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A study is made in ' O' and infinite nuclear matter of the effects of mesonic and isobar degrees of freedom
and the effect of the eikonal form factor in the meson-nucleon vertex of the nucleon-nucleon interaction.
Three main effects are seen: First, the mesonic degrees of freedom are found to play a significant role by
introducing additional density dependence, which results in a large improvement of the radius with a small
change in the energy for '°0. Second, when the isobar and mesonic degrees of freedom are combined,
repulsion is obtained in 'O with a corresponding increase of the radius. These results are relatively
insensitive to the replacement of part of the pionic form factors by the p meson in the transition potentials to
intermediate states with A resonances. Third, the use of the eikonal form factor, instead of
phenomenological ones of the dipole type, results in additional attraction. This effect persists when the
eikonal form factor is used in a potential that includes mesonic degrees of freedom.

NUCLEAR STRUCTURE Brueckner-Hartree-Fock in 10, nuclear matter,
mesonic degrees of freedom, one-boson-exchange potential with intermediate
isobars.

I. INTRODUCTION

It is now generally accepted that the nucleon-
nucleon (NN) interaction is mediated by the ex-
change of various mesons (see, e.g., Brown and
Jackson'). However, this fact implies that the
standard microscopic procedures for determining
the ground state properties of the nuclear many-
body system are inconsistent. They start from
a phenomenological NN potential that is fitted to
the two-nucleon scattering data which is then used
directly in a Brueckner (for infinite nuclear mat-
ter) or Brueckner-Hartree-Fock (for finite nu-
clei) calculation. By considering a Hilbert space
that is composed solely of many nucleon states,
the effect of virtual mesons, which couple strongly
to the nucleons, has been ignored. In other words,
the fact that the nucleon should “feel” the mean
field produced by the other nucleons during the
meson exchange is not considered.

Several theories have been proposed®-® which
will account for these extra mesonic degrees of
freedom (MDF) and their effects are significant.®”
In particular, a density dependence is introduced
in the interaction, which leads to different satura-
tion properties in both finite nuclei and infinite
nuclear matter than those obtained from standard
calculations. This density dependence causes
significant changes in this relation in '°0, but not
in nuclear matter which is at a higher density.

Another important dynamical feature of the NN
interaction is the possible excitation of the nu-

cleon, i.e., the isobar degrees of freedom (IDF).
The A resonance [in particular, the A(1236)] can
be excited through a meson exchange and then
deexcited through a second exchange. Such a pro-
cess would replace part of the phenomenological
¢ meson included in one-boson-exchange (OBE)
models of the NN interaction. Since this excitation
is different in the many-body system because of
Pauli and dispersion effects, this will also intro-
duce an important density dependence in the in-
teraction which has been studied in the many-body
system in Refs. 8-11.

A third feature of the NN interaction that has
received attention recently' '*'® is the replace-
ment of the widely used phenomenological form
factors of the dipole type by the eikonal approxi-
mation which in free scattering approximates
multiple neutral vector meson exchange. This
choice depends on s, the square of the invariant
energy in the center-of-mass system, and its
value is ambiguous in the many-body system. If
the view is adopted that the change in the form
factor when going from the two-nucleon to the
many-body system is kept to a minimum by
choosing s as the square of one-half the average
kinetic energy, then in the study of the many-body
system'®!5 this replacement is found to yield ad-
ditional binding energy. This is important in view
of the repulsion introduced by the isobar degrees
of freedom.

In this paper, a study in 0 and nuclear matter
is made of the interplay of the effects seen pre-
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viously®? from the inclusion of MDF with those
from the inclusion of the IDF or of the eikonal
form factor. Three different potentials are con-
sidered, the first combines the MDF and the
eikonal form factor. The other two combine the
MDF and IDF, one including the pion only and the
second the pion and p meson in the transition po-
tentials for the A resonance. Some additional
effects in the many-body system may be expected
when the p meson is included. In all the calcula-
tions made for '°0 in this work, the local density
approximation used previously™'® is replaced by
a direct solution of the Brueckner-Hartree-Fock
equations. Details concerning these potentials
and their construction are discussed in Sec. T A.
In Sec. II B, the methods used to solve the many-
body problem in nuclear matter and %0 are dis-
cussed. .The results of these calculations and a
' comparison with previous work is made in Sec.
I, while some conclusions are presented in Sec.
1v.

II. FORMALISM

In this section, the basic ideas involved in the
construction of: the potentials used to obtain the
results given in Sec. III are presented. In addi-
tion, the techniques used to determine the ground
state properties of °0 and nuclear matter are
discussed with particular emphasis on the im-
proved technique used for *°0.

A. Two nucleon system.

In this work, calculations using three new nu-
cleon-nucleon (NN) potentials are presented, each
of which reproduces the NN-scattering and the
two-body bound-state data. All three of these po-
tentials have an energy dependence resulting from
the explicit inclusion of mesonic degrees of free-
dom' (MDF). One of them is solely a one-boson-
exchange potential (OBEP), while the other two
also include explicitly the isobar degrees of free-
dom (IDF).

The NN-scattering data are obtained for these
potentials from a scattering equation of the Lipp-
mann-Schwinger type

T(Z):Veff(z)+VBfr(z)—é—f—H—- (), @.1)

where z is the starting energy, P is the principal
value, and H, is the kinetic energy operator. The
differences between these three potentials lie in
the different definitions of V.

The OBEP is constructed from a field theoretical
Hamiltonian using noncovariant perturbation the-
ory keeping only OBE diagrams. This yields V
of the form (see Refs. 5 and 15 for details)

+ 1
v -H,
where W is the field theoretical interaction of the
nucleons with the mesons (scalar, pseudoscalar,
and vector mesons are considered). Here A, is
the single-particle Hamiltonian, which is just
the kinetic energy operator for the NN scattering
considered here. These matrix elements of Vg
can be obtained from the usual OBEP expressions
[Egs. (2.11)-(2.15) of Ref. 16] by making the sub-
stitutions®®

w

ab> (2.2)

linked »

(a'b V. (2)] ab) = <a’b’

2 2
2

-8 M .
&~ @y E,E. (and all other coupling

constants as well), (2.3)

1 1
(Ea_Ea’)z"(q"ql)z—“fz wh(z_Eq_Eq’_wk),

with w,=[(g - ¢')* +12]/2. Here p is the mass of
the exchanged meson, M is the nucleon mass, and
E, is the energy of a nucleon with ¢ the momentum
in the center-of-mass system.

The OBEP considered here differs from pre-
vious work® "% because of the use of the eikonal
form factor''? instead of the more phenomeno-
logical ones of the dipole form. In this way, a
certain infinite class of higher-order irreducible
diagrams are summed approximately. Then
Ve (2) = Vo (2)F, where the form factor is given by

F=exp(2i{[x (1) =x(1®)] +[x@) -x(4M?*=s - p*]}) ,

) 2M* - x
lx(x)=-2wmf_—x)]—l/—z

x 2 ‘ )
Xarctan (m) , O0<x<4M (2.4)

2oy

g 2M
= =2 [ = A

- 12 Y2
Xln[—(—————-‘mzz) +(1——4;[2) ], x<0.

Here s, £, and u are the Mandelstam variables
and y is treated as a parameter. In effect, this
OBEP [referred to as MDFPE (mesonic degrees
of freedom potential with eikonal form factor) is
constructed using a combination of the approaches
of Refs. 13 and 15.

The values of the parameters used in MDFPE
are shown in Table I. They yield a good fit to the
empirical Livermore analysis'” of the NN phase
shifts as can be seen in Figs. 1 and 2 for the 'S,
and 3§, partial waves. The resulting low-energy
scattering and deuteron data are shown in Table
II.

For the potentials which explicitly include the
IDF, the form of Vg used in Eq. (2.1) is somewhat
different than that given in Eq. (2.2). Instead, V
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TABLE I. Parametrization of the potential MDFPE (mesonic
degrees of freedom potential with eikonal form factor). Here
values for the coupling constants g2 and f/g, the meson mass u
and the parameter in the eikonal form factor v are given for
each meson considered.

g’ flg u v
n 1.0105 0 548.5 1.0
T 14.0 0 138.0 1.0
o 7.5354 0 564.7 1.0
) 0.0852 0 960.0 1.0
w 9.6266 0 782.8 1.0
o 0.4738 6.3193 711.0 1.0

now consists of three parts and is given by*®

Vesil2) = Vopg(2) + Vy a(2) _z—-%— Vyal?)

+V aal@) T Vanla) (2.5)

It should be noted here that A, includes the A-N
mass difference when the A resonance is con-
sidered explicitly. Vg(2) is just the interaction
representing OBE [given by Eq. (2.2)], while
Vya(2) and Va(2) are transition potentials that
represent the interaction in the NN~ NA and NN

- AA channels, respectively. As in previous work
that has included the A resonance,® the AA vertex,
which is poorly known, has been neglected. Equa-
tion (2.5) is an extension of the theory given by
Schiitte® in that now the class of diagrams con-
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FIG. 1. NN nucleon-bar 150 phase shifts as a function
of the laboratory energy. The error bars are taken from
the energy-independent analysis of Ref. 17. Here
MDFPE, MDFPA1, and MDFPA2 are represented by a
full, a dashed, and a dot-dashed line and they are mes-
onic degrees of freedom potentials with eikonal form
factor, with A (r) and with A(mp), respectively.
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FIG. 2. NN nucleon-bar 35, phase shifts as a function
of the laboratory energy. The notation is the same as
in Fig. 1.

sidered in the calculation of many-body processes
includes all the linked second-order diagrams as
before, plus part of the linked fourth-order
graphs, as shown in Fig. 3.

In the second potential considered here, only
7 exchange is included in the transition potentials,
as in Ref. 9. The energy dependence in Eq. (2.5)
can be introduced into the equation of Ref. 9 as in
Eq. (2.3) with the additional prescription that in

VNA

1 l( 1
(@=q'P+p® 2 \ wp(E,+E  +w, - 2)

1
* Wi(E +EX +wy ~ z)) (2.6)

and in Vpu
1 1
(@=q'V+17 B +E} +wy—2)’

(2.7)

where E} is the kinetic energy of the A resonance
with momentum ¢. In contrast to the MDFPE dis-
cussed above, this second potential [referred to
as MDFPAL (mesonic degrees of freedom potential
with A(7)] does not use the eikonal form factor,
rather it follows Ref. 15, i.e., Vo= VoppFone
with ‘

A2 —-p?)2
Fope= ( —’-————) for scalar and

2 - AZ
Ay pseudoscalar mesons,
A22 _“2)(Al2 — “2)2
= for vector mesons
(Azz — A2 A12 - AZ b

(2.8)

where A?=(E,~E_,)? - (¢ -¢q')?. Similarly,
Viacas) ™ VuacaayFa with
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TABLE II. Low-energy scattering and deuteron data. Results are shown for the three potentials MDFPE,
MDFP Al, and MDFP A2 which are mesonic degrees of freedom potentials with eikonal form factor,
A(mr) and A(mp), respectively. Here E, Q, and P, are the binding energy, the quadrupole moment, and the
D-state probability of the deuteron, respectively. Also, a; and a, are the singlet and triplet scattering
lengths while 7 and 7, are the singlet and triplet effective ranges, respectively.

Experiment MDFPE MDEFP Al MDFP A2
E (MeV) 2.224 62 + 0.000 06 2.2244 22245 2.2249
Q (fm?) 0.2875 +0.0020 0.270 0.267 0.280
Pp (%) 5 +2 3.1 4.2 4.5

a, (fm) -23715  £0.015 -23.72 -23.77 -23.70

7, (fm) 273 £0.03 2.66 271 274

a, (fm) 5423 £0.005 5.41 5.38 5.40

7, (fm) 1748 £0.014 1.74 1.69 1.72

A p ) (2.9)

Fas (AZ +(g-q')
The parameters used in MDFPA1 are shown in
Table III. A reasonable fit to the phase shifts is
obtained, especially at lower energies as seen
in Figs. 1 and 2, while the low-scattering and
deuteron data are shown in Table II.

The third potential used in this work differs from
MDFPAL1 in that p exchange is also included in the
transition potentials. The form of Vy, and Vi,
for this potential (referred to as MDFPA2 [ meson-

~
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[ T

FIG. 3. The second- and fourth-order terms consid-
ered in the definition of V¢ in Eq. (2.5). Here a solid,
a double solid, and a dotted line represent a nucleon, a
A resonance, and a meson, respectively. Not shown
are the exchange graphs and the corresponding set of
graphs with the single intermediate A resonance on the
first line.

ic degrees of freedom with A(mp)]) is given in Ref.
18. A second minor difference between these two
potentials is that now A, =A, in Eq. (2.8), i.e.,

2 2\2
Fopg = (H for scalar and

pseudoscalar mesons,

(Az'“z (2.10)

3
W) for vector mesons

instead of the form in Eq. (2.8).

In both MDFPA1l and MDFPA2 about 20-25% of
the intermediate range attraction arises from
fourth-order processes [i.e., the second and third
terms in Eq. (2.5)]. However, due to the damping

. effects resulting from the NAp vertex, a more
reasonable value for the cutoff parameters in the
transition potentials is possible for MDFPA2, as
seen in Table IV. In essence, part of the cutoff
effect of the pion form factor in the transition po-

TABLE III. Parametrization of the potential MDFP A1l
[mesonic degrees of freedom potential with A(w)]. The nota-
tion is the same as in Table I except that a distinction must be
made between parameters for Vogg and for Vy, and V, 4,
referred to as OBE and A, respectively. Here A, and A, are
the cutoff masses in the form factors of Eq. (2.8) for OBE and
Eq. (2.9) for A. The coupling constants in square brackets are
defined by using [A}/(A? - A?)]2in Eq. (2.8) instead of
[(A? - u?)/(A} - A?)]? and are actually used in the
calculations.

g? flg u Ay Ay
OBE:n  9.29[ 8.4136] 0 548.5 2500
r  13.6 [13.5] 0 138.0 2500
o 748[ 6.776] 0O 548.2 2500
) 104[ 0.759] © 960.0 2500 ...
w 24.69[10.0301] O 782.8 1300 10000
p 1.81 [ 0.7794] 3.6495 763.0 1300 10000
¢ 28.11[ 4.1538] 0 1020.0 1300 10 000
A:m 036 0 138.0 800




2420 M. R. ANASTASIO, et al. 18

TABLE IV. Parametrization of the potential MDFP A2
[mesonic degrees of freedom potential with A(mp)]. The nota-
tion is the same as in Table III except the cutoff mass A now
refers to Eq. (2.10) for OBE.

g* flg U A

OBE: 7 49978 0 548.5 2000
b 14.4 0 138.0 2000

o 13.5416 0 599.7 1300

5 0.0718 0 960.0 1300

w 30.012 0 782.8 1650

o 0.4701 6.61 711.0 1650

o 5.3613 0 1020.0 1650

A ow 0.27 0 138.0 1200
o 154 0 711.0 1200

tentials in MDFPAL1 is replaced by the effects
from the NAp vertex in the transition potentials
in MDFPA2.

B. Many-body system

The binding energy of infinite nuclear matter
is given in lowest-order Brueckner theory by

E=Y Gltliy+y 2 (l6@IE),  (241)
i<kp i,j<kp
where ¢ is the kinetic energy operator, kj is the
Fermi momentum, and z is the starting energy
defined as sum of the single-particle energies
z=€;+€;. The G matrix is given by

G(2) =V (2) + Vgl2) ;—E.-
where @ is the Pauli operator for nucleons. The
single-particle energies €; are determined self-
consistently for states below the Fermi surface

by the BBP theorem®®

ei=ti+ D (ijlGle+elij), i<ky  (2.13)
i<kp
and €; =¢; for states above the Fermi surface.
Here ¢; is the kinetic energy of the nucleon. This
method will differ from the usual procedure be-
cause of the form of V 4(z). Here it is given by

Veff(z) = VOBE(Z) ’

= Vope(2) + VNA(Z) E;LH; Vya(2)

+VAA(Z) E-};I:O_ VAA(Z), (2.14)

where the former case holds for MDFPE and the
latter for MDF PA1 and MDFPA2. The mass re-
normalization corrections arising from the in-
clusion of mesonic degrees of freedom have been
neglected.®

G(2), 2.12)

The energy dependence of V,, in Eq. (2.14) is
expected to give a repulsive effect in nuclear mat-
ter.* The size of this effect in MDFPE can be
tested by comparing the results using Eq. (2.14)
(where it should be recalled that z=¢; +¢;) and

V= Vope(ti +1;) . (2.15)
This effect can be tested for potentials with the

A resonance as well by taking V ; as

Veﬂ-(z) =VVOBE(t; +t]-) + V‘NA(ti +t]-)

Q
Z —Ho VNA(tI +tj)

1
+Vaslti+t) o— Vaalty+ ). (2.16)
1]

Note that here V,y; is still energy dependent, but
this is not due to the inclusion of mesonic degrees
of freedom. This additional energy dependence,
along with the inclusion of the Pauli operator @,
is due to the inclusion of the A resonance and its
effect is also repulsive.® Consequently, the two
effects are kept separate. The size of the effects
due to the A resonance can be seen when V; is
given by

1
Vetel2 ) = Vopg(2) + Vy 2(2) ti+t; —H, Vi al2)

+VAA(Z) H- VAA(Z)' (2.17)
0

tivt;-H,
Finally, all the many-body effects can be “turned
off” if Vi is taken as

Veir= Vope(ts +1;) + Vy a(ty +£5)

1
m Vaalti+t,)

+V anlts +¢5) 7~ Vaalts+t;) . (2.18)
o

ti+t; =
In order to obtain the ground state properties
of finite nuclei, the Brueckner-Hartree-Fock
(BHF) equations must be solved [the analogous
equations for the finite nucleus to Egs. (2.11)-
(2.13)] . This involves an additional self-con-
sistency problem not present for the case of nu-
clear matter since the single-particle wave func-
tions are not known. The single-particle potential
h must be determined and the G matrix must be
computed in this basis. In principle, this could
be done by solving Eq. (2.12) repeatedly (for each
HF iteration), but this would be extremely time
consuming computationally. Here a method to
solve the BHF equations is used that is tractable
computationally and avoids the local density type
approximation used in previous work.”%2°
Following the method of Sauer,? a reference
G matrix G is constructed using the Eden-Emery
Pauli operator @;.*> This reference G matrix
is then corrected using an oscillator Pauli oper-
ator @,, defined in terms of harmonic oscillator
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wave functions, where the @, appropriate for °0
is given by

Qolabd) ={

0 foraorbd =031/27 Opg/zy or Opl/z ’
|ab) otherwise. '
(2.19)

Then the oscillator G matrix G, is

G o(2) =Gpg(2) +Gg(2) (Q" z —lHo %

= Qs 2;_:1'}7; QEE)GO(Z) . (2.20)

This equation is solved using matrix inversion
including single-particle states up to 2n+1=9
(n=0,1,...). Finally, the self-consistent G ma-
trix would be obtained by correcting for the dif-
ference between the self-consistent @ and @, with
an equation similar to Eq. (2.20). If this equation
is iterated then

6(2)=Gla)+64(2) (@527 @

(2.21)

The convergence of this series has been
checked®?* and found to be very rapid, especially
for '°0. Consequently, only the first term in Eq.
(2.21) is retained here, which should be sufficient
since relative effects are the main concern here.
For the rearrangement terms in which the de-
pendence on the density plays the important role,
the first two terms are included [see Eq. (2.23])).

So far, the single-particle operator has not been
defined. For the solution of the G matrix equa-
tion, this must be specified only for the particle
states. Here it is taken as a pure kinetic energy
plus a constant shift. However, because the po-
tentials considered here are all energy dependent
then the hole state energies must also be specified
to define A, in Eqs. (2.2) and (2.5). In order to
solve Eq. (2.20), the single-particle energies are
parametrized as

= B/2M-C, Ek>kgp,
RTYR2/2M* ~A -C, k<kp. (2.22)

Of course, M* and A must be adjusted to repro-
duce the self-consistent energies after the HF
iterations have been performed. Fortunately,
the final results are not very sensitive to their
values.’

In addition to the usual BHF choice for the self-
consistent single-particle potential, two rear-
rangement terms are considered as well., The in-

clusion of these additional terms amounts to the
Landau definition®s of the single-particle potential
as the functional derivative of the energy with
respect to the density, if the energy is considered
in the HF approximation. Then

n= a—%”;}mﬂﬂu <%‘Zi Z—:>+<g—% ZT?>' (2.23)

The consideration of the first term alone will be
referred to as BHF, the first two terms as re-

normalized BHF (RBHF) and all three terms as

density dependent HF (DHF).

II. RESULTS

The purpose of this work is to test the effects
in the many-body system of different forms of the
NN interaction which all fit the two-nucleon data
reasonably well, allowing a meaningful nuclear

structure calculation. Traditionally, such a cal-

culation would be made in infinite nuclear matter,
instead of in finite nuclei, because of the relative
difficulty of the calculations. However, the stand-
ard Bethe-Brueckner-Goldstone calculations at
nuclear matter density have been questioned re-
cently in light of the results using the Fermi hy-
pernetted-chain method, while this discrepancy

is not so large at lower densities. This suggests
that one of the light nuclei is a more appropriate
system because for its lower density the many-
body calculations are more reliable. For this
reason, %0 will be considered here. Results from
a nuclear matter calculation are also included for
completeness and in the hope that valid statements
can still be made regarding the relative effects
being studied here.

Solving the BHF equations (see Sec. II B) yields
the results shown in Figs. 4-6 and Table V. In
all cases, the intermediate hole state energies are
parametrized using M*/M =0.41 and A =55.8 MeV
in Eq. (2.22), following Ref. 7. Except for the
cases indicated in Fig. 6, a pure kinetic energy
spectrum is assumed for the intermediate par-
ticle energies (i.e., C=0). In Fig. 4, the results
of solving the BHF equations using the methods
of Sec. I B are compared with those using a local
density type approximation for the Pauli operator
as in Refs. 7, 10, and 20. This comparison has
been made for three potentials, two of which do
not include mesonic degrees of freedom
(OBEP12%26 3nd HM2'*1%) and one of which does™!®
[referred to as MDFP (mesonic degrees of free-
dom potential) here]. In the former cases, the
local density approximation for the Pauli operator
underestimates the binding energy while in the
latter case it overestimates the binding energy
and underestimates the radius.
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FIG. 4. The total energy per particle as a function of the charge radius for BHF calculations in 160, The potentials
considered are MDFP, which is a mesonic degrees of freedom potential from Ref. 15, and OBEP1 and HM2, which are
potentials without and with the eikonal form factor from Refs. 26 and 13, respectively. Here a cross refers to calcula-
tions using the local density approximation (Refs. 7, 8, 10, and 20), while a square refers to the method described in
Sec. II B.

This can be understood qualitatively. In a local approximation overestimates the Pauli effect for
density approximation, the Pauli operator @, OBEP1 and HM2, leading to a less attractive G
in the equation for the G matrix, is approximated matrix and less binding energy, while the approxi-
by its value in nuclear matter with a larger &gz mation underestimates the Pauli effect for MDFP,
for OBEP1 and HM2 (which yield a smaller radius) leading to a more attractive G matrix and a more
than for MDFP (which yields a larger radius). binding energy.

Now it seems that the Pauli operator for the finite One final comment should be made at this point
nucleus 0 is less sensitive to the density of the regarding the improved calculations with MDFP.
nucleus than @ . Consequently, the local density Using the old method, Faessler et al.” noted that
T T T T T T
27 -
o o
MDFPA?2 MDFPDA !
— 26 MDFP o
£
—
w 25 - ' .
& .
& DMDFPE
S 24+ .
o x
X
EP
23 OBEP HM 2 B
| ! ' 1 1 | 1 1
-2 - -4 -5 -6 -7 -8

ENERGY/NUCLEON [MeV]

FIG. 5. The total energy per particle as a function of the charge radius for BHF calculations in 160, The BHF method
described in Sec. I B is used for MDFP, MDFPE, MDFP Al, and MDFP A2 [all mesonic degrees of freedom potentials
without eikonal form factor, with eikonal form factor, with A(r) and with A (mp) respectively] and for OBEP1 (Ref. 26)
and HM2 (Ref. 15) (without and with eikonal form factor, respectively).
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FIG. 6. The total energy per particle as a function of the charge radius for BHF, RBHF, and DHF calculations in
6o represented by a cross, dot, and square, respectively. The solid line refers to MDFP (mesonic degrees of free-
dom potential) with C=0, the dashed line to MDFPE (mesonic degrees of freedom potential with eikonal form factor)

with C =0 and the dot-dashed line to MDFPE with C=8.

a comparison of the binding energy and radius
obtained with MDFP and with OBEP1 showed a
change that is not expected using standard Brueck-
ner methods and phase-shift equivalent NN poten-
tials. They found that the radius using MDFP
increases substantially along with a small in-
crease in the binding energy over the results using
OBEP1. In Fig. 4 it can be seen that with a more
accurate solution of the BHF equations, these re-
sults change somewhat, now the large increase
in radius when the mesonic effects are included is
accompanied by a decrease in the binding energy.
However, this decrease is still much smaller than
would be expected with phase-shift equivalent po-
tentials. This point will be discussed again below.
In Fig. 5, the results in '°O for the new potentials
described in Sec. II A are shown. It should be
noted at this point that there is some ambiguity
in the use of the eikonal form factor in finite nu-
clei. This form factor is derived for two-nucleon
scattering by summing a certain infinite class of
higher-order diagrams, but it is not clear what
form this sum will take in a many-body system.
However, if it is considered as a phenomenological
form (as for the dipole form factor), then the
eikonal form factor should be the same in the
many-body system as it is in the two-body sys-
tem. The problem then arises as to how to define
the Mandelstam variable s in Eq. (2.4). For scat-
tering it is the square of the energy in the c.m.
system of the initial state. But in finite nuclei, the
kinetic energy of a single particle is not a good
quantum number. In this work, one-half of the

oscillator kinetic energy per particle is used for
the relative single-particle energy. If instead of
the oscillator approximation one-half the kinetic
energy per particle resulting from the self-con-
sistent wave function is used, this energy changes
from 7.88 to 8.33 MeV for MDFPE (mesonic de-
grees of freedom potential with eikonal form fac-
tor). Then the binding energy per particle in-
creases by about 1% or about 0.06 MeV. However,
if double the oscillator value is used, then the
binding energy per particle increases by about

2 MeV. On the other hand, if self-consistent sin-
gle-particle energies are used instead of kinetic
energies then the binding energy per particle de-
creases by about 6 MeV with a large increase in
the radius as well.  All of this indicates that while
the eikonal form factor is an important form for
NN scattering, its application to finite nuclei is
rather ambiguous.

From Fig. 5, it can be seen that the use of an
eikonal form factor as in MDFPE instead of a
dipole form factor as in MDFP results in sub-
stantially more binding energy. Thus this feature,
seen previously by Holinde ef al.,'° persists when
the mesonic effects are also included. But the
results from both MDFP and MDFPE relative to
those from OBEP1 and HM2, respectively, are
different from the results expected for phase-shift
equivalent potentials. As discussed in Ref. 7 re-~
garding MDFP, this effect arises from the starting
energy dependence of MDFP because of the ex~
plicit inclusion of mesonic degrees of freedom.
The self-consistent single-particle energies must
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be used in MDFP and MDFPE, which makes the
energy denominator in Eq. (2.2) larger in mag-
nitude thereby reducing the magnitude of V (2),
especially for deeply bound states. This will lead
to a less attractive G matrix and, consequently,
the absolute value of the single-particle energies
decreases. On the other hand, this starting-ener-
gy dependence introduces an additional density
dependence in the G matrix. This leads to a larger
radius and smaller kinetic energy, which partly
compensates the decrease in potential energy. A
small decrease in the binding energy and large
increase in radius results as seen in Fig. 5.

However, the increase in radius due to the in-
clusion of mesonic degrees of freedom (MDF), as
seen in Fig. 5, is smaller when HM2 and MDFPE
(both OBE potentials using the eikonal form fac-
tor) are compared. There is a larger change in
binding energy and smaller change in radius than
in the MDFP vs OBEP1 case. This can be under-
stood from the increased attraction and more
deeply bound single-particle states (see Table V)
when the eikonal instead of the dipole form factor
is used. This means that the G matrix (and con-
sequently the potential) is evaluated at a more
negative starting energy for which the derivative
8G/9z is smaller. Consequently, the density de-
pendence of the effective interaction via a change
of the starting energy is reduced. Therefore the
additional influence of the density dependence in-
troduced by the inclusion of MDF, which is also a
density dependence due to a change of the starting
energy, is reduced. This then leads to a smaller
change in the radius and kinetic energy. However,
since the propagator in V,(z) gets smaller with
the use of more bound single-particle energies
from MDFPE, the potential energy will be re-
duced in magnitude even more than above resulting
in a larger change in binding energy. The change
of the propagator is important in second order in
V. only. However, the second order terms are
less important relative to the Born term, as re-
flected in the smaller D-state probability in the
deuteron, for MDFPE thereby partly reducing
the effects from the propagator.

The repulsion due to the explicit inclusion of
isobar degrees of freedom (IDF) shown by Holinde
et al.'° also persists when the mesonic effects are
included, as seen from the results of MDFPAl
[mesonic degrees of freedom potential with A(m)]
and MDFPA2 [mesonic degrees of freedom po-
tential with A(mp)] in Fig. 5. It is interesting to
note that the shift in the binding energy relative to
MDFP seen here (1.1 and 1.4 MeV) is similar to
the corresponding shift of HM2 + A(450) relative to
HM2 (0.9 MeV '°) and that in all three potentials
MDFPA1, MDFPA2, and HM2 +A(450), approxi-

TABLE V. The self-consistent BHF calculations in 16O for
various NN potentials. The potentials considered [MDFP
(Ref. 15) MDFPE, MDFP A1, and MDFP A2) are all mesonic
degrees of freedom potentials without eikonal form factor,
with eikonal form factor, with A(w), and with A(mp),
respectively. The single-particle energies € are given for proton
states along with the total energy per nucleon (£/4) and the
radius of the charge distribution (R ) corrected for center-of-
mass motion.

MDFP MDFP Al MDFP A2

MDFPE

e m0s,, (MeV) -47.79 -3611 -32.86  -31.74

e m0p,,, MeV) -2170 -1635 -14.56  -13.64

e m0py, (MeV) -1890 -1441  -1272  -11.60

E/A (MeV) -575 =369  -2.76 -2.28

‘R, (fm) 245 263 267 2.67

mately 20-25% of the 0 meson has been replaced
by the isobar.

As noted in Sec. I A, the addition of the Np ver-
tex in MDFPA2 allows a weaker cutoff in the form
factor for the transition potentials than in
MDFPAL. In effect, part of the pion form factor,
which was chosen to be independent of the many-
body dynamics, in MDFPA1 has been replaced by
the NAp vertex, which introduces many-body ef-
fects because of the p-meson propagator. Some
differences between these two potentials might

- then be expected in the results for the many-body

system, although these differences should be small
due to the short range of the NAp vertex. From
Fig. 5, MDFPA2 yields a smaller radius relative
to MDFPAL1 than would be expected from comparing
saturation properties of phase shift equivalent
pbtentials. However, this difference is small
enough that it could be attributed to uncertainties
in the calculations, in particular, differences in
the fits of these two potentials to the NN data, so
that no definite conclusion can be drawn here
regarding the effects of the NAp vertex.

" In Fig. 6, results for MDFP and MDFPE are
shown for different choices of the HF procedure
used, i.e., HBF, RBHF, and DHF as discussed

in Sec. II B. It should be noted that the change
from BHF to RBHF is larger for MDFP than for.
MDFPE. Since the additional term entering RBHF
is proportional to 8G/8z [see Eq. (2.23)] this sup-
ports the view taken above that there is less sen-
sitivity to the density dependence arising from the
starting energy for MDFPE.

The results for a second value of the shift pa-
rameter C in the particle spectrum [see Eq. (2.22)
are also given for MDFPE. The choice of C =8
MeV originates from the work of Zabolitzky,>” who
showed for the Reid soft-core potential that the



18 MESONIC AND ISOBAR DEGREES OF FREEDOM... 2425

-20 .

-25 . \\
\ /
\,

-30.

ENERGY/NUCLEON (MeV)

FERMI MOMENTUM (fm™)

FIG. 7. The total energy per particle as a function of
the Fermi momentum % for nuclear matter. The full,
dashed and dot-dashed lines represent the results for
MDFPE, MDFP Al, and MDFP A2 [mesonic degrees of
freedom potentials with eikonal form factor, with A(m)
and with A(mp), respectively], The saturation points for
OBEP1 (Ref. 26), MDFP (Ref. 6), and HM2 (Ref. 14)
represented by a cross, a circle, and a square, re-
spectively, are given as well.

effects of three-body clusters can be minimized
for finite nuclei like *°O for this choice. It is made
here as well so that comparison with previous
work can be made, but rigorously it can no longer
be justified in terms of minimizing higher-order
terms since the propagator in the potential as well
as in the G matrix is dependent on C.

The trends seen here for these additional calcu-
lations, where a second choice of C and different
choices of the HF procedure are used, are the
same as in previous work again confirming the
independence of these effects on the inclusion of
MDF. These same additional calculations have
been made for MDFPA1 and MDFPA2, although
they are not shown, and quite similar results are
obtained.

The results for the calculations in infinite nu-
clear matter are shown in Fig. 7 and Tables VI-
VIII. As mentioned at the beginning of this sec-
tion, the standard Brueckner calculations at nu-
clear matter densities have been questioned. Con-
sequently, relative effects only will be discussed
here. A comparison of similar potentials with and
without mesonic degrees of freedom, e.g., MDFPE
vs HM2 or MDFP vs OBEP1, shows different ef-
fects in nuclear matter (see Fig. 7) than in '°0.

T T T
0.5 1.0 1.5 2.0 2.5

Here MDFPE (or MDFP) yields more binding en-
ergy at a larger density than HM2 (or OBEP1),
while in '®0 it yields less binding energy at a
smaller density. As discussed previously, the
MDF introduce density dependence into the poten-
tial and that this causes the effects seen in '°0.
Since nuclear matter is a denser system than 'O,
differences in this effect can be expected. In ad-
dition, in '®0 changes in the binding energy can
show up through a change in the self-consistent
wave functions and a resulting change in the kinetic
energy, which is not possible in nuclear matter.
There the changes in binding energy seem to be
related to differing D-state probabilities of the
deuteron for the potentials.®

Also in Fig. 7, it can be seen that the use of the
eikonal instead of the dipole form factor (MDFPE
vs MDFP) yields substantially more binding ener-
gy, as found previously,® even when the mesonic
effects are included. Again this is related to the
D-state probabilities (3.2% vs 4.4%, respectively).
Also the inclusion of IDF (MDFPA1 or MDF PA2
vs MDFP) results in repulsion, as previously,®
when mesonic effects are included as well. More
repulsion, almost 2 MeV at saturation, is obtained
when the p meson is included in the transition
potentials. This could-be due to effects arising
from the replacement of part of the pion form fac-
tor by the NAp vertex, as mentioned regarding
180. However, this result could be explained if a
larger amount of the intermediate range attraction
has been replaced by the IDF when the p meson
is included. The precise amount is difficult to de-
termine from the phase shifts since the effects
are nonlinear, but some statements regarding
this are made below. The fits to the NN data are
not equivalent either which also causes some un-
certainty so that the NAp effects cannot be iso-
lated.

An explicit way of seeing the effects in the many-
body system from the IDF would be to “turn off”
these effects. As discussed in Sec. II B, this can
be done by using Eq. (2.17) instead of Eq. (2.14)
to define V. The results are shown in Tables
VI and VII, in the second column labeled “no ef-
fects in A,” for each partial wave with kz=1.4
fm-!. This is done using the same self-consistent
single-particle potential obtained from the “full”
interaction (these results are shown in the first
column) so that the results can be compared. That
the inclusion of the isobars should lead to a re-
pulsive effect is clear since the second and third
terms in Eq. (2.14) are attractive but many-body
effects reduce it: Both the presence of the Pauli
operator and the dispersion effect from the use of
the self-consistent single-particle energies to de-
fine the starting energy reduce the magnitude of
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TABLE VI. Partial wave contribution in MeV to the binding energy of nuclear matter for MDFP A1
[mesonic degrees of freedom potential with A(m)] at kz = 1.4 fm™, with and without many-body effects.
Here the results of the self-consistent calculation defining V¢, by Eq. (2.14) are shown in the first column.
“No A effects,” “no mesonic effects,” and “‘no many-body effects” refer to a non-self-consistent calcula-
tion defining V¢ by Eq. (2.17), Eq. (2.16), and Eq. (2.18), respectively.

MDFP Al MDFP Al MDFP Al
No A effects No mesonic effects No many-body effects

MDFP Al Eq.(2.17) Eq. (2.16) Eq. (2.18)
1S -14.02 -15.35 -16.51 -20.32
3P, -3.76 -3.84 -3.88 -4.00
p, 3.29 3.27 3.27 3.22
3p, 12.76 12.19 11.82 10.89
38, -20.39 -20.83 -23.02 -24.59
D, 1.55 1.55 1.55 1.55
'D, -2.53 -2.66 -2.73 -2.91
3D, -4.32 -4.32 -4.34 -4.35
3p, -6.24 -6.76 -7.18 -8.30
3F, -0.60 -0.50 -0.47 -0.39
J=3 2.99 2.97 293 2.89
J=4 -1.70 -1.71 -1.72 -1.74
5<J<12 0.49 0.49 0.49 049
Total potential £ -32.48 -35.49 -39.80 -47.56
Kinetic £ 24.02 24.02 24.02 24.02
E -847 -11.48 -15.78 -23.54
Saturation £ -8.6
Saturation k (fm™) 1.34

TABLE VII. Partial wave contribution in MeV to the binding energy of nuclear matter for MDFP A2
[mesonic degrees of freedom potential with A(mp)] at k, = 1.4 fm™, with and without many-body effects.
The same notation as in Table VI is used.

MDFP A2 MDFP A2 MDFP A2
No A effects No mesonic effects No many-body effects

MDFP A2 Eq. (2.17) Eq. (2.16) Eq. (2.18)
1S, -13.48 -15.09 -16.28 -20.44
3P, -3.72 -3.84 -3.89 -4.06
ip, 3.80 3.79 3.79 3.75
3p, 12.77 12.29 12.00 11.25
38, -19.09 -19.85 -22.10 -24.51
3D, 1.73 1.73 1.72 1.72
D, -2.59 -2.71 -2.76 -2.91
3D, -4.51 -4.51 -4.54 -4.54
3p, -6.40 -6.97 -7.30 -8.34
3F, -0.62 -0.52 -0.50 -0.43
J=3 321 3.19 3.15 3.13
J=4 -1.78 -1.78 -1.79 -1.80
5<J< 12 0.53 0.53 0.53 0.52
Total potential E -30.15 -33.76 -37.98 -46.66
Kinetic £ 24.02 24.02 24.02 24.02
E -6.14 -9.74 -13.96 -22.64
Saturation E -6.8
Saturation k (fm™) 1.25
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TABLE VIII. Partial wave contributions in MeV to the binding energy of nuclear matter for MDFP and
MDFPE (mesonic degrees of freedom potentials without and with eikonal form factor, respectively) at
kp=14 fm™, with and without many-body effects. The same notation as in Table VI is used except that
“no mesonic effects” now refers to the use of Eq. (2.19) to define Vm. The results for MDFP are taken

from Ref. 6.

MDFPE MDFP

No mesonic effects No mesonic effects
MDFPE Eq. (2.15) MDFP Eq. (2.15)

1So -17.72 -18.45 -17.15 -17.56
3P, -3.79 -3.83 -3.79 -3.80
lp, 4.30 4.29 3.31 3.33
3p, 11.17 11.10 11.34 11.25
38, -25.64 -27.00 -20.36 -22.36
3D, 1.49 1.48 1.38 1.38
'D, -2.60 -2.61 -2.77 -2.77
3D, -4.50 -4.51 -4.46 -4.48
3p, -7.85 -7.95 -8.33 -8.45
3F, -0.63 -0.63 -0.63 -0.63
J=3 3.07 3.05 2.79 2.77
J=4 -1.73 -1.73 -1.76 -1.76
5<J< 12 0.51 0.51 0.49 0.48
Total potential £ -43.92 -46.28 -39.96 -42.60
Kinetic £ 24.02 24.02 24.02 24.02
E -19.90 -22.26 -15.93 -18.59
Saturation E -27.6 -19.5
Saturation k (fm™) 1.87 1.75

the propagator in these terms. The difference
between the first and second columns of the tables
should be a direct measure of the amount of inter-
mediate range attraction replaced by the isobars
and the results indicate this is somewhat larger
for MDFPA2 than for MDFPAL,

In a similar way, the many-body effects from
the mesonic degrees of freedom can be excluded
by using Eq. (2.15) or (2.16) instead of Eq. (2.14)
to define V.. These effects are repulsive again
since self-consistent energies are used to eval-
uate the starting energy in the propagators of Vg,
Vua, and Vya. For MDFPE (see Table VIII) the
resulting change in the binding energy is about
2.4 MeV vs 2.7 MeV for MDFP. Since MDFPE
is more deeply bound, the difference between kin-
etic and self-consistent energies will be larger
which would imply a larger effect for MDF PE.
The fact that the opposite behavior is seen could
be a result of the suppression of the terms second
order in Vg relative to the Born term for MDF PE
as reflected in the D-state probability for the deu-
teron since as mentioned previously, these changes
in the propagator are important only in second

order terms.

For MDFPA1l and MDFPA2 the exclusion of
many-body effects from MDF results in a change
of about 7.8 and 7.3 MeV, respectively (see the
third column of Tables VI and VII), which is much
larger than in MDFPE. This is due to the fact
that in the former cases there are two propagators
for the isobar terms, one for each transition po-
tential, which enhances the effect. Again, larger
changes are seen when the p meson is included
indicating more intermediate range attraction has
been replaced by the isobars.

Finally, when no many-body effects of any kind
are included by using Eq. (2.18) to define V., the
results in the last column are obtained. Here
MDFPAL1 is found to be more bound than MDFPA2
and this is partly due to different fits to the NN
scattering data, particularly in the J=1 P states.
There is also an effect from the different values
of M* and A used. If the values used for MDFPA2
are also used in MDFPAL1 then -23.96 MeV (in-
stead of —23.54 MeV) is obtained. In addition,
both these results lie well below that for MDFP.
This is partially due to the fact that the former
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were fitted to the np and the latter to the pp scat-
tering length. Also, since the former are less
bound, the propagator in the G matrix equation
will be larger in magnitude yielding more binding
energy.

IV. CONCLUSIONS

In this work, a stud;;’ has been made in the nu-
clear many-body system of the effects of mesonic
and isobar degrees of freedom (MDF and IDF) and
the effects of the eikonal form factor in the meson-
nucleon vertex. The results can be summarized
as follows: First, the MDF play a singificant

‘role in the many-body system. In %O, the con-
sideration of these degrees of freedom yields a
large increase in the radius, to a value near the
experimental results. However, there is only a
small decrease in binding energy, leading to dif-
ferent saturation properties for potentials including
MDF than obtained from phase shift equivalent
static potentials. This is due to the additional den-
sity dependence that is introduced through the
starting energy dependence of the potential and
leads to a different self-consistent wave function.
These effects persist when the BHF equations are
solved directly, avoiding the local density approxi-
mation.

The second main result observed in this work
concerns the simultaneous inclusion of MDF and
IDF. In %0, the addition of the latter yields ad-
ditional repulsion. This is accompanied by an in-
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crease in the radius as would be expected for
phase shift equivalent potentials with MDF. The
main effect of the p meson is to replace part of
the pionic form factor in the transition potentials.
The results in %0 are approximately the same
using the m and p mesons in the transition poten-
tials rather than using 7 mesons alone with a dif-
ferent cutoff in the form factor. The results ob-
tained in nuclear matter are similar to those in
160'

Finally, when the dipole type form factors for
the meson-nucleon vertices are replaced by eiko-
nal form factors, the binding energy in *°O in-
creases. When MDF are considered for potentials
with the eikonal form factor, the same effects can
be seen as discussed above regarding this addi-
tional degree of freedom. However, the increase
in radius is now smaller than above because the
density dependence from the MDF is less impor-
tant for this larger binding energy. In nuclear
matter, the attraction is also increased, but this
is just a reflection of the smaller D-state pro-
bability of the deuteron for this potential.

From these results it is clear that modifications
of the NN interaction due to the nuclear medium
play a decisive role, even in light nuclei. Thus,
an understanding even of such gross features as
binding energies and radii seems to require a
very detailed model of the interaction. It would
be interesting to see the effects when all fourth-
order terms, e.g., crossed-box diagrams, in the
interaction have been included.

*Also: Institut fiir Theoretische Kernphysik der Uni-
versitit Bonn, D-5300 Bonn, West Germany.
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