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Momentum space three-dimensional time-dependent Hartree-Fock (TDHF) calculations are performed for
' C+ '"N and ' 0+ ' 0 collisions. The potential is the simplified Skyrme interaction which gives- the single-
particle potential v„(r) = —also) + b p (f), and includes the direct part of the Coulomb interaction. We use
a predictor corrector method to.step in time and a fast Fourier transform (FFT) method to compute the
kinetic energy in momentum space. Three types of events are obtained: vibrational instability scattering at
low impact parameters b, near orbiting at medium b values, and rotational instabihty scattering beyond
that. The discussion points out that further improvements will require a fusion window and quantal
corrections for angular and energy uncertainties which go beyond the TDHF method.

'

NUCLEARREACTIONS .'4N(112 MeV)+ i C O(128 MeV)+ ' O, calculated deQec- I

tion functions using time-dependent Hartree-rock approximation.

I. INTRODUCTION

The results of inelastic heavy-ion collisions, '~
where the projectile energy per nucleon E,/As is
substantially above the Coulomb barrie&, have
peen described4 as collisions of two bodies moving
along classical trajectories with elastic and fric-
tional forces. This interpretation relies on the
range of angular momenta l participating in the
twe body collision being several hundred times 5
where

I=LE.vb, v

and p, is the reduced mass of target (t) and pro-
jectile (p), b is the impact parameter. More re-
cently, measurements of d'tt/dAdE have been per-
formed' "for lighter systems with angular mo-
menta up to 25-50 S. There, the inelastic transfer
angular distributions with a given Q-value slice
(partially energy integrated cPtJ/dQdE) show mainly
an exponential decrease with increasing laboratory
angle. The exponential behavior can be heuristi-
cally explained" by using the Blair diffuse surface
model" and appears to be at odds with the semi-
classical interpretation of Wilczynski.

We calculate in this paper the energy loss IInddeI-
fw,ection angle foi the reactions "C+"N and "Owe "O
at 8 MeV/nucleon laboratory bombarding energy
and for the impact parameters of interest. This

calculation is described in Sec. G, beginning with
the use of the fast Fourier transform (FFT) algor-
ithm" to connect coordinate and momentum space.
%e then describe the predictor-corrector method"
used to solve the time-dependent Schrodinger
equation

Next we describe the initial wave functions need-
ed to solve the equation; they are plane waves
times harmonic oscillator states. Then comes the
Coulomb field calculation"; it avoids most of the
image problems usually encountered when using a
long-range force and the FFT periodic boundary
condition. Other details of the Coulomb orbits are
also presented. A discussion of the symmetries
imposed in order to shorten the computation time
follows and leads to the topic of the grid dimen-
sions; the various considerations connected with
this are briefly mentioned. %'e end the section
by giving the formulas for the computation of cur-
rents, in addition to collective and thermal ener-
gies.

The results are presented in Sec. Ig. %e begin
by showing density and velocity plots for three
cases: (i) vibrational scattering at low impact pa-
rameter b, (ii) capture or orbiting for medium b

values, and (iii) rotational scattering at high b's.
These illustrations are taken from the two reac-
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tions studied in this paper: "0+"0 and "N+ "C
at bombarding energies E,("0)/16 =8 MeV
=E,("N)/14. The first reaction was chosen be-
cause of the simple closed shell nature of ' 0 and
the target-projectile symmetry which allows a
faster calculation. The second reaction was stud-
ied in order to compare with some recent experi-
mental data" from ORNL. Several striking sim-
ilarities of these calculations with the hydrody-
namic scattering modes of classical water drop-
lets are noted even though no two-body viscosity
term is ever considered explicitly. We then pro-
ceed to a more detailed presentation of the various
important physical quantities such as the deflec-
tion angle and the energy loss (Q value) as a func-
tion of the incoming total center-of-mass (c.m. )
orbital angular momentum E. Then we discuss the
energy dependence of the "0+"0 reaction at a
fixed impact parameter b =4 fm, in the energy
range 4 MeV& E,/d4~ ~36 MeV.

The discussion also suggests possible correc-
tion to the time-dependent Hartree-Fock
(TDHF)" "method for (Iuantal effects. '"" We
point out that one can obtain phenomenological ex-
pressions for the direct inelastic cross section
which yield approximate exponentially decaying in-
elastic angular distributions for small E values
and the classical results for high l values.

II. CALCULATION

This section first presents a brief derivation
of the TDHF equations. Our solution is then dis-

cussed. %e also mention various other points
such as the initial conditions, the Coulomb poten-
tial, the symmetries, and the grid properties;
finally, we outline the calculation of the currents,
the thermal energy, and the collective energy.

+ d'r" v r-r" -v r'-r"
p(2)(& &pp. &p &pp) (2.1)

Here the interaction between the particles was as-
sumed to be expressible as an interaction poten-
tial v(r- r'), and p(" is the two-particle density
matrix, which can also be expressed in terms of
the one-particle density matrix and a two-particle
correlation function g ":

p(2)(~ ~ p, r)rp ~ pl) p(~ ~p)p(~pl r)rpp)

p(ry ~ )ppp(y pp~p)

+g "(r,r";r', r"). (2.2)

Inserting this expression in E(I. (2.1), one obtains

A. The TDHF equations

Qne possible derivation of the TDHF equations,
which is particularly useful for understanding the
underlying physical ideas, starts from the equa-
tion for the one-particle density matrix within the
Bogoliubov- Born-Green-Kirkwood- Yvon (BBGKY)"
hierarchy

2

fII—p(r, r') = - (V' - V")p(~, r')

S2
(d p(r r')= (v*- v")p(rr )«[v(r) , v'—(r')]p(r r') J-d*r"p(r, r")[v(r r") v(r—'.-'r"))p(rr-'I, -

+ d'r" v r- r" —v r'-r" "r,r";r', r", (2.3)

where v denotes the average potential

v(r) fd'« v(r- r")p=(r", «") . (2.4)

On the right side of E(I. (2.3} the second term de-
scribes scattering from the average potential,
followed by the corresponding exchange term,
whereas the last expression denotes residual two-
body interactions. In ordinary macroscopic fluid
dynamics this last term has its analogy in the
collision term of the Boltzmann equation; it is
responsible for damping effects such as viscosity,
whereas the potential scattering is usually negli-
gible for macroscopic fluids.

In nuclear collisions, on the other hand, the av-
erage potential is strongly space and time depen-
dent, while collisions are inhibited by the Pauli

v(r) =-ap(r, r) + bp'(r, r); (2.6)

u and b are determined such as to yield an equil-
ibrium density of 0.145 fm~ and a binding energy
of -15.85 MeV for nuclear matter. The resulting
incompressibility (( is 368 MeV. (2} We assume a
representation of p(x, r') in terms of single-par-
ticle wave functions of the form

prinicple, at least at low energies.
It thus appears useful to study the approxima-

tion obtained by assuming g'" -=D. This will lead
to the TDHF equations. For practical calcula-
tions, however, we have to make two further as-
sumptions: (1) We use a zero-range density-de-
pendent effective interaction of the simplified
Skyrme type, "'"so that the average potential be-
comes
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p(r, r') = g n~P„(r)$f (r'), (2.6)

e„y„(r,—t) = ~'-y„(r, t) ap(r, t)—y„(r, t)
. a

(2.V)

+ bp(r, t)'g„(r, t),

with the occupation probabilities 'n„ time indepen-
dent. This is a slight generalization of the usual
single Slater determinant and allows partial occu-
pation of orbitals in order to, e.g., construct
spherical initial states for ' N and "C in a har-
monic oscillator basis. The many-body syste~ is
then not in a pure state, but this does not give any
problems, since the observables may be calcula-
ted via the density matrices. The relation between
the one- and two-body density matrices is assumed
to be the same one as for pure states.

The equation which is actually used in the model
is thus

must converge increases linearly with the number
of terms so that the overall convergence is not
improved by adding terms. This effect is indepen-
dent of numerical errors and depends only on the
properties of'the Hamiltonian. The label X refers
to the various (orthogonal) orbits which are pop-
ulated initially.

The potential energy operator is diagonal in co-
ordinate space, while the kinetic energy is diagonal
in momentum space. We have used the fast Four-
ier transform algorithm" to perform the conver-
sion from coordinate to momentu~ space. For
each dimension, we have the relation

~x&(,((,„() (&=( Q(,(x, t)e " '~", (2.(()

with --,'¹l & —,'M+1. The values of the coordinate
x and the momentum k, on their respective grid
are given by

with the total density = 2'x =m4x, k,=, ~x=1 fm
~ ~xX' (2.12)

p(r, t) =g n„gf (r, t)P„(r, t) . (2.8)

B. Fast Fourier transform and the predictor-corrector method

The predictor-corrector method for solving the
first order coupled differential equations (2.V)

consists of the following two steps:
(1) Predictor of order n:

There are as many equations (2.V) as there are
n„differing from zero. Direct substitution of Eqs.
(2.6) and (2.V) in Eq. (2.3) yields an identity pro-
vided g"" is neglected and the zero-range Skyrme
force is assumed.

&...=g n, [&»,—k~(p&, + 3b(p'&, 1, (2.13)

The number of points N was 16 in the x direction,
perpendicular to the scattering plane, and 24 =3
x 2' in the y and s directions. These dimensions
were large enough to accommodate the initial
configurations, aligned along the s axis and sep-
arated by 10 fm. This grid allows an accuracy of
nearly four significant figures on the kinetic en-
ergy. However, the potential energy sometimes
has a fairly high derivative due to the p'(r) term
Thus, the systematic error in the total energy,

g~(t+ nest) = p„'(t+ (n —1)n t)

+Et P~q ~ t+ Mt .

(2) Corrector of order n:

$~(t+ qdt) = P~(t+ (q —1)ht)

+Et C~g„(t+ kb, t), 1 & q & n
sl

(2.9)

was larger. The potential energy was computed
to an accuracy of about 0.2 MeV. The changes in

S„~, which is about -200 Me7, during one time
step were less than 0.05 Me7 and the overall drift
of E„, during a complete event at one impact
parameter was less than 0.5 MeV in all cases.
The norm is also a good indication of the stability
of the calculation. We have found that

(2.14)

(2.10)

where the label i refers to a particular momen-
tum component. The coefficients P» and C»~ are
chosen by matching the coefficients of the first
n terms of the power series expansions on both
sides of the equations. The calculations reported
here were done with n=6. No additional gains are
made by going to higher order because each added
order requires that one consider an additional
time interval 4t for the derivative summation.
Thus the time interval over which the power series

was conserved to about 10~ for a complete history
at one b value. The formulas (2.11), (2.12), and
(2.14) are easily extended to three dimensions.

The kinetic energy operator is unbounded in mo-
mentum space. This implies a rapidly changing
phase

I' k*t
(o =

2m I
'This can be subtracted from the Hamiltonian by
setting



R. Y. CUSSON, J. A. MARUHN, AND H. %. MELDNER 18

g~(k„t)=C~(k, , t)e '"'.
The Schrodinger equation for C becomes

(2.15)

C„(k„t) = e'"'F—V(y)F 'e '"W,(k„t) . (2.17)

Equation (2.17) is the one which was solved using
the predictor-corrector method of Eqs. (2.9) and

(2.10). The time steps were taken as follows.
Given the initial wave function, the initial time de-
rivative C„ is obtained by a subroutine call which
performs the manipulations in Eq. (2.17). A first
order predictor is then used to obtain C„(&t) from
which C~(ht) is again obtained by Eq. (2.17). This
is followed by a first order corrector, then a sec-
ond order predictor, then two second order cor-
rectors (q =1,2), each time computing 8, when a
new C~ is obtained and so on to sixth order. 'The

calculation of Eq. (2.17) represents the major
fraction of the computing time because of the FFT
involved, even if very fa'st FFT algorithms are
used. A hard wired FFT processor would speed
up the calculation very much, but was not avail-
able. 'The wave functions at each step are stored
on magnetic tape so that each history can be re-
played later when a different quantity is required.
The largest time step which gives a stable solu-
tion depends on the -maximum value of

2m

through the approximate empirical relation

2m h-' (2.18)

In three dimensions it is therefore advantageous
to truncate the momentum space to those states
for which

(k„'+k„'+k,')- E,„,.2m
(2.19)

We choose E,„,= 125 MeV in order to ensure ad-
equate convergence at the higher energies studied
here (E/A = 36 MeV). We also took the value rM

= 1.25 fm/c as a safe step, reasonably far from the
limiting value 4T= 1.6 fm/e predicted —by Eq.
(2.18). We were not able to increase the step size
much above hT = 1.25 fm/c, even after truncating

NC (k't) = QV(k, —k )e""~ "~'C,(k„t), (2.16)
I

where V(k, -k,) is the Fourier transform of V(r).
Since V(4k) is not diagonal in momentum space,
the sum (2.15) has too many terms in three dimen-
sions. Letting F stand formally for the transfor-
mation (2.11), the equation (2.15) can be written
schematically hs

the momentum space further. This appears to be
due to a tendency of the zero-range Skyrme force
to let the high momentum components of the wave
function grow with time. Another limitation on
the step size comes from the initial wave function
which we now discuss.

C. Initial conditions

The initial wave functions have the form

g (r, t=0)= e'"~'Q, (r), X=1, . . . , —,'(A, +A, )

(2.20)

where Q,(r) is a harmonic oscillator wave function
centered at the c.m. of the cluster to which the
orbit X belongs. The oscillator energy S(d is
chosen to be 37.55 MeV/A' t', with A the atomic
number of a cluster. The wave number k~ is also
the cluster value and its orientation depends on
the impact parameter b, in the usual way. The
cluster momenta are chosen so that the c.m. of
the compound system is at rest in the coordinate
grid. We also choose the p„'s to be real so that
they represent approximate stationary eigenstates
of the TDHF equations. In order to get an exact
stationary state, we would need to do a static HF
calculation first. This was not done, and, as a
result, there is some initial readjustment of the
wave functions as we begin the time stepping.
This relatively fast initial change contributes to
the present upper limit of &T = 1.25 fm/c. Since
we put two protons and two neutrons per orbit,
the density is computed at each step as

(&g+&g~~ &

p(r, t) = g 41' ~(r, t)l'. (2.21)
k=1

The initial density is therefore the same as the
sum of the densities of the two clusters.

We have used an initial cluster separation of
10 fm. 'This is enough to ensure that the overlap
of the wave functions between different clusters
is negligible. The density at the midpoint between
the starting cluster is then less than 0.002 times
the centra'1 density.

D. Coulomb interaction

The Coulomb potential must be computed every
time we use Eq. (2.1'l) to compute C, i.e, twice
per time step. The potential e(x) is

V(r) = -ap(r)+ bp'(r) + e'
A ~

d'r'

(2.22)

The effective charge (Z/A)' is needed since we do
not treat neutrons and protons separately. Compu-
tation of the integral over r' in coordinate space
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would be expensive because some 10' operations
would be needed. We use the FFT algorithm in-
stead; thus

, Z~, 1
v,(r) =8,(r)+ 4ve' ~)l E '

( k), E[p(r) —p(r)].

(2.23)

The inverse FFT is similar to Eq. (2.11) except
for a change in sign of the exponential and in the
normalization. The additional potential 8,(r) is
the one due to the subtraction charge p(r) inserted
in the FFT to minimize the image problem. " We
choose p(y) as the sum of two spherical Gaussian
charge distributions whose individual charges and
locations are selected so that p-p has vanishing
net charge, dipole moment, quadrupole, and oc-
tupole moment in the principal axis system of the
charge quadrupole of p. This determines p and
ensures that the potential due to p-p goes to zero
faster than the usual I/r. Then the image prob-
lem all but disappears. The Coulomb potential
of the Gaussian subtraction charge is, of course,
computed exactly as being proportional to
erf(x/r, )/(r/r, ). The radii of the subtraction
charge densities x, are chosen to yield the correct
total rms charge radius for the whole system.

The integration of the equations begins at a sep-
aration of 10 fm and usually ends when the frag-
ments have reached a comparable separation. We
assume classical Coulomb orbits" from -~ to
10 fm and from the final separation to+ . The
matching to the final Coulomb orbits requires a
knowledge of the final masses, charges, separa-
tion, and relative momentum vector. These quan-
tities are obtained by straightforward numerical
integration over the cluster density and current
distributions. An overall check of the TDHF pro-
gram was performed by selecting an impact para-
meter large enough to avoid all nuclear interac-
tions. 'The final computed scattering angle was
found to agree with the Coulomb one to 1% at E/
A. = 8 MeV. The exchange Coulomb potential was
neglected because it amounts to about 5% of the
direct Coulomb potential.

E. Symmetries

The more symmetries we impose on the ~ave
functions, the faster the calculation. However,
the fewer the symmetries, the better we compute
the thermal energy related to single-particle fric-
tion. The present compromise, consists in impos-
ing only three symmetries: (i) The quartet sym-
Inetry whereby every orbit is spin and isospin
saturated and contains four nucleons, (ii) A scat-
tering plane symmetry which assumes that all the
wave functions have the form

gt(x, y, z) = P~~(x, 2y, —y, 2z, -z), (2.24)

which reverses the positions with respect to c.m.
This also reverses the currents. Because of the
scattering plane symmetry (ii) the x variable need
not be transformed.

An important question is: What is the effect of
these three symmetries on the thermalization?
Initially in a real nuclear collision, they hold, of
course. The question is then: How fast are these
symmetries broken by the thermalization? That
is, how fast would the degrees of freedom re-
moved by the symmetry come to thermal equil-
ibrium if they could thermalize? We have run
some test cases for "0+"0 and it appears that
as long as the quartet symmetry is maintained,
the symmetries (ii) and (iii) are broken so slowly
that by the time we end the collision, they still
hold within a few percent. It remains to be seen
how the collision would develop if we had only one
particle per orbit. We return to this point in the
discussion. The quartet symmetry reduces the
number of orbits by a factor of 4 and makes the
computation nearly four times faster than without
it. Similarly, the target-projectile symmetry
yields another factor of 2. Finally, the scattering
plane symmetry allows a reduction of the number
of points in the x direction from 16 to ~~+ 1.

F. Currents and other fields

The total current J„(r) can be obtained with the
help of the partial FFT, E, along the p, direction.
We have schematically

We have observed that for the cases studied here,
the current J„(r), along the x direction, e.g. , nor-
mal to the scattering plane, is generally quite
small, so we have set it equal to zero everywhere

We can use the current J to compute the total
collective kinetic energy:

g„(x,y, z) = v,g,(2x, —x,y, z),
where x, is the location of the y, s scattering plane
along the x axis, and w, is the x parity of the
states. This symmetry holds initially and the in-
itial Hamiltonian is even under reflection in the
scattering plane. This is not necessarily a stable
symmetry, however. Had we started the system
with a small violation of this symmetry, the
thermalization process might have amplified the
deviation from it. (iii) The third symmetry is im-
plemented only in the case of "Q+"Q, where the
projectile and target are initially identical. It
consists in writing the target wave functions
gf(x, y, z) as
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(2.28)

This contribution should be subtracted from the
total kinetic energy

(2.27)

to obtain an "internal" kinetic energy, E„,. This
is not yet the thermal energy because we must
subtract from E„,the Fermi kinetic energy, E~.
The way to find E~ would be to solve the static HF
equations constrained to have the instantaneous
observed density and take the kinetic energy from
that calculation as E~. This process is time con-
suming and would require that we use some meth-
od similar to the Kohn variational principle'4 at
every time where we want E~. We have instead
opted for the simpler, but less accurate approxi-
mation

E (r)=Ap(r)' '+B ~V[p(r)]' (2.28)

where the coefficient A is given by

3 I' 3n'l'~'
A = ——

~
= 74.99 MeV fm',

52m 2/ (2.29)

and the coefficient B is adjusted at t=0 so that
E~(t=O)=E„,(t=O), since there is no heating at
that time. The coefficient B was found to be about
0.15 for most cases, a value consistent with theo-
retical estimates. The total Fermi kinetic energy
is the integral of Kg. (2.28) over space, and it is
subtracted from E„,to give E,» an incoherent
kinetic energy, which we take as an approximate
thermal energy.

Our thermal and collective energy could be used
to define a potential energy as a function of time

V=Et.t-E i-Eth- (2.30)

At the beginning of the-collision V, is just the sum
of the binding energies of the fragments. At the
end of the collision V& tells us that amount of in-
ternal excitation which is even under time revers-
al. For all cases studied here, V& —

V&
~ 0, and it

is of the same order of magnitude as the thermal
energy.

III. RESULTS

The results presented in this section are for an
"N projectile incident at 8 MeV/A [E("N)= 112.
MeV] on a ". C target which is to be compared with
direct inelastic scattering data" at 108 MeV. The
reaction "0+"0also at 8 MeV/A is shown for
comparison with the "N+ "C case and with recent"
extensive calculations for "O+"O.

A. Density and currents

Figures 1, 2, and 3 show computer-generated
displays of the density and velocity distributions
for three type of events, vibrational, capture, and
rotational scattering. The vibrational example is
taken from the "N+ "C reaction at 8 MeV/A in-
cident '4N energy and impact parameter b = 1 fm.
'The contour lines in the density plots represent
constant values of the integrated density

(3.1)

The increment from one contour line to the other
is about 0.15 nucleons/fm'. The velocity arrows
are drawn on the grid points, 1 fm apart, and have
been renormalized from one picture to the next to
prevent strong overlaps when the velocities are .

large, or disappearance when they are small. A
standard velocity is renormalized by the same
amount and is plotted in each frame as a calibra-
tion. Only the y and z components of the velocities
are shown; the x component was set equal to zero
earlier. The values of v„v, in the scattering
plane (x =0) are shown. The velocity field is
obtained from the equation

v(r)= J(r).
p(r

(3.2)

The first frame of Fig. 1(a), at t = 30, begins
to show some slight deviation from the starting
values of the velocities. The second frame is
well into the collision, but not yet past the maxi-
mu~ compression point. We note that the "N
projectile is at the top of the picture at the begin-
ning of the collision. The third frame is only
slightly past the maximum compression point. We
note that the density never exceeds 1.25 times the
equilibrium value. The fourth frame shows the
system reconstructing the clusters (vibrational in-
stability). It is also becoming clearer by that
frame that the heavy fragment is now at the bot-
torn, , and the deflection angle will be about -50
degrees. It would be tempting to inquire further
into the penetration process. For example, one
might ask whether the two clusters go "through"
each other or "bounce" off one another with ex-
change. Antisymmetrization, however, does not
allow a meaningful answer to this question. One
might label the orbits that initially belonged to the
"N system and follow them during the scattering.
If these orbits end up on the Same side, one might
claim that the clusters have bounced back while ex-
changing a nucleon. If they go to the other side, it
would appear that they have penetrated one another.
This reasoning is, however, incorrect because
a single Slater determinant is invariant under any
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space-independent unitary transformation among
the single-particle orbits. One must rather define
a properly observable one- or many-body operator
and follow its time dependence. Since the nucleons
making up the clusters are identical, such ob-
servables must be even under permutation of the
particles which form the clusters.

'The next four frames at t=110, 130, 150, and
170 fm/c show a persistent neck in the density and
an internal octupole vibrational pattern in the vel-
ocities. The frame at t = 170 fm/c shows the ve-
locity in the neck region to be quite high, while
the density is small; thus, the neck is snapping
off rapidly. This is confirmed in the last frame
at t = 190 fm/c which shows that the neck which
has persisted from t =130 to t = 170 fm/c has dis-
appeared in less than 20 fm/c. It is interesting
to note that during the t = 140-180 fm/c period the
asymptotic relative motion kinematical properties

are essentially established, yet the two fragments
still interact strongly and are changing rapidly
with time.

The sequence shown in Fig. 2 comes from the
symmetric reaction "0+"0at E, /At = 8 MeV, tp

=4 fm, and comes close to orbiting. 'The squaring
off at t= 80 fm/c signifies the onset of octupole
collective vibration of the fragments. Although
the fragments have not quite separated at t= 350
fm/c, the density in the neck region has dropped
considerably, and the momentum of each of the
clusters is nearly constant from t = 340 to t = 350
fm/c, indicating an eventual breakup.

The last sequence show+ in Fig. 3 is intended
to illustrate rotational instability, although it is
also fairly close to the orbiting value of b. The
period from t = 90 to t = 220 fm/c shows almost
pure rotational scattering, with a slight superim-
posed octupole vibration of the fragments (hexade-
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FIG. 1. (a) Density contours for the 4N+' C reaction at E&~( N) =].12 MeV andatanimpact parameter b=1 fm. This
sequence of pictures iQustrates vibrational instability scattering. The density contours are those of the x-integrated
density pt(y, z) =f dz p(z, y, z) and represent steps of about 0.15N/fmt. The velocity field arrows represent the ratio
J(r)/p(r), evaluated in the scattering plane (x,.m. =0) where g is the mass current. Each separate velocity frame has an
overall normalization constant chosen to display the velocity arrows without overlapping. The calibration arrows show
the resulting size of a constant velocity arrow for comparison between frames. Only those arrows which are bigger
than some minimum size are displayed, and no arrow is shown in regions where the density is very small. The first
frame, at T=30 fm/c, shows the ~4N on top. The velocity arrows begin to show a deviation. from the initial free motion
pattern. By the third frame, at T=. 70 fm/c, the motion is essentially reversed. , (b) Similar to (a), except for T= 90,
110, 130 fm/c. The vibrational instability breakup is well under way. The larger fragment is now at the bottom and in-
ternal vibrations are apparent. (c) Similar to (a), but for T=150, 170, and 190 fm/c. The formation of a long neck
which persists then snaps off can be observed. The internal osci11ations continue aSer T= 190 fm/c.
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FIG. 2. {a) Densities and velocities for ~O+ GO at
E&/A&=8 MeV and impact parameter 5 =4 fm. This
sequence illustrates the near orbiting situation. (b)
Similar to (a), but for T= 120, 150, and 180 fm/c. A

complex internal vibrational pattern is superposed on
the overall rotational pattern. The bvo ' O clusters
are visible at T= 180 fm/c and their tetrahedral n
structure is also seen. (c) Similar to (a), but for T
=230, 270, and 350 fm/c. The neck is thin in the last
frame, but one would have to continue the time develop-
ment to see if this indicates imminent breakup or if the
system will come back together.

capole mode of the compound system). Yet from
f = 220 fm/c on, elongation sets in and results in
separation around t= 320 fm/c. In the velocity
display of the last fraMe, we note the presence of
octupole vibrations in the fragments. The initial
values of the orbital angular momentum for the
three cases shown in Figs. 1, 2, and 3 were l
=—4I, l=—201, and L=—258, respectively. Most of

FIG. 3. (a) Densities and velocities for O+ 60 at
E&/A& =8 MeV, and impact parameter b=5 fm. This
last sequence illustrates a case of rotational instability.
(b) Similar to (a), but for T= 120, 150, and 180 fm/c.
One notes the smaller amount of internal vibrations
compared to Fig. 2(b), at b =4 fm. (c) Similar to {a),
but for T = 220, 270, and 320 fm/c. The neck breaks
fairly quickly between T= 270 and T= 320 fm/c.

the other pictures obtained were simi1.ar to the
ones shown in these figures and need not be dis-
played.

These three types of collision show a remarkable
similarity with the classical hydrodynamic col-
lisions of liquid drops and this happens in spite of
the absence of two-body collision terms which
strongly affect the dynamics of classical fluids.
Although the single-particle viscosity causes a
substantial energy loss, it does not seem large
enough to validate the one-fluid theory of hydrody-
namics. We have checked that especially at the
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higher energies, the Pauli exclusion principle and
the single-particle viscosity do not prevent the
fragments from penetrating each other so that
even in regions where the total current vanishes,
the matter is not at rest, but consists of the two
fragments "passing through" each other, so that
the sum of their individual currents is zero. The
density therefore never becomes higher than twice
the equilibrium density, as befits a two-fluid mo-
del.

I

'w

Wl
~g

$. Dependence on impact parameter

The initia1. impact parameter 5, at t= -, is re-
lated to the total angular momentum l in the c.m.
by

(3.3)

where p, =M,M, /'M, +M,} is the reduced mass and

I|t AP

is the relative velocity of the ions at t= -~. Most
of the calculations reported here were done at E, /
A~= 8 MeV/A, i.e. , 128 MeV laboratory energy
for the "O projectile on "O and 112 MeV' labora-
tory energy for the '~N projectile on ' C. The im-
pact parameter was varied from zero to the value
5 = V.5 fm where only Coulomb scattering takes
place. The deflection function and the outgoing en-
ergy vs l are shown in Figs. 4-V. Because of the
finite computer budget and the need for smooth
functional values from one [f + a]/g value to the
next, we have done a certain amount of physically
reasonable interpolation and extrapolation. Only
the points on the curves were obtained from an
actual run of the code.

Figure 4 shows the deflection function 8 vs the
total angular momentum l, for the "N+ "C case,
and Fig. 5 shows the one for "0+"O. %e note
that the computer runs were done at different
values of l for these two cases in order to obtain
as much information as possible. It was apparent
from the start that the two cases were qualitatively
similar, so the required interpolations were done
with this qualitative similarity in mind. These two
curves exhibit the well-known behavior of semi-
classical deflection functions. There will be a
rainbow angle near l = 285 for "N+ "C and l = 365
for "O+"O. This angle is also called the grazing
angle and is about 9.4' in Fig. 4 and 12.3' in Fig.
5. These are c.m. angles. The conversion to lab-
oratory energies and angles will be given later.
A rough estimate is to divide the c.m. angle by
2 to obtain laboratory angles. The change in the '

sign of 8 as l decreases will contribute a glory
scattering" and its possible quantum mechanical

I

0 5

interference with the rainbow is, of course, not
included in the present semiclassical approach. -

The quasiorbiting" value of l is 181 in Hg. 4 and
around 2M in Fig. 5. The occurrence of a single
orbiting l value is characteristic of a smooth l-
independent attractive potential. Orbiting takes
place, for a given bombarding energy, at the ang-
ular momentum such that the radial turning point

8
~0

p

~i

'ul gAl'I
CO

5 $0 $5 20 25 - 30 3S 40
Ange(or momentum( (c.m.)

FIG. 5. Deflection function 0, ~ vs the incoming orbi-
tal angular momentum l/5, for the reaction ~O+ 60 at
E~/A& =8 Mev. This curve and the one of Fig. 4 are
similar.

$0 )5 20 25 30 35
Angular momentum I (c.m.)

FIG. 4. Deflection function 8, m vs the incoming or-
bital angular momentum for the reaction ' N+ '2C, at
E&~(' N) =112 MeV. A substantial amount of extrapola-
tion between l = 8 and 22 has been performed since actual
runs were obtained only for the l values marked with a
diamond. The solid line extrapolation was done by hand
in order to obtain qualitative agreement with the less
expansive curve for 80+ 0 shown in Fig. 5. The de-
flection function for / &25 is obtained from the pure
Coulomb orbits. The grazing angle is 8, m =-9.4, and
quasiorbiting occurs around l = 18 I.
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LA

I0
5

Cl ~ g I r I

0 5 ~0 )5 20 25. 30 35
Angular momentum 1 (c.m. )

FEG. 6. Percentage relative motion kinetic energy
loss vs incoming angular momentum E/0, for the reac-
tion N+ C at E( N)=112 MeV. The squares repre-
sent values extracted from computer runs at the ap-
propriate impact parameter, while the dashed and
solid curves are extrapolations drawn by hand and de-
signed to make Figs. 6 and 7 similar.

occurs for an effective potential

5' l(l+ 1)
+—,+V(~)

2m r2

which has zero first derivative at the turning point.
We are not suggesting that the effective potential
is that simple, since the orbiting cusp is clearly
damped in these two figures. Nevertheless, it is
satisfying to recognize familiar elements of poten-
tial scattering in the present context. 'The small
/ value deflection angle in Fig. 5 could be made to
approach 180' instead of zero degrees since the

~ Ch

I;~
alp
4t

w n

0 5 ~0 $5 20 25 30 35 40 45
Angular momentum I (c.m. )

FlG. 7. Similar to Fig. 6, but for 0+ 0 at E&/A&
=8 MeV.

clusters are indistinguishable. We have selected
the zero degree limit in order to obtain a curve
similar to the one of Fig. 4.

Figure 6 shows the percentage c.m. energy loss
during the collision for ' N+ "C. 'The initial c.m.
relative motion kinetic energy is 51.69 MeV. The
biggest fraction of the energy loss occurs before
one reaches the orbiting value of angular momen-
tum. The energy loss in the vibrational instability
region has a much weaker dependence on the / val-
ue. It is interesting to note that the outgoing rela-
tive motion kinetic energy does not seem to bear
any direct relation to the Coulomb plus rotational
energy formula one might expect from a strongly
damped collision. ' This may be due to the ambi-
guity in defining a moment of inertia. 'The experi-
mental results in the case' of '

Ne+ "Al, however,
appear to obey the Coulomb plus rotational limit.
It may be that the present reaction does not, exhibit
enough friction, perhaps because the fragments
are too light, to dampen the velocity field into a
simple rotational mode. Some evidence for addi-
tional nonrotational components to the velocity
field is indeed present in Figs. 1-3. It is unfor-
tunate that the quantum effects make it difficult
to observe directly the energy loss as a function
of angular momentum for such a light system as
the present one.

Figure 7 shows the percentage kinetic energy
loss for the "0+"0 reaction. There the initial
c.m. relative motion kinetic energy is 64 MeV.
The main component of the loss again occurs just
above the orbiting l value but it is now accompan-
ied by other kinks at higher and lower l values.
Although this is one of the few well-defined quali-
tative differences between the two reactions stud-
ied here, it may not be very important for the
following reason. We recall that the initial wave
functions are harmonic oscillator states and not
self-consistent states. The clusters therefore
develop some internal motion before they come in
contact. This motion may be different for the two
cases here and can account for the differences at
high /'s. To understand the difference at low /'s,

.we must keep in mind that the initial relative mo-
tion translational kinetic energy is stored, during
the collision, as a collective. kinetic energy field,
as illustrated by the velocity field in Figs. 1-3.
At the end of the collision, not all of the remaining
velocity field is converted to pure translational
motion. Some vibrational and rotational energy re-
mains inside the clusters. The partition between
these modes depends, to a certain extent, on the
details of the velocity field at the instant where
the neck snaps off. After that, conservation of
momentum ensures the constancy of E~(rel) The.
additional kinks at low E's could therefore be due
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TABLE I. Energy dependence of ~ 0+ 0 reaction at b = 4 fm.

Zg/Ap'
(MeV)

Cluster
ksp t Sksg t*/m pre(t ) R~(t*)' &p pre ~tz) separation ~scat

(fm ) (fm/e) (fm) ' (Ã/fm ) (fm) (fm/e) (X/fm') at t = t fm (deg) R'" (t )
E~n
c.m. (MeV}, t=t&

6
8

12
18
24
36

0.439 130
O.M9 100
0.621 80
0.761 60
0.932 40
1.076 40
1.318 30

12.0
11.4
10.5
9.7
8.0
8.8
8.4

0.77
0.79
0.74
0.72
0.73
0.76
0.77

3.56
3.54
3.54
3.53
3.50
3.45
3.41

370
300
350
250
180
210
100

0.664
0.285
0.273
O.M1
0.586
0.009
0.050

4.86
7.37
8.29
5.53
6.20

11.8
11,8

-108~ 2.71
—83~ 2.80
-106~ 2.96
-120~ 3.13
-195~ 3.33
-135 3.54
—44 3.46

5.5
6.5
7+3

21
28
29
84

21 12.5
20 10.9
28 11.4
51 ' 32
70 43
99 43

102 120

~Value at t=-~; when the calculation begins at i= 0 and a separation of 10 fm, the Coulomb energy E„„j—-9.2 MeV is
subtracted from the c.m. energy 8 Eq ~A&.

b%e use E&/A&—-S~/2mk~~&, m = single nucleon mass.
'Time needed to reach the minimum rms radius.
~Central density integrated along the x axis; the initial equilibrium value inside a cluster is 0.915 N/fm2.
'Total rms radius with respect to the c.m. of the full distribution.
~ Complete separation has been attained only for the last two energies.
~%'ill continue to rotate before coming apart.
"Internal rms radius of each cluster with respect to its c.m. R~t(t=O)=2.5 fm.

to fluctuations in the amount of internal collective
energy at scission.

We have mentioned in Sec. II that the thermal
and collective energies are also calculated as a
function of time and orbital angular momentum.
We do not display them explicitly here; instead
we comment briefly on their dependence on /. To
first order, the thermal energy E,„(l) is about
60% of the actual energy loss, for most values of

Thus, for / 0~ and i4N+ i2C, where the energy
loss is about 40 MeV, some 24 MeV of this is
accounted for by the thermal energy. Another 10%%uo

of the energy loss, i.e. , 4 MeV at /=0, is found
as internal collective energy of the two fragments.
This leaves us with about 12 MeV of unaccounted
energy loss. This amount might be explained by
the fact that the radii of the fragments are sub-
stantially greater as they emerge from the col-
lision than they were before. The nuclear poten-
tial energy should, therefore, be less attractive.
The surface thickness is also increased so that
Eq. (2.25) would predict a somewhat higher
Thomas-Fermi kinetic energy. Thus, the station-
ary part of the nuclear bound state energy is de-
creased with respect to the initial system. We
presume that a loss of binding of 6 MeV per clus-
ter can be accounted for in this way. In any case,
this number is subject to a sizable uncertainty
because of the fairly large absolute errors in the
estimate, Eq. (2.25), needed for the computation
of E,„. The amplitudes shown in Figs. 6 and 7 will
be mentioned in the discussion. Subsection 0 will
use the present results for 8(l) and E(l) to con-
struct angular distributions in the laboratory sys-
tern.

C. Energy dependence

It would be desirable to compute curves of 8(l)
and E; over a wide range of incident energies. A
more limited exploration of the energy dependence
of the reaction is given in Table I. The values E/
A=4, 6, 8, 12, 18, 24, and 36 MeV/A are repre-
sented, using an impact parameter b of 4 fm.
This table qualitatively complements the one ob-
tained at 5= 0 for the "{+ "C reaction. "

The main result of this study is that one must
go to energies of the order of 20 MeV/A. before
one observes a clear disappearance of the near
orbiting phenomenon at b =4. For the head-on
collision of "C+ '. 'C, capture occurs only at E/A
«6.8 MeV. 'The first column of Table I gives the
energy per nucleon of the "0projectile in the
laboratory system and the second column gives
the corresponding single -particle momentum. The
time f*, given in the third column, is the one at

'which the total rms radius 8 with respect to
the c.m. of the complete distribution is at a mi.n-
imum (column 6). This radius decreases slightly
with increasing bombarding energy. It never
comes close to the ground state radius of the A
= 32 system, 8 = 3.15 fm. Another indication of
the near total lack of compression at these ener-
gies is seen from the x-integrated central density
given in column 5. It fluctuates around 0.75 N/
fm~, which is smaller than the starting value of
0.91 N/fni'. Column 4 gives the equivalent change
in the cluste. r separation in going from t = 0 to t
=t*. The average value of these is 9.8 fm and
is close to the actual initial separation of 10 fm.
The greater value at the lower energies indicates
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D. Inelastic scattering angular distributions

The deflection curves obtained earlier can be
used in the classical physics formula"

dg bdb
dg I sin8d8 I

(3 4)

that the orbit deviates from a straight line. The
smaller value at higher energy shows a more di-
rect trajectory indicating some finite size effect.
The relatively constant value of the equivalent
change indicates that the geometry of the trajec-
tories, until the minimum compression point is
reached, scales fairly well with the incoming
velocity. This conclusion was also reached for
head-on collisions" over a still greater range of
energies and with a quite different interaction.

The final time at which the collision is frozen
was chosen somewhat arbitrarily to conserve com-
puting time and to accommodate the available
runs. The integrated central density, the cluster
separation distances, and the scattering angle,
columns 8, 9, and 10, give an idea of how far the
collision has proceeded by that time. Most of the
thermalization takes place during a time interval
centered around t*. Thus the internal rms radius
of a cluster given in column 11 should be reliable.
The initial value was 2.50 fm. The increase is
mainly due to the thermal energy given in column
13. There is an increase of about 0.5 fm for each
50 MeV of thermal excitation. One can obtain an
estimate for the total internal energy of the frag-
ments by subtracting the kinetic energy of relative
motion E«, (column 12) from the initial Coulomb
subtracted collective energy (8 E/A, —9.2 MeV).
This is the Q value of the reaction and ranges
from 16 MeV at low energy to about 194 MeV at
high energy. The last column gives the final col-
lective energy E„»(t&). This value includes the
relative motion kinetic energy of column 12. E„,
-E„„is the total internal collective energy and

varies from 7 to 36 MeV. Some of this energy is
internal rotational energy but most of it is octu-
pole and higher multipole vibrational energy. The
thermal energy column 13 is unfortunately some-
what unreliable due to the difficulty of estimating
the ground state energy for the instantaneous den-
sity configuration at t= t&. This ground state en-
ergy at fixed density could 'be obtained from the
Kohn variational principle, but our present im-
plementation of it was an iterative procedure
which was too time consuming'4 to be practical.

As in the case of head-on collisions, the behav-
ior of the collision after the minimum radius time
does not scale with the incoming velocity. At the
higher energies, the trajectory straightens as
expected while at low. energies orbiting appears to
take place.

appropriate for the classical way in which the
TDHF method treats the orbits of the clusters.
The curve for db/d8 can be obtained from the de-
flection function d8/dl and the Etl. (3.3). The de-
flection functions given in Figs. 4 and 5 are in the
c.m. system so that a c.m. differential cross sec-
tion would be obtained if we used these curves di-
rectly. However, by using the curve for 8, and the
classical conversion from c.m. angles to labora-
tory angles, it is easy to obtain the laboratory de-
flection function 8,~(l„,). The impact parameter
5 remains the same and Etl. (3.4) can now be used
by taking 8 to be the laboratory angle. The kin-
ematic equations then limit 8,~ to be less than
about 35 because of the large energy loss and the
fact that the heavy fragment is the projectile. 'The

resulting curve for do/dQ has several branches
which are shown in Fig. 8. The branch labeled
(l) in the figure corresponds to the region from
the grazing angle to 8= 0, e.g. , l values from

CS
~++ ~

f4~ 12C

45

a

6 S ~6 &6 26 ZS 36 3S 46
Scattering angia 8 (gag) {iab)

FIG. 8. Predicted classical direct inelastic scatter-
ing cross section of N(E&~ —-112 Mev) on C in the
TDHF approximation vs laboratory angle 8&~. The
branch marked (1) represents positive angle scattering
up to the grazing angle. The branch marked {2) repre-
sents negative small angle scattering. This branch
folds back and forth several. times at lower values be-
cause of the kinematics of a heavy projectile undergo-
ing large energy losses. The branch marked {v) repre-
sents small negative angle vibrational scattering. The
'triangles are data points taken at ORNL at E&~( N)
=108 MeV. The data are summed over inelastic ener-
gies and final charge values of the outgoing heavy frag-
ment (see Ref. 28).
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24.5 to 275 in Fig. 4. The singularities in the var-
ious branches at 8,-=0 come from the 1/sin8
term. The other singularities occur whenever
d8„b/db has a zero. The second branch, marked
(2) in the figure, has mainly a 1/sin8 dependence.
The kinks in that branch come mainly from the
irregularities in interpolating the calculated
points in Figs. 4 and 5. 'The last branch, marked
(v) in Fig. 8, represents vibrational instability
scattering. Since the deflection function is nearly
linear vs f for small f, the 1/sin8 singularity in
that branch is canceled and vibrational instability
scattering is nearly isotropic. The triangles
shown in Fig. 4 represents data obtained" at Dak
Ridge National Laboratory for the direct inelastic
scattering of 108 Me& "N ions on "C. This cross
section- is the sum over all reaction products with
energy less than the elastic peak and greater than
about one-. half the elastic energy, The data have
also been summed over the S values 6, 7, 8, 9 of
the reaction products. The main. characteristic
of these data is a nearly constant exponential de-
cay with increasing laboratory angle characteris-
tic of reactions with lighter projectiles. ' " The
theory curve is seen to resemble this exponential
curve only vaguely.

A second, and perhaps more important, discrep-
ancy between theory and experiment is the obser-
vation that if we sum over all branches and inte-
grate over sin&de the resulting theoretical direct
inelastic cross section is too high, at about 1500
mb, compared to the corresponding experimental
one (-650 mb). The total experimental fusion
cross section at this energy'" is 890+100 mb,
for a total experimental reaction cross section of
about 1540 mb. Thus, the present calculation
errs, in that it has no fusion region and too much
direct inelastic scattering, but it predicts a rea-
sonable value for the total reaction cross section.
The lack of fusion in the present calculation can be
understood in the light of recent results" using
a self-consistent initial state and a finite-range
two-body component on the interaction. Here we
have used a z'ero-range interaction and a non-self-
consistent harmonic oscillator initial state. These
two changes appear to have a substantial influence
on the behavior of the fusion window vs energy.
Thus, for i60+x80 at 6.46 MeV, Flocard et ak.
find a fusion cross section of 840 mb correspond-
ing to complete fusion between the l values of 13
and 278. 'The differential cross section for "O
+' P is shown in Fig. 9 and is similar to the one
shown in Fig. 8 for "N+ "C.

IV. DISCUSSION

We have presented in this paper a calculation of
the direct inelastic scattering of "N by "C at

16p+I6o

40

8
'0

5 10 'l5 29 25 30 35 40
Scattering angles {leg) {lab)

FIG. 9. Similar to Fig. 8 except for 0+ ' 0 at E&~('60)
=128 MOV.

112 Mey and "O by "O at 128 Me&. We have also
explored the energy dependence ef the "Q+ "P
reaction at an impact parameter of 4 fm. We have
used the TDHF formalism to obtain the deflection
function as a function of incident (total) angular
momentum. A brief derivation of the equations
of the TDHF method was given in order to bring
out the three main approximations made: (i) ne-
glect of two-body correlations. (ii) simplification
of the interaction, and (iii) a filling approximation
for the density which reduces to a single slater
determinant for closed-shell nuclei. We have also
used harmonic oscillator initial states. As a re-
sult of the zero-range simplified interaction and
the use of harmonic oscillator states, the fusion
cross section predicted by TDHF is zero. Thus,
all the incident flux is concentrated in the direct
inelastic channels so that when we compare the
predicted cross section for these channels with
data at 108 MeV for "N+ "C, we find an integrated
theoretical cross section which is too large by
nearly a factor of 2 and a theoretical angular dis-
tribution which only poorly resembles the observ-
ed exponential drop with laboratory scattering
angle. The introduction of an I dependent fusion
window would allow us to reproduce the observed
fusion cross section and would lower the predicted
inelastic cross section, as discussed in Ref. 27.
This last reference also gives results for finite
rpnge forces.

There are other corrections besides those due
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to fusion which should be applied. They are quan-
tum mechanical in nature and result from time-
energy and angle-angular momentum uncertain-
ties. The comparison with experiment also re-
quires that one do an evaporation calculation on
the fragments emerging from the reaction. These
calculations go far beyond the 'TDHF method and
will be reported elsewhere. ' The complete justi-
fication for the quantal corrections is expected to
come from more basic reaction theory. " How-
ever, a phenomenological formulation of the cor-
rections used in Refs. 27 and 28 has been given"
and does appear to predict final results for Z dis-
tribution, energy, and angular distributions in the

reaction "N(112 MeV)+ "C which are in good
agreement with experiment. Thus it seems that one
needs self-consistent initial states and finite range
forces in the pure TDHF portion of the calculation
in order to reproduce fusion cross sections,
while one has to go considerably beyond TDHF
to compare angular, energy, and charge distribu-
tions with experiment.
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