PHYSICAL REVIEW C

Communications

The Communications section is for brief reports on completed research. A Communication may be no longer than the equivalent of 2800 words, i.e., the length to which a Physical Review Letter is limited. (See the editorial in the 21 December 1970 issue of Physical Review Letters.) Manuscripts intended for this section must be accompanied by a brief abstract for information retrieval purposes and a keyword abstract.

¹⁸⁵Re/¹⁸⁷Re quadrupole moment ratio

S. L. Segel

Department of Physics, Queen's University, Kingston, Ontario, Canada K7L 3N6 (Received 7 April 1978)

In a "high-resolution" nuclear quadrupole experiment designed to detect nuclear hexadecapole interactions in solids, a series of ¹⁸⁵Re/¹⁸⁷Re quadrupole moment ratios were also determined. The compounds included NH₄ReO₄, ND₄ReO₄, and KReO₄ at a variety of temperatures. The weighted mean of our result is Q(185)/Q(187) = 1.056709(17) where the error indicated is the standard error.

[Quadrupole moment ratio ¹⁸⁵Re, ¹⁸⁷Re.]

In a recent "high-resolution" nuclear quadrupole resonance experiment¹ designed to detect possible nuclear hexadecapole interactions in solids, we were able to measure the quadrupole moment ratio of ¹⁸⁵Re to ¹⁸⁷Re. In Table I we list the rhenium

quadrupole frequencies appropriate to the compound, isotope, and temperature of measurement. The spectrometer used was a frequency swept crossed coil spectrometer²; an uncalibrated copper-Constantan thermocouple was used to measure

TABLE I. Rhenium quadrupole frequencies for the two isotopes in various compounds at indicated temperatures. The frequency errors indicated are two standard deviations and the frequency ratio errors are the root mean square errors. ν_2 is the $\frac{5}{2} \leftrightarrow \frac{3}{2}$ transition; ν_1 is the $\frac{3}{2} \leftrightarrow \frac{1}{2}$ transition.

Compound NH4ReO4	T (K .)	Transition and frequency (MHz)		Ratio
		¹⁸⁵ Re (ν ₂)	29.7117(12)	1.056 64 (6)
		¹⁸⁷ Re	28.1190(12)	1.00001(0)
		185 Re	14.8611(32)	1.056 86 (32)
		(<i>v</i> ₁) ¹⁸⁷ Re	14.0616(32)	
$\mathrm{ND}_4\mathrm{ReO}_4$	77	¹⁸⁵ Re	30.258 5(8)	1.056 77(5)
		(<i>v</i> ₂) ¹⁸⁷ Re	28.6330(8)	
		185 Re (ν_1) 187 Re	15.1302(20)	1.05669(20)
			14.318 5(20)	
$\mathrm{NH}_4\mathrm{ReO}_4$	292.47	$(\nu_2)^{185}$ Re $(\nu_2)^{187}$ Re	35.0791(12)	1.056 71(5)
			33.196 6 (12)	
	000.40	¹⁸⁵ Re	17.5400(32)	1.056 69(19)
	292.60	(<i>v</i> ₁) ¹⁸⁷ Re	16.5990(32)	
KReO4	296. 88	185 Re $^{(\nu_1)}$ 187 Re	28.345 72(40)	1.056 706 (21
			26.82461(40)	

18 2430

© 1978 The American Physical Society

the temperature which was kept constant to 50 mK. Centering errors due to large line widths dominated all other systematic and measuring errors. The error indicated for the frequency measurement is two standard deviations. The error indicated for the frequency ratio is the root mean square error.

It seems reasonable to assume that the ¹⁸⁵Re/ ¹⁸⁷Re frequency ratios are proportional to the quadrupole moment ratio. Pyykko³ has already indicated that in inorganic salts, any pseudoquadrupole interactions should be negligible. Assuming that this is correct we obtain a value of the weighted mean for Q(185)/Q(187) = 1.056709(17) where the error indicated is the standard error. This value agrees with the previously measured⁴ value but is at least one order of magnitude more precise.

This work was supported by the National Research Council of Canada.

¹S. L. Segel, J. Chem. Phys. <u>69</u>, 2434 (1978).

²D. R. Torgeson, Rev. Sci. Instrum. 38, 612 (1967).

³P. Pyykko and J. Linderberg, Chem. Phys. Lett. 5,

34 (1970).

⁴S. L. Segel and R. G. Barnes, Phys. Rev. <u>107</u>, 638 (1957).