg)

180

360

FIG. 4. Energy loss and deflection function curves for
160 +180 at E,,, =52.5 MeV. The full curve connects
points which are results of model R2, the dashed curve
is for the phase model, the dot-dashed curve is for R4
and the open circles represent 3D results. Those 3D
points having arrows pointing towards large negative
angles correspond to fusion. The dotted line in the de-
flection function graph is for pure Coulomb scattering.

3D fusion window whereas the clutching model in
either version R2 or R4 displays orbiting at the
upper edge of the window.

For L values below the 3D fusion window the
3D energy-loss curve practically coincides with
the one obtained by either the rigid rotation (R2)
or the irrotational flow (P) assumption. In the de-
flection function the 3D results lie in between R2
and P.

Above the 3D fusion window the different models
give different answers. The least energy is dis-
sipated in R2 for L values higher than 31% where
the system did not clutch at all. The jump in the
R2 curves between L = 30% and L = 317% reflects
the differences between the clutched and nonclutch-
ed modes. About 13 MeV has to be regarded as
energy dissipated into internal rotational degrees
of freedom by going from L = 30% to L =317%. The
self-consistent phase model allows for slightly
more dissipation than R2 for L> 30% but its valid-
ity seems to break down at L~ 28% since there is
less energy loss for decreasing impact parame-
ters. We obtain large energy losses even for
only slightly grazing collisions in version R4 in
which we allow a smooth transition to rigid rota-
tion. R4 gives nearly the same results as R2 for
L < 307% where the system clutches. R3 is not
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TABLE I. Comparisons of L% and E . for 160+160 at
Ecm.=52.5 MeV.

R4 3D

L Lfgif) E loss E “;:) Lig;?) Eioss

) 1) (MeV) (MeV) () (MeV)
29 5.6 18.1 8.2 5.5 23.2

30 5.9 17.1 8.6

31 6.6 15.2 8.9

33 2.7 6.3 3.4

35 1.0 2.7 1.4

shown since the results are very similar to those
of R2. It is an open question whether our results
can be interpreted as implying a real rigid rota-
tion in the 3D case. In Table I the loss of orbital
angular momentum L{3’ of energy E, ,, and of
rotational energy E{™%’, which arises from chang-
ing the moment of inertia, are given for different
initial angular momenta using R4. About half of
the energy is dissipated by increasing the moment
of inertia. The loss in orbital angular momentum
seems to be reproduced by R4, but the scattering
angles are too negative.

Altogether model R2 seems to simulate a 3D
calculation best. However, it should be regarded
as a phenomenological recipe to account for the
lack of degrees of freedom in an axial 2D approach.

These results are in close agreement to those
obtained by Bonche, Grammaticos, and Koonin!!
in which 3D *Ca+“°Ca results for a center-of-
mass energy of 139 MeV are compared with pre-
vious 2D results.® Also their fusion limits for
160+ 10 agree with ours shown in Fig. 3 for L=0.

The comparison seems to indicate that the 2D
phase model reproduces somewhat better the 3D
results at the lower end of the fusion window, while
the 2D clutching model gives a better representa-
tion of 3D at the upper end of the window. These
qualitative features of the 2D models can also be
seen in the polar R -0 plots shown in Figs. 5 and 6.
For L =137% at the lower end of the fusion window
the phase model trajectory more closely follows
the 3D curve up until about 6= 50°, whereas for
L =277 at the upper end of the window it is the R2
rigid clutching trajectory which more closely
follows the 3D curve for half of a full rotation.
Also, Fig. 5 shows that at L =5.5%, below the 3D
fusion window, the R2 and 3D curves are almost
identical.

B. Calculations of °Ca + %Ca at E,,, = 192 MeV

The previous comparisons have been at suffic-
iently high energy that one expects nonaxially-sym-
metric deformations to be important, especially

in the fusion region.!®!'!® However, we know that
there are lower energy cases for which one ob-
tains significant fusion in an axially-symmetric
2D calculation.® For example, in the comparison
made in Sec. IIIA for **0+ %0 at E,, =105 MeV,
fusion does not occur for any 2D model but ddes
peeur in the 3D calculations, while at lower kom-
barding energies one does obtain fusion in 2D mo-
del R1.6

Another comparison*''!® was for “°Ca+“°Ca at
E,, =278 MeV. Again at this energy there is fus-
ion for 3D but not for 2D. Yet we know that at
lower energies one does see fusion for “°Ca+ *°Ca
using the rigid clutching 2D model.® Thus, it be-
comes important to make a detailed comparison
between the various axially -symmetric 2D models
and the 3D theory for an energy at which one ob-
tains a considerable amount of fusion in 2D.

Also, since axially-symmetric 2D studies of
very heavy nuclei are currently being pursued, 617
it is of interest to try to ascertain the probable
validity of these 2D models for such reactions.
For this purpose, we have chosen to study a re-
gime in which the relative velocity above the Cou-
lomb barrier is the same for *°Ca+*Ca as it is
for a very heavy-ion reaction. For the latter we
choose ®¥Kr+2*Bi at E,,, = 600 MeV,? from which
we find that the corresponding energy for “Ca
+%Ca is E},,=192 MeV. Fortunately, at this en-
ergy there is considerable fusion in the axially-
symmetric 2D calculations of *°Ca+ “°Ca.

In Fig. 7 we display the energy loss and deflec-
tion function curves for the 2D phase model and
the 2D rigid, clutching model R2. We also show
isolated points obtained from 3D calculations,**
for which one observes a large fusion window from
L=107% to L=50%. For the phase model, there is
a narrow fusion window centered about L= 207%.
The rigid clutching model exhibits a wider fusion
window, which extends from L=~ 307%.to L=50%.
Together the two 2D fusion windows fairly well
span almost the entire 3D window, with the phase
model giving fusion at the lower end and the rigid
clutching model, from the middle section to the
upper part of the 3D window. This agrees with
our qualitative understanding of the 2D models
observed in the last subsection. For the energy
loss graph in Fig. 7 the dot-dashed curve is for
prescription R4 (discussed in Sec. ITA), and it is
seen that this curve is only a few MeV below the
3D points, which is within the numerical uncer-
tainties in the calculations. Notice that, just as
in *0+ %0, the phase model seems to break down
for the higher L values. For the upper part of
the 3D fusion window and in the region above fus-
ion, the rigid clutching model seems superior to
the phase model for reproducing the 3D results.
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FIG. 5. R-0 trajectories
for %0 +1%0 at E,,, =52.5
MeV and for L =5.5% and
L =13%. The full curves
are for 2D model R2, the
dashed curves are for the
2D phase model, and the
dot-dashed curves are from
the 3D calculations (Ref.
10). LY} is the final orbi-
tal angular momentum.

FIG. 6. R-6 trajectories
for %0 +1%0 at E,, =52.5
MeV and L =27%, The no-
tation for the curves is the
same as in Fig. 5. L) is

the final orbital angular
momentum,
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FIG. 7. Energy loss and deflection function curves for
0ca+4Ca at E_,, =96 MeV. The full curve is for 2D
model R2, the dashed curve is for the 2D phase model,
and the circles are the results of the 3D calculation
(Ref. 14). The dot-dashed curve for the energy loss
graph is for 2D prescription R4. The dot-dashed curve
for the deflection function graph is for pure Coulomb
scattering.

Finally, it is of interest to compare in detail
all of the various axially-symmetric 2D models
discussed in Sec. II. In Table II, we present our
results for two crucial angular momenta: L =607
which gives orbiting behavior for all cases and L
=707 which is very close to grazing. The results
from the various 2D rigid clutching models, the
2D phase model, and the 3D theory can all be com-
pared. In reproducing the 3D results, it is seen
that the phase model and prescription R1 are clear-
ly worse than the remaining 2D models. Prescrip-
tion R4 gives the best agreement with the 3D re-
sults for energy loss, but at L = 60% the deflection
angle is much too negative. However, since the
angle is changing rapidly in this region, this may
not be a serious problem. Also, Table II shows
that for prescription R4 the deflection angle be-
comes less negative if the clutching density p, is
increased. Prescriptions R2 and R3 give very
similar results, and overall we feel the agreement
with 3D is best for these two models.

IV. CONCLUSIONS

Various axially-symmetric 2D TDHF models
have been discussed. Four of these are based on
the assumption that when the two ions clutch, the
moment of inertia is that of a rigid body.>®” The
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TABLE II. Comparisons of ), and energy loss for
OCa+ 9Ca at Ey5=192 MeV. The notation 2D, P indi-
cates the 2D phase model (Ref. 12). For the rigid clutch-
ing model we use p.=0.07 fm™ unless otherwise indi-
cated, as in the last two L=60% cases for which the p,
values are listed in parentheses.

Energy
L/kE Case 992, (degrees) loss (MeV)
60 3Dk -161 24
60 2D, P -153 12
60 2D, R1 -182 6
60 2D, R2 =175 17
60 2D, R3 -174 19
60 2D, R4 -232 21
60 2D;R4 (p,=.10) —222 24
60 2D,R4 (p,=.12) -213 24
70 3pH 45 7
70 2D, P 43 0
70 2D,R1-3 42 0
70 2D, R4 42 3

remaining 2D model is a self-consistent phase ap-
proximation which results in an irrotational mo-
ment of inertia.'? The results obtained using these
different models are compared with each other
and with results from an exact 3D TDHF calcula-
tion.!®'* We have studied °0+°0O at E,,, =52:5
MeV and °Ca+%Ca at E_ =96 MeV.

We find that 2D seems to agree reasonably well
with 3D for L values in the regions both below and -
above the 3D fusion window. For bombarding en-
ergies for which we obtain fusion in 3D but not in
2D, the phase model exhibits orbiting at the lower
part of the 3D fusion window while the rigid clutch-
ing model displays orbiting at the upper part of the
window. Similarly, at lower energies for which
we observe fusion in both 2D and 3D, the phase
model and the rigid clutching model exhibit fusion
for the lower and upper parts, respectively, of
the 3D fusion window. Without further investiga-
tion of the 3D wave functions, it is not possible
to conclude that the 3D moment of inertia is large-
ly irrotational for small impact parameters and
is dominated by rigid-body behavior for higher
values of L. However, the above results suggest
this behavior.

(Of all of the 2D models, the rigid clutching pre-
scriptions R2 and R3 seem to give the best over-

. all agreement with 3D for L values at the upper

end of the 3D fusion window, for orbiting, and for
peripheral scattering. Therefore, we recommend
that either R2 or R3 be used in the calculations of
very heavy-ion scattering, in which orbiting and

peripheral-type behavior are thought to dominate.
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