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We apply the hyperspherical method to the N-body Schrodinger equation and solve for the bound states of
Li with the center of mass motion correctly treated. It is shown how to construct antisymmetric

hyperharmonic polynomials of definite J, J„T, and T, from Slater determinants with shell model
coordinates. A set of coupled one dimensional differential equations are obtained and solved in K .

approximation. A super-soft- core potential that provides a good fit to the two-nucleon scattering phase shifts
is given a slight state dependence and is used for the two-nucleon potential. The proper handling of the
potential energy matrix element with the center of mass motion excluded is detailed. A prescription for
obtaining effective interactions for shell model calculations is presented. The difference in the potential

energy matrix element of four S&&2 nucleons in a He nucleus or in a Li nucleus is shown not to be zero. A
J, T = 1, 1 state of Li is calculated to have a binding energy of 15.245 MeV. This. state may resemble a
nuclear molecule of 'H and He.

NUCLEAR STRUCTURE. Many-body problem, hyperspherical method, 8Li

bound states.

I. INTRODUCTION

We study bound state solutions of the N-body nu-
cleus using the hypersphere' or K harmonic meth-
od. This method properly treats the nonrelativistic
kinetic energy, and excludes the center of mass
motion, which is important for small nuclei. The
method has been applied' ' to the three-nucleon
bound state problem using realistic two-nucleon
potentials. The method has also been applied to
N=4problems, ' the e particle, and the bound four
neutron case, and the 4=0 breathing mode of "Q,
but only in the approximation where E is restricted
to K;„, its minimum value consistent with anti-
symmetrization requirements. The method has
also'' been applied to the ground state of ' Q.
In the 'He or 'He bound state problems, the ex-
tension of the hypersphere method to more corn-
plex nuclei is not fully visible, a,s antisymmetric
wave functions are obtainable from straight for-
ward spin and isospin considerations. In spite of
the problems encountered in explaining the states
of these 'He and 4He isotopes, we characterize
their spectra as simple, compared to the spectra
of larger, more complex nuclei. For instance,
the three-nucleon problem has only one bound
state available for study. No evidence' for a bound
excited sta,te of 'He exists. Excited states exist,
with an excitation energy greater or equal to
20.1 MeV, but these states are unstable to proton
emission. 'He and 'Li are the next simplest nu-
clei, as no stable N= 5 nuclei exist.

'Li has five excited states' with an excitation
energy less than 6 MeV. The highest of these
states undergoes decay into an a and a deuteron.

The first four excited states have measurable
electromagnetic decay widths. ' The electromag-
netic form factors for the ground and first excited
state are also known. ' Thus it is appropriate to
treat these states a.s stable to nucleon decay, and
to apply bound state boundary conditions in seeking
their wave functions.

Thus 'Li offers a complex spectra, characteris-
tic of the rest of the (larger) nuclei. We view 'Li
as the simplest of the complex nuclei. Further-
more, spin and isospin considerations alone will
not provide an antisymmetric wave function for
this nucleus, as can be done for smaller nuclei.
Antisymmetry of the wave function is guaranteed
in 'Li by use of a linear combination of Slater
determinants a,s is done for la, rger nuclei. The
similarities and differences of the Slater deter-
minants used in the shell model and in the K
harmonic method are spelled out in the next sec-
tion.

The success of the shell model is principally
for large nuclei and for states of low excitation.
Qne possible rea, son for this-limitation of the shell
model is the introduction of spurious states by
improper treatment of the center of mass motion.
The convergence of the E harmonic method in
+mj approximation can be correlated" to the ex-
istence of shell-like properties for larger nuclei.
The rate of convergence of the method is unknown
for Li, but it may well be faster than in the three-
nucleon problem. '"Therefore, we report here
on applying the E harmonic method to 'Li as a
six-body problem, using realistic two-nucleon
potentials in the K;„approximation.

A three-body model where Li is assumed to
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consist of an n, a neutron, and a proton has been
used previously to study the bound states by Wack-
man and Austern, "Barsella, "Shah and Mitra, "
Rai et al. , ' and by Fang and Tomusiak. " These
calculations employed either a variational treat-
ment or the Faddeev three-body formalism and
have shown reasonable agreement with experi-
mental binding energies. Other calculations by
Dawson and Walecka, "Hauge and Maripuu, " and
by Lodhi, "have employed the shell model to
study 'Li. These calculations have employed a
system' containing a doubly magic core plus tmo
nucleons. A Bethe-Goldstone equation was solved"
for the tmo external nucleons, and using the
Brueckner-Gammel-Thaler potential, and binding
energies and matrix elements were then found.

- Later work" used the effective Sussex interaction
resulting in reasonable predictions of energy
levels, or addressed" the question of the effect
of two-nucleon correlations in the shell model
wave function.

The shell model is the most microscopic of the
nuclear models used to date for 'Li. In this model
the nucleus is considered as a system of nucleons
moving in a common potential well arising from
their mutual interactions. ' We reject this inde-
pendent particle shell model for 6Li and instead
use an opposite idea to describe the structure of
the nucleus. We regard 'Li as a strongly coupled
nucleus in which the constituent motion of all the
nucleons jointly plays an important part. There-
fore, we will use the hyperspherical harmonics
in a E,.„expansion of the bound state wave function
of 'Li. Fang and Tomusiak" have previously used
this expansion in a three-body model of Li. The
difference here is that we treat 'Li as three pro-
tons and three neutrons not as an n, a neutron,
and a proton. This work follows more along the
lines of Simonov, ' Baz and Zhukov, "Fabre de la
Ripelle, "and Sadovoi. " We work directly with a
two-nucleon potential and, therefore, cannot
handle the infinities associated with hard core
potentials. We will use and modify the "dTS"
super-soft-core potentials of Cote, de Tourreil,
Rouben, and Sprung" as'they provide an excellent
fit to the scattering phase shifts and have a short
range core repulsion that is finite, not infinite.

The hyperspherical expansion reduces the
Schrodinger equation to a set of possib1y coupled
differential equations to be solved for each set
of quantum numbers: spin, isospin, and parity.
We will work with jj coupled'4 states, as opposed
to L, S coupled states. In K;„, the possible con-
figurations are

(&) ~i/2'&3/2'
named 3, for 2j of each nucleon in the open shell,

~l /2 3/2 1/2

named 2, and
(C) I /2 I/2

named 1.
The 1', T =0 ground state of 'Li then requires the.
solution of a coupled set of equations involving all
three configurations. The 3', T = 0 first excited
state of 'Li, with excitation energy 2.185 MeV,
involves solving an uncoupled equation using only
the 3 configuration. The O', T =1 second ex-
cited state involves solving a coupled set of equa-
tions using configurations 3 and 1 only. We con-
sistently neglect the Coulomb potential throughout.
Including the Coulomb potential would require
four configurations to describe the 1' ground state
wave function, rather than three, as a I', y, proton
would be distinct from a &, ~, neutron, and a I', ~,
proton would be distinct from a I.', y, neutron.
Then the 2 configuration mould be replaced by two
configurations, a 2Pn and a 2nP configuration.

The description of the hyperspherical or K har-
monic approach to solving the six-body problem
is arranged according to the following format. In
Sec. II the method mill be introduced, the geometry
developed, and a may to construct the antisym-
metric harmonic polynomials in K - from com-
binations of Slater determinants will be given.
This is followed by a detailed analysis of the R
wave function for 'Li. The details of evaluating
the potential energy matrix element in the K har-
monic expansion will then be presented. Numerical
solution of the coupled differential equations one
has to solve for the binding energy will be given
in Sec. III. The required matrix elements of the
two-nucleon potential used, and the solution to
the differential equations obtained from a modified
potential are described in Sec. IV. We conclude
with a discussion of core polarization and of ef-
fective interactions in Sec. V, followed by a brief
summary.

H. DETAILS OF THE E HARMONIC METHOD

A. Coordinates and geometric considerations

In the K harmonics method, one assumes the
angular quantum numbers for the nucleons, just
as in the shell model. However, one does not
assume a radial wave function for each nucleon.
Instead, one obtains a possibly coupled set of dif-
ferential equations to be solved for the hyper-
radial part of the wave function and for the total
binding energy of the nucleus. The intrinsic
hyperspherical coordinates consist of a hyper-
radius and a set of 3N-4 angular coordinates,
where N is the number of nucleons. These angular
coordinates, in addition to the spin and isospin
coordinates, we denote by Q. The hyper-radius
is defined in terms of single particle coordinates
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p'= Q(r;-H)',

where R is the center of mass coordinate. We
expand the many-body wave function g, in terms
of harmonic polynomials Fk, as

p = r; —R
f=1

N-1

E-1

(r; —r, )N
1

&3N-4)/3 M 4a yaa ~

P k~
(2)

rf2- NR2.

1R=-
N 1

&&
=

ll (l 1)]il3l rs —lr,+
~& l+~

for l =1, 2. . . (N-1).

(4)

We note here the relation between the volume ele-
ments:

=N &dHII dt,

=N~~2dR dr (N ).
The set of 3(N- 1) components of the vectors $,
can be regarded as components of a single vector
in a 3(N-1) dimensional space spanned by the
vectors $,. With the aid of Eq. (4), we obtain for
the square of the hyper-radius, the relations

Here a denotes the other quantum numbers needed
to specify the state, for instance, the orbital
quantum numbers. The Fk, are orthonormalized
and can be expressed in terms of a superposition
of Sister determinants. The power of p in Eq. (2)
is to simplify the coupled set of radial equations
one must solve for the total energy E of the nu-
cleus. The method is based on the nonrelativistic
Schrodinger equation

( v, ,'+ P v„.—a)a(, 2, .. . , (4 =0,
2m f,

(3)

where ~ff is the interaction between the ith and the
jth nucleons. This interaction is assumed to be
the same or nearly the same as that between two
free nonrelativistic scattering nucleons. As
written, Eq. (3) has the kinetic energy of the cen-
ter of mass included. It is important to separate
off the motion of the total center of mass at this
point. To do this, we go over from the coordi-
nates r; to the Jacobi coordinates f, and the co-
ordinate of the center of mass R,

The volume element of this 3(N-1) dimensional
space can be written as

N-1

des(N-1) d~, = p' dpdQ& . (i)
t=1

I

Here Q~ denotes the set of (3N-4) angles defining
the direction of the vector p in the (3N- 3) di-
mensional space. Q„plus the N spin and N iso-
spin coordinates, we collectively denote by Q.
The purpose of these Sacobi coordinates is to
separate out the center of mass motion. In these
Jacobi coordinates, the Laplace operator sepa-
rates as

=V 2+V 2+ +Vr r r2 N
1=&(+ ~ ~a' (8)

where

—V '+V '+ ~ ~ ~ + V
K1 42 ~$ -1

Thus the use of Jacobi coordinates, Eq. (4), allows
the kinetic energy associated with the center of
mass motion to be separated out in the Hamilton-
ian. Using Eq. (8) in Eq. (3), and subtracting out
the center of mass kinetic energy, results in the
N-body Schrodinger equation with the center of
mass motion removed

~ ~ + Z &(n, a( -
@) (' = ((.

2&L fg f
(10)

Here m is the average of the. neutron and proton
masses and not the reduced mass commonly en-
countered in two-body problems. E is the total
energy of the nucleus in the center of mass frame.

is negative if the nucleus is bound. We have
indicated the potential to be a function of space,
spin, and isospin.

Vfe now write 4& as

3N-4 d I,'(np)
dp p dp p

separating the hyperspace Laplacian into its radial
and angular parts. L', the angular part of the
3N-3 dimensional space Laplacian will have
eigenfunctions satisfying
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L2Y„,= —K(K+3N 5—) Y», . (12)

P(p, ~1) = ff».(p) Y».(fl)
a

(13)

The wave function in Eq. (10) depends on the co-
ordinates p, 0, and we therefore expand the wave
function as

The Y~, will be orthonormalized functions. This
separates the hyper-radial from the angular de-
pendence in the wave functions and is analogous
to the partial wave expansion in the two-body case.
Substituting Eq. (13) and Eq. (11) into Eq. (10)
results in equations describing the .hyper-radial
dependence of the wave function

k d 3N- 4 d K(K+3N- 5)
2~ dp p dp p

where

(14)

dQ g~*rai Vj. p, Q Y~
j&j

(15)

%e have written the potential as a function of p, 0 as it is assumed to be spin and isospin dependent. The
radial dependence can be expressed via Eq. (4) in the Jacobi coordinates.

The first derivative term in Eq. (14) can be eliminated by defining

X»a(P)
+»~(p) = (3N-4')/2

p

Therefore, we expand the N-body wave function in the center of mass frame as

(16)

1
4(py ) = (3»/-4)/2 X»a(p)»a( ) &

p ya

and obtain from Eqs. (14) and (16), the set of equations' for X»,(p)

(d' Z( C +1)
~ d, x,.(p)—,x,. +(&»'. &)X».(p) =-- i(/»"» X» a (p),

2m (dp p 4'a'&ka

(2)

(17)

where

2=K+2(N 2) . - (16)

works of Siminov, "Baz and Zhukov, "and Fabre
de la Ripelle. " Suppose we have a homogeneous
polynomial P„, of degree k, which satisfies

These equations are a set of coupled one dimen-
sional equations that are to be solved for the un-
known energy E and for the unknown hyper-radial
functions X„,(p). K is related to the eigenvalue of
the -angular Laplace operator. For ground states
or states of low excitation, hyper-ra. dial functions
with E equal to its minimum value are expected
to be dominant. This is so because of the angular
momentum barrier in Eq. (17) depends on K. This
barrier pushes out hyper-radial functions with
large K, away from the hyperorigin, so that they
do not influence the shape of the minimum K
hyperfunctions significantly. The sum of K in
Eq. (17) is, therefore, truncated to its minimum
value compatible with antisymmetry and angular
momentum requirements. The boundary con-
ditions are that all X»,(p) vanish as p approaches
zero or infinity, for all ka. Thus ea,ch state is
treated a,s a bound stable state that does not de-
cay.

We now turn to the description of the Y»,(0). The
notation in the following is based on the earlier

p Y»,(Q)
Oa (20)

This is so because if I' satisfies Eq. (19), then
from Eqs. (11) and (20), we have

or

d' 3N —4 d L'(Ap)
dp p dp p

K(K- 1)» (3N- 4)K
Aa 2 p ~a

(21)

+ L'('", p) p" Y,.=o.
p

From this we see that Y~, then must satisfy

L'(Qp) Y», =-K(K+3N 5) Y», . - (23)

So if we can satisfy Eq. (19), using Eq. (20), Eq.

&~&na =o.

Then we can equate, subject to a future normaliza-
tion, factor B,
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(23) will be satisfied. Thus a polynomial of degree
k which satisfies Eq. (19), when divided by p', is
an eigenfunction of Eq. (23). Now y», (p) is a com-
pletely symmetric function upon exchange of
nucleon coordinates, as p is a completely sym-
metric function [see Eq. (6)]. Thus, we must
demand that F„and P„be completely antisym-
metric functions, upon the exchange of any pair

of nucleon coordinates. Coordinates here must
include spin and isospin, as well as space co-
ordinates. The shell model (SM) satisfies this
antisymmetry requirement by using a Slater de-
terminant of basis functions Q. These basis func-
tions can be chosen as eigenfunctions of an ap-
propriate one-body Hamiltonian. We write the
shell model solution as

(24)

The normalization and volume of integration are
indicated by

SMd~3~ = 1. 25

Here the integration over spin and isospin coordi-
nates is understood. Note all N coordinates
ry rp rN are treated as independent variables
in the shell model.

ln the K harmonics method, we wish to construct
a completely antisymmetric eigenfunction (poly-
nomial) using the 3N- 3 p, Q~ coordinates, plus
the 2N spin-isospin coordinates. The K harmonics
solution to the N-body problem has three major
parts. The first is the construction of the K har-
monic wave function of proper antisymmetry, the
Y», needed in Eq. (13). The second problem is the
evaluation of the potential energy matrix elements
indicated in Eq. (15) which are needed to solve for
the unknown hyper-radial functions. The third
part is the numerical solution of the truncated
coupled set of equations for the hyper-radial de-
pendence, Eq. (14). We now undertake the reso-
lution of these problems.

We want to construct an antisymmetric poly-
nomial upon exchange of any pair of nucleons co-
ordinates. The Jacobi coordinates are incon-
venient for this task because of their complicated
transformation laws under permutations. We,
therefore, tentatively use the coordinates of the
nucleons reckoned from their common center of
mass

p& =r~-R, i=1, 2, . .., N, (26)

where p& are the center of mass nucleon coordi-
nates commonly used in the shell model. They are
not independent, because they satisfy the relation

N

(2V)

The result of permutations on these coordinates
is obvious, but we note the Laplacian does not
separate in these coordinates. We wish to find an
antisymmetric polynomial which satisfies the
equation

A(P(p }=0. (28)

(29)

where

C„,=(- I)"&2[1'(n+1}1'(n+I+»3)] ' '. (30)

Here Y,„(p) is the usual spherical harmonic, n„,
is the spin-isospin wave function for the ith nu-
cleon with spin and isospin projections p. and x.
The exponent n can take on nonnegative interger
values. We will use the lower index ~~ of 4
to denote the set of all five quantum numbers
(n, E, I, p, r). In the following we shall label the
state of a nucleon by these numbers. We now form
an N by N Slater determinant of the basis func-
tions 4

Analogous to the shell model, we construct'the one-
body basis function of one variable p&

P(p» p». . . , p„) = det

4,(1} 4 (2) . 4 (N)

@~(1) 4'~(2) 4'~(A

4 ~(1) 4 (2) C „(1U)
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(34)

On the other hand, the operator 4& is completely
symmetric and, therefore, &&I'~ . is again an
antisymmetric polynomial. Since there is no non-
vanishing antisymmetric polynomial of degree
K;„—2, Eq. (33) must be true.

The polynomials P~ . depend on the coordinates
min

p;; and, therefore, the motion of the center of
mass is excluded from them. This means we must
remember to take into account in Eq. (31) that

p =0. (27)

However, it is easy to prove" for the polynomials

P» (p, ) =P» (p;+8) =P»;„(r;). (35)

If one expands P», (p; +R) in a sum of polynomials
Ill lA

of p; with coefficients depending on powers of R,
the polynomials of p; will be antisymmetric be-
cause of the symmetry of R, see Eq. (4), and they
will have a degree lower than K;„, and all will

This corresponds to the m scheme shell model
wave function. Thd degree of the basis function is
equal to 2n+k. Then the degree of the polynomial
formed: from the determinant is

IC= P (2n, +I,) . (32)
p= j.

We adopt a prescription for selecting the values
of n and l when choosing the ba, sis functions to
form the determinant that agrees exactly with the
prescription for the lowest configuration of the
shell model. Namely, the lowest value of (2n+l}
is used successively until I, p,, and ~ have ex-
hausted all their possible sets of values, then
(2n+I) is increased, etc. The value of K deter-
mined from Eq. (32), when the determinant is
formed following this prescription we call K;„.
The Slater determinant I' formed in this manner
is a homogeneous antisymmetric polynomial of
minimal degree K;„. If the degree K of the
polynomial were any smaller, then two of the
basis functions in the Slater determinant would
be identical, and the Slater determinant would
vanish. Therefore, the X;„degree polynomial
formed must necessarily be harmonic; that is,
it must obey Eq. (19) which we write as

6)P», (p;) =0. (33)

To prove'0 Eq. (33}, we note that P, depends
min

on the p; which can be expressed through the
Jacobi variables via Eq. (4) and (26}; and, there-
fore, the action of the Laplacian && leads to a
lowering of the degree K of the polynomial by two,
that is

vanish, therefore, except the coefficient of R
to the zero power. Hence P, (p;) =P»(p; , +R)
is indeed independent of R. This means we can
us.e, at least in a K;„calculation, Slater deter-
minants where the basis functions are expressed
as functions of r;, as in the shell model, or as
functioris of p;, whichever is more convenient for
calculations. Equation (35) shows that either form
satisfies Eq. (19), and so is a harmonic poly-
nomial. We note that Eq. (15) requires an integral
dQ

p over 3N —4 space angles to evaluate the po-
tential energy matrix elements, rather than an
integration over d7» a,s in the shell model. The
differences in these volumes of integration are
seen by comparing Eq. (5) and (7). How to per-
form the integration for Eq. (15) will be shown
later in this section.

B. Wave functions for Li

We have indicated in Sec. IIA how to construct
polynomials in the ~ scheme that are harmonic
a,nd a.ntisymmetric. We now wish to convert to
the j, jz coupling scheme'4 ' . To do this, instead
of using basis functions indicated in Eq. (29), we
use linea. r combinations of them coupled to a
definite j, jz,

/
(npgp Lpga gpv p) 'L~)

Q@(»l» pp» p)(fp~»2i»lj&i ~&&. (36)
Ogpu p

/

We now denote the state of a nucleon by the set
of quantum numbers

7 ~

&p =(+ps2»g»y2z»i ~z»)~

rather than using the m scheme. We consider the
states of Li to have a, definite tota.l spin J, a,nd a
definite total isospin, T. We can form a K har-
monic wave function with these definite total
J, T values, by constructing linea. r combinations
of the m scheme determinants. We denote such
a, harmonic a,s F~, , where a is the set of all re-
maining quantum numbers cha.racterizing the nu-
clear state. Using a j,j, coupled set of basis
functions, in K;„approximation, there are three
configurations or three sets of quantum numbers
"a." For K;„calculations, all the n values des-
cribing each nucleon are zero. Hence, the n
values are omitted in what follows, as they never
change from zero. The K;„configurations for
'Li are

A (S,g,)»(P, y,)' named 3,
B ( S~,)4(P, ~,P, ~,) named 2,
C (S,g,)4(P, (,)' named 1.

This labeling of the configurations indicates the
usual shell model n, l, j quantum numbers assigned
to each of the six nucleons in 'Li. The j, t, values
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have not been indicated here. Let us label the
associated Slater determinants constructed using
the basis functions, Eq. (36), indicating the j„ t,
values for the unfilled shell nucleons, by the
following:

P 33
" when using the basis functions of set

A,
P3$ "'6 when using the basis functions of set

B, and
P»' "'"when using the basis function of set C.

Here we have explicitly indicated the dependence

of the Slater determinants on the j, and t, values of
the nonclosed-shell nucleons. %'e are now dealing
with basis functions that have a definite j,j„but
the determinant itself does not have a definite
total J; J„T, or T,. This is accomplished by
taking linear combinations of these Slater deter-
minants, with coefficients that are Clebsch-Gordan
coefficients, coupling to definite total J, J„T,
and T,. The ground state of 'Li has J equal to one,
and isospin T equal to zero. Therefore, in X;„
approximation we take the ground state wave func-
tion to be

(p) ( 3 ttt 3 I ( gM)( & t & t l To)~ m pm Stgt6

k+ (3N-g)/2 +x3t (p)(2~6 ~26 l~~) (2ts 2 t, I To)I 3t'
p

+x„(p)(lt,—.'f, l&~&(-.'f,!f, l ~o)I,","'"".
(38)

The summation is over „~„ t„and t,. We
have used Eq. (20) with Eq. (2) andhaveconstructed
a state of definite J, M, T, and T, = 0 from the three
possible sets of Slater determinants. The E~~,
approximation neglects all determinants with higher
values of E than K,„, which is two for 'Li. B
is a normalization constant that will be deter-
mined later, see Eq. (56).

In general not every one of the three sets of
Slater determinants will contribute to a state of
given J, T, depending on the particular value of
J and T. Table I indicates the all.owed states for
'Li in a E,„calculation. A check there indicates
a particular configuration is a nonvanishing part
of the nuclear wave function. For future con-
venience, we define, from Eq. (38),

@pm 5 m 605 t6r,". = g (~~, —,'m, lcm)(-,'f, —,'&,
l ro)

m5m6

for a =33 (39)

for each of the three values of a. We then have
from Eq. (18),
—ft' d' g(L +1)„,x..(p) —,x,)

trix elements for states with a definite J, N, T,
and T„but the other quantum numbers are not
necessarily diagonal. The potential energy ma-
trix element is independent of 34 and T„as we
neglect the Coulomb potential.

C. Evaluation of the potential energy matrix element

The evaluation of the potential energy matrix
element parallels the shell model evaluation but
is different in some details. We can analytically
perform all but one of the integrals indicated in

.Eq. (41) for W,~,", for a local potential that is
every where finite. If the potential has a simple
analytical form, such as a Yukawa or exponential
dependence, then all the integrals can be done
analytically. That is the type of potential we wiG
utilize. Let us consider the integral first evaluated
by Zurkov, according to Baz and Zhukov":

TABLE I. Configurations contributing to possible ~ Li
states.

where

+(w.". -&)x,.=- Z &'.". x.. . (40)
a'wa

&S/2 PB(2 Pi/2

N

W = dQY'*, , g V. (p g)1' (41)

Thus we must evaluate the potential energy ma-
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(o=fn, f, j, m, r]. (53)

The basis functions are also harmonic oscillator
eigenfunctions with a complex (imaginary) argu-
ment. This property will be useful in the final
reduction of the matrix element of the potential
energy.

If the operator Q in Eq. (48) is set to unity, we
obtain for the scalar product of two K harmonics

y+~irl'~rdII=S S i, dsD(S p')

dry~(j)c; (j) I

t ds D(S, p')&...

In these expressions, 5 =S ' ', and R„(x) is a
harmonic oscillator wave function of order n and
argument x. As a result of the transformation
Eq. (49), we have obtained a Sister determinant
constructed from basis functions 4, which are
orthogonal in all five quantum numbers

from the transformations brought about by Eqs.
(49)-(52). Standard techniques allow Eq. (5'I) to
be reduced to two-body integrals in the shell
model. Here we have in addition, the contour
integral ds to be performed. However, the pres-
ence of harmonic oscillator basis functions allows
one to use the Moshinsky bracket transform" to
go from r;, r~ coordinates into relative and two-
body center of mass coordinates r and R~&. The
factor & comes from removing the restriction
i&j in the summations. We evaluate the case
when J, M, T, and T, are identical in both S4
and S4. Then when a =a' =3, we obtain

C

w.". =~ d D(s, p') g(4.P„,l V„l4 P.,-e,c,.)
+2+(c.c., lv„lc e.,-4,c &

(58)

where

=5„.B /[w' 'r(K+3(N- 1)/2)], (54)
If a differs from a' by one single nucleon state,
for example, a=3, a'=2, or if a differs from a'
by two single nucleon states, for example, if
a =3, and a' = 1, then we obtain

(55)

(56)

We now take the operator Q in Eq. (48) to be the
potential energy. Then we have

IV = I'* V (p g)l I"

t »(S, p') (det lc.,(j)]
C

xZ V;(p, I~){detl@,u) l)Z«
P=l

(5I)

This expression is, easily simplified using shell
model techniques. "' It is important to realize
the harmonic oscillator basis functions now appear
in the last of the above equations. They result

The symbol &„ in this formula is equal to zero
when a =go&„&u„.. . , u„],4, M, T, T,$ and a' differ
in at least one value. If the sets a and a' coincide
except for an ~ permutation, then 5„=+1, de-
pending on the parity of the permutation. If
J, M, 'I', or 7.",were not identical in S, and S~,
then the summations over the products of the
Clebsch-Gordan coefficients will vanish. It follows
that the normalization constant B in Eq. (39) for
the E harmonic is equal to

B = s I'(K+3(N- 1)/2).

IV~r —= ds D(S, p')$4S, ~

4

x(c 4 lv„le~4~ -4' ~4~~). (59)

(60)

and an oscillator frequency v given by

v = ()I /m p') [K'+ 3(N —1)/2] . (61)

We do not do the contour integral by the steepest
descent method, see Eq. (I4) below. In general,
what is needed to evaluate Eq. (58) and (59) is

In the above expression, the upper limit of the
summation means to sum over the nucleons in the
closed shells. Normally, the expressions ob-
tained, "when one or two nucleon states differ,
are not the same. However, for 'I i, in K,„, the
difference vanishes for these two cases. The two
nucleon matrix elements depend on the complex
parameter s through the definition of the basis
functions 4 . Therefore, the two nucleon matrix
elements cannot be taken outside the contour in-
tegral ds in Eqs. (58), (59). The sums implicit
in S„S'4 can be done analytically. The final re-
sults appear below in Eqs. ('IV)-(82) for 'Li. As
an approximation, we could perform the contour
integration over ds by the method of steepest
descent. Then we would obtain potential energy
matrix elements identical in form to those found
in the harmonic oscillator shell model, with an
oscillator radius b given by

5 =p[K+3(N-1)/2] ' ',
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/I =&ii-&&IV lou» = "d D(S, p') p &q, m, q,m, (ZM&&q, md', m, I@M&&2.,2Y, I »&&2Y,2Y, I »2
mi m jm~ml
Ti7jTg TL

x &C..I., [ V„(C,C.)
minus the k —l term times (- 1)'+ r+/3'/" ~. (62)

In Eq. (62) we are going over to an antisym-
metrized isospin formalism where we assume the
matrix element of the two nucleon interaction is
independent of M and T,. It does, however, de-
pend on J, T, and the single nucleon quantum
numbers (nlj) for nucleons i, j, k, and l, as in-
dicated on the left-hand side of Eq. (62).

To proceed with the evaluation of A, one de-
couples the orbital angular momentum l, from the
intrinsic spin, also called s, from j, the angular
momentum for each nucleon wave function. As
the radial part of the wave function matches that
of a harmonic oscillator, one can immediately use
the Moshinsky bracket transformation" into rela-
tive and two-body center of mass coordinates,
from r~ and r&.

p3S3/2dS V' (/2S p)B2(Sp2)n
2p 2A+3N-5 3 /2 ~g0

dSS3+" Sp2(~ «)X @43N /2
~C

(66)

where we define

k „=(-1) /ti'(m+1)I'(n-m+1)I'(m+i+2)].

(O'I)

%'e change variables from r to z, where r'
=zp', so that z is dimensionless and ranges from
zero to one. Using Eq. (55) for D, we obtain

nn'

B„=g g„g„.k „k .„
mm'

tr;n, l;ml;& (r/n, l/ml,

&l, ml, l,ml, ~~~, & C."!",„'
XX NLnt,

mML

2; = m +m ' + —,'(l + l ') .

Now the contour integral can be done"" as

S SY y 2K+3N -8-2n

wi g, S" * 3+3"/2 I'+'-@+3(n-2)/2) '

(69)

('lO)

x(r, —r2)r'drD(5', p2)ds. (64)

The finite upper Iimit on dr comes from Eq. (4'1)

where the & function representation was introduced,
requiring the coefficient of s in the exponential to
be positive. The radial factors Hare given by
Eq. (52) in terms of k. Here we express them in

terms of s, in a form convenient for the final in-
tegral evaluation. We have

P (r) g3/4+ S-Sr /2(sy/2r)2n+ l g k (gr2)m-n
m=p

(65)

where

g„=[2 I'(n + I)I'(n + l + 3/2)]' /',

and where we define

(66)

x &lmLMY, ~AX, & )rnlm& (RNLMJ. (63)

One can now do the integral dR» obtaining dirac ~

functions for the center of mass harmonic oscillator
wave function quantum numbers N, I., and ML.
One still has the relative coordinate radial integral
to do. This, when combined with the contour in-
tegral ds, we write as

~p
B„= B„,(r)e„,, (r) V,", "

~c ~p

Therefore the final integral we obtain is of the
form

nn'

g„g„.h „h .„.B2

2N3 "I'(q)

where

x ""/'(1- )' ' V(2' 'ps' ')ds (Vl)
dp

q = k —x.+3(N- 2)/2.

For the Sprung" super-soft-core potential we use,
the potential is a sum of Yukawa-type terms, the
coefficients depending on J, T, l, and l'. The po-
tential is smoothed to a constant value below a
given cutoff radius r,. For this potential the in-
tegral dz can be done analytically, yielding E„
functions" or a sum of incomplete y functions.
The finite upper limit to the above integral is one
of the major differences between the K harmonic
and the shell model evaluation of the potential
energy. For small p, the asymptotic tail of the
potential has no bearing on the value of &„. Only
the potential from r =zero to r =2' 'p contributes
to the potential energy matrix element W(p). Qf
course, as p approaches infinity, all regions of the
two nucleon potential are included in B„.
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The decoupling of intrinsic spin and orbital
angular momentum was necessary to get from Eq.
(62) to (64). One can do a complete reduction of
the resulting sums of Clebsch-Gordan coefficients
into sums of ej and 9j symbols. We obtain fox
Eq. (62)

1) 1+ X'gnlNLC n'l'NL+
(j jjJ ggI)l/2(g gsj

J

I
1 g 1 j. sp2 2 2 2 g g g gI

I,. A. g~

and

I'll +cc+2licc(2 ) +(2 2 ~7 II I2 2

li'2'2 =~cc+ cc(2 )+&cc(2 )

(78)

+22 +CC +~CO(2 ) +(2 2 &T I I l2 2 &» ~

(77)

The factor of 2 is because of the two P, y, nucleons
present in this configuration. . We also hpve

x [1-(-1)N].

Here we define

P= T+S +la +i r + A'
~

(72) For the nondiagonal matrix elements we obtain

(80)

(8 1)

The sum in Eq. (V2} is over X, X', S, 8', J», n,
E, N, I., n', and l'. We also define j=2j+1. The
square brackets denote 9j symbols, and the curly
brackets denote Gj symbols, and B„is the radial
part of the matrix element, given by Eqs.
(66)-(V1). The potential is diagonal in spin, so
the sum over S' is redundant, as S' always equals
S for the nonvanishing part of the potential.

We now do the sums implicit in S„S4.appearing
in Eqs. (58) and (59) and express the results in
terms of

~ =&ljZTll lkur&, (V4)

&cc=2 Q Q &T&~i&Z'l~l~i&T& (75)

given by Eq. (62). Here i, j, k, and I refer to only
the n~E~ and j~ quantum numbers for the nucleon i,
etc. The mutual interaction of a group of nucleons,
all in closed shells, can then be written

(82)

These matrix elements are all plotted versus p
for the dv."S Sprung potential in Fig. 1, for the
ground state, of 'Li. We note the diagonal values
of 8'„. are in general much larger than the non-
diagonal matrix elements. A plot of ~ versus p,
the hyper-radius, tends to reflect the value of

',.V 12 vs 'vy2 namely, a sh or t range repulsion, and
a long range attraction.

III. NUMERICAL SOLUTION OF THE COUPLED RADIAL
EQUATIONS

In K;„approximation we have to solve Eq. (40)
which we write as

The factor & comes from independently summing
over S and j rather than the restricted summation
i&j. The limit c~n refers to summing only over
the closed shell quantum numbers (n, l, j). Thus,
no m sum is done here; it has already been done.
For 'Li, the only closed shell is the S,~, shell.
The interaction of a single nucleon with closed
shell of other nucleons can be written as

200—

v(Mev)

100—

csgn

&co(i)=~ Z Z»&~i&Tl~lli&»
gT

(76}
0—

In terms of these quantities, we now express the
potential energy matrix element for all sets of a'
and &. All these contribute to the J'= j., T=O
ground state of 6Li. Whether or not a particular
configuration contributes to a given state has been
indicated in Table I. We have

-100—

]

r(fm)

FIG. 1. The dT S central potential (Ref. 23) vs ~&2 for
the S= 0, T = 1 two-nucleon channel. 2
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ox.(()=-, —,—:-*x'.".(p)) x.(()
d' g(g+ 1) 2m zr
dp p

=BX.+ @2
W'~ X"(&)

2m JT
a

where we have defined

B =2m(Z(/rP.

(83)

(84)

F'(p) = (p/2)'F'(2) .

We normalize for all a, to the condition

F.'(p)dp =1.
0

We now obtain our first approximation to X, by
setting approximately

(90)

(91)

The boundary conditions to be applied are that
X(p) goes to 0, as p approaches 0 or ~. We
assume the W„(p) to be known functions of p.

We solve these coupled differential equations
by a finite difference iterative technique. We first
solve a set of uncoupled equations for E' and
EO .

X'(&)= &:(P)= &.F'(P)

where the C, are unknown coefficients we now

determine. We first calculate

E,'DR.'d p =B' F.'R,'d p

(92)

DF.'(p) =™&.'F.'(p), (85)
(93)

for each value of a using a finite difference ap-
proximation for d2F'/dp2 where the finite dif-
ference is 0.5 fm. Reducing this value by a factor
of 2 made no detectable difference in the final
calculated energy. The applied boundary conditions
are that

where

a' &a
(94)

F.'(p)~.". (P)F.'(p)d p,
0

(95)

where D is given by Eq. (83). Then we can write

Fo(p)-hz i,E,'p2 for large P, (86)
and also

and that E;-zero, for p equal to two differences
(1 fm) less than the value for which the angular
momentum -barrier exceeds the potential energy
matrix element, that is, when

h'Z (2+ 1)
2m p2 (87)

For small p, the angular momentum barrier over-
whelms the potential energy matrix element. One

loses about two digits of accuracy in the calcu-
lation of E for every finite difference step one
takes as you approach the origin, in the classically
forbidden region. The exact wave function must
be very small throughout the forbidden region
because 2 = 8, and the potentials used become
repulsive for small hyper-radial values. The
calculated binding energies were insensitive to
applying the boundary condition

g (gO)2 ] (96)

DE, = E,E.+~,, 8'„,A.. .
2m 11 ~ 2 J'T 0 (97)

where asymptotically, for large p, we take

Equations (94) and (96) provide a+ 1 equations for
the a+ 1 unknowns, C,' and B', the next estimate
for the binding energy. There are a solutions to
these equations and a corresponding set of coef-
ficients C,' for each eigenenergy. We take the
lowest eigerienergy and its corresponding set of
coefficients in general when solving for the ground
state, and we now call this set C,'. This process
is iterated, now using I",' that asymptotically go
as hz(iBop) for large p until convergence is
achieved, usually only two iterations. Then we
use the coefficients C,' to now solve the equation

F(0) =0, (88) F,'(p) = C,'F,'(p) . (98)

Fo(1 5) —0 (89)

as.a condition to determine the binding energies
E,'. Then for p less than 2 fm we set

at the origin, or one, two, or three steps inside
the classically forbidden region. Thus they were
applied at two steps inside the classically for-
bidden region. 'Ihat is, rather than Eq. (88), we
require r [F,'(p)]'d p = N, ',

0
(99)

and note that X, is not necessarily equal to unity.
We now use the positive square root of Eq. (99)
and take as our next approximation to X,(p),

These equations we solve (for each a value) for
E,' and for F,' by choosing E,' so that F,' vanishes
at the origin. Now we calculate the normalization
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TABLE II. %ave function normalizations from a state dependent potential.

Binding
calcul ated

Binding
experimental

Strength
factor C3

1 . 1
1 0
2 1
2 0
0 1
3 0
1 ' 0

22.1
29.11
31.41
28.90
38.20
29.05
31.775

15.205 ~

25.30
25.63
26.70
27.44
28.815
31.0

0.928
0.980
0.952
0.979
0.905
0.995
0.990

0.0
0.045

—0.688
0.0
0.827
1
0.623

1
0.743
0.725
1
0.0
0.0
0.507

0.0
0.668
0.0
0.0
0.562
0.0

—0.595

'Determined from 3He and 3H binding energies, neglecting Coulomb effects.

(100)

where the C,' are unknown constants. They must
satisfy

Equations (93)-(96) are reevaluated using 8,' and
I",' rather than B,' and I",. As a result new values
of C,' and 8' are obtained. Thus the process
iterates. " The process converges to a solution
in about three iterations for the potentials we
utilize. Convergence is obtained in the sense
that 8' '=8' to four significant digits, and that
C,"'=C,' to about three digits.

IV. RESULTS: EIGENFUNCTIONS, EIGENVALUES,
AND STATE DEPENDENT POTENTIALS

Using the JTS potential, "the spectrum of seven
'Li bound states calculated in K;„approximation
is shown in Table II. In contrast there are six
states seen experimentally. In general the T = 1
states are too tightly bound when compared to ex-
periment. The ground state calculated is a JT
=0, 1 state, whereas experimentally this state is
the second excited state of 'Li. If a slight state
dependence to the potential is introduced via an
arbitrary strength parameter into the calculated
potential energy matrix elements, &&e, then one
can obtain agreement with the experimental spec-
trum. If the potential energy matrix elements are

0—

'+DO'

-40— 40—

-80 -80-

-120— -120—

I

P

I

12

FIG. 2. The hyperspherical potential energy matrix
elements W„ for the ground state of Li using AS soft
core potential, in MeV vs the hyperspherical radius p in
fm. The values of a,a' are labeled on each curve.

-160 "

120 4 8
P

FIG. 3. The hyperspherical yotential energy matrix
elements 8&3 for the J,T= 3, 0 states of Li using a
dTS soft core potential.
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0—

W

-40— -40—

-80—

-120— -120—

-160
0 12

-160-

12

FIG. 4. The hyperspherical potential energy matrix
elements W„ for the J, T=O, 1 state of Li. The val-
ues of a, a' are labeled on each curve.

FIG. 6. The hyperspherical potential energy matrix
element 8&& for the J, T = 2, 0 state of Li using dTS
soft core potential.

'+aa'
0—

40 Waa'

-80

-80—

-120—

-120—

-160—
I

12
I

4
I

12

FIG. 5. The hyperspherical potential energy matrix
element N~ ~ for the J, T = 2, i state of ~Li using a dTS
soft core potential. The values of a, a' are labeled on
each curve.

FIG. 7. The hyperspherical potential energy matrix
element 8,', foi the excited J, T = 1, 0 state of 8I.i using
a dTS soft core potential. The values of a,a' are labeled
on each curve.
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W(p)

20

W

-40—

0- 21
01—10
0

-80—

-120—

He4

-20
124 8

p

FIG . 1S. The two-nucleon (&3y2), (&3y2) hyper-
spherical matrix element of the two-nucleon interaction
for various labeled J, T states vs the hyper-radius p.
The bare Sussex values are indicated by a short line on
the right side.

-160
0

I

8
I

12

binding energy and for the wave functions.
The dTS super-soft-core potential" is shown

in Fig. 1 for the S =0, T = 1 state vs r]2 . The
super-soft-core terminology means the potential
is finite, even at the origin, in contrast to a soft

20-

W

0
10

01

FIG. 16. The (SLgq) configuration matrix element of
the potential energy for the AS potential, for 4He, and
for GLi, versus the hyper-radius p.

core, which goes as a Yukawa potential at the
origin, or in contrast to a hard core potential,
which goes to infinity at some nonzero radius.

The matrix elements for the unmodified dTS
potential are shown in Figs. 2-8. The calculated
eigenfunctions for the corresponding states are
shown in Figs. 9-15. The coefficients C, are
listed in Table II.

We now compare the potential energy matrix
elements of the original PTS potential. The matrix
elements become positive at about 2 fm and for
smaller hyper-radial values as well. The
minimum in the diagonal potential energy matrix
elements vs the hyper-radius, is at about 4 fm.
The matrix element for large hyper-radius goes
approximately as p '.

The nondiagonal matrix elements are small
compared to the diagonal matrix elements for the
dTS potential for alI the states of 'Li. This small
relative size aids the convergence of the solution
to the coupled equations. Since the nondiagonal

20

-20

10 01

01 10

120 4 8
P

FIG. 17. The (P3y2), (P&y2) hyperspherical matrix
element of the two nucleon interaction for the various
labeled J, T states vs the hyper-radius p. The dTS po-
tential is used for the interaction. The bare Sussex
values are indicated by a short line on the right side.

-20
0

I

12

FIG. 19. The two-nucleon (P~g2), (P~g2) hyper-
spherical matrix element vs p, for various labeled J, T
values. The bare Sussex values are indicated by a short
line on the right side.
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20—
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W

10

21

0- 11—21—10
20

-20—

4
p

8 12

i

12

FIG. 20. The two-nucleon (P3] )P(g2), P3]2P~)2 hyper-
spherical matrix element vs p, for various labeled J, T
values. The bare Sussex values are indicated by a short
line on the right side.

20—

W

10

-20

120 4 8

FIG. 21. The two-nucleon (P3g2P& ~2), (P&]2) hyper-
spherical matrix element vs p, for various labeled J, T
values. The bare Sussex values are indicated by a short
line on the right side.

matrix elements are small, their initial neglect
is not too drastic in obtaining the first approxi-
mate solution of the coupled equations. It is the
nondiagonal matrix elements that provided the
coupling to the differential equations. Shown in
Figs. 3-8 are the potential energy matrix ele-
ments for the other excited states of 'Li. In
every instance the nondiagonal matrix elements
are much smaller than the diagonal matrix ele-
ments. The ratio might be characterized as
approximately 1:36, that is 1 to N squared. The
lowest energy solutions to the coupled differential
equations are all nodeless, that is, they vanish
only at zero and infinite values of the hyper-radius.
The, solutions have a single peak at about 5 fm,
located approximately where the diagonal matrix
element plus the angular momentum barrier com-
bined have their mlnlmum value

The coefficients C„when squared are the pro-
bability that a given configuration a, is present

FIG. 22. The two-nucleon (Pay2P&g2), (P3y2) hyper-
spherical matrix element vs p, for various labeled J, T
values. The bare Sussex values are indicated by a short
line on the right side.

in a given wave function. All the wave functions
plotted as X, (p) are normalized to unity.

The coefficients C, are similar to certain coef-
ficients in the shell model. In a configuration in-
teraction calculation within the harmonic oscil-
lator shell model with several configurations, the
probability of a given configuration is found from
a variational calculation. Thus, this sort of cal-
culation is analagous to assuming the hyper-radial
functions are

where p, is re'ated to the harmonic oscillator
radius via Eq. (60), and C, would be determined
by minimizing the energy. We note the hyper-
radial functions calculated are not 6 function in

shape, but there is a resemblance in that they
are a function with a single peak and decrease
monotonically on either side of that peak. The
half width as half maximum is on the order of 1 fm.
The values of the C, reported in Table II reflect
an attractive spin orbit two nucleon potential as
C, is larger than C, in magnitude, for the ground
state of any set of J, T values. For excited
states with a given J, T, the reverse is true.

The electromagnetic form factors for 'Li are
not calculated. here as that seems difficult"'"'
enough to merit a separate study. We note,
however, that the expectation value of p' for the
ground state wave function is 28.86 fm'. This
implies an rms charge radius of 2.2 fm, which
is less than the experimental" charge radius of
2.56 fm for 'Li. This calculated value assumed
the protons were distributed the same as were
the neutrons and also assumed that the protons
were point charges. The relaxation of both these
assumptions would tend to increase the calculated
charge radius. Nonetheless, we are not surprised
at calculating too small a rms charge radius for
'Li, because the ITS potential used is a very-
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soft-core potential, and the wave function used
slightly overbinds 'Li. This shifts the wave func-
tion to smaller values of p and results in the cal-
culated expectation value of p' being too small.
A J, T =1, 1 state is calculated with a binding
energy of 15.245 MeV. From this binding energy
it appears similar to a 'H 'He nuclear molecule.
No experimental evidence of such a state appears
to exist. '

V. CONTRASTS WITH OTHER MODELS

A. Core polarization

If one considered the 'He ground state to be
simply a S,~,

' configuration of two neutrons and
two protons, the appropriate potential matrix.
element for the 'He ground state would be given
by the quantity named Acc in Eq. (75). In Fig. 16,
we plot the S,~,

' configuration matrix element of
the potential energy for the dTS potential. We
plot this matrix element for the dTS two nucleon
potential. We show the result for both 'He and
also a plot of the same potential energy matrix
element for the Sy/2 configuration of nucleons
within 'Li. The two curves are different. This
difference we call core polarization, somewhat
in analogy to the term commonly used in reaction
theory. The two calculated curves are based on
the exact same two-nu'cleon potential. The two
calculated curves are different because the
matrix element, see Eq. (58), depends on the
number of nucleons present. This difference is
neglected in models of 'Li that treat this nucleus
as an a, a neutron, and a proton. These models
sometimes attempt to account for this effect by
using "effective potentials" rather than real po-
tentials. This difference also effects the inter-
pretation of experimental binding energies being
related to the interaction of the outside nucleons
as calculated by

B(nP) =B('Li) -B('He) [B('Li) —B('-He)]

-[B('He) -B('He)]

= -6.62 MeV.

This difference is also neglected in three body
models of 'Li that assume the a in the Li is
th.e same as an isolated 'He nucleus.

This K harmonics solution of the six nucleon
problem does not assume the interaction matrix
element of the four nucleons forming a prototype
a particle is the same as in'Li as it is in 'He.
We see for the dTS potential this difference is
not negligible and should be incorporated in other
calculations, if it were possible to do so.

Using a K . formulation for 'He, we calculate
a 'He binding energy of 29.3 MeV. Combining
this with the calculated 'Li JT = 1'0 binding energy
of 31.775 MeV, we calculate a 'Li that is stable
to n plus deuteron decay.

B. Shell model effective interactions

In the shell model calculations, one problem is
the choice of effective "residual two-body" in-
teractions that is appropriate to use for the chosen
configuration space. By making reasonable as-
sumptions about the smoothness arid range of the
two nucleon potential, Elliot and his co-workers""
at Sussex were able to deduce the relative har-
monic oscillator matrix elements directly from
the phase shifts. So called bare matrix elements
were calculated, as well as various corrections
to their interaction matrix element via degenerate
perturbation theory. "'" In Figs. 17-22 we in-
dicate their tabulated bare matrix elements ob-
tained" using an oscillator length parameter
b = 1.7 fm. Incorporating the various shell model
configuration corrections" never changed the
sign of the bare matrix element obtained and re-
sulted in a magnitude change typically of 20~/0.

We, therefore, compare the bare matrix ele-
ments to the corresponding hyperharmonic non-
diagonal matrix elements, see Eq. (80)-(82).
These are not identical quantities to compare, in
part because the derivation of the effective in-
teraction is one of the basic problems of the shell
model. " The hyperharmonic method, though,
does offer a natural way to obtain an analogous
quantity, namely, the nondiagonal matrix ele-
ment of the potential energy is equivalent to the
shell model matrix element of the "effective in-
teraction. " We note the hyperharmonic non-
diagonal matrix element is a function of the hyper-
radius, p, and is so plotted in Figs. 17-22. At
what value of p should the comparison be

madel'

If the hyperharmonic matrix elements were
evaluated using the saddle point or method of
steepest descent, we would have

p[K+ 2(N —1)]' b = (2+~)' 1.7

=( )' '1.7= 5 fm.

On the other hand, the most characteristic hyper-
radial value may be the one that maximizes the
hyper-radial wave function X,(p). This is seen
to be typically 5-5.5 fm (see Figs. 9-15). The
nondiagonal matrix element of the hyperspherical
method is evaluated using the dTS potential as
this provides an excellent fit to the two nucleon
scattering data and should be most nearly com-
parable to the bare matrix evaluated. Inspection
of the curves shows that agreement between the
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two calculations is approximate only. For the
((P,/, ) ~V~(P, /, )') matrix element, the two methods
agree for a p of 8, if J, T = 0, and for p equals
5.0 for J, T =1,0. Perhaps a more realistic test
would be to calculate the integral

"X.iV"X"d&

and compare this weighted integral with the Sussex
calculation. Doing the integral results in inte-
grated values comparable in magnitude and of the
same sign as the Sussex matrix elements for
this case. Such cannot be said for all the other
cases. However, for the ((P,/, )'~ V~(P, /, )') matrix
element, the J, T = 1, 0 hyperharmonic calculated
matrix element is generally too repulsive (positive)
compared to the other J, T values, but the gen-
eral trend of the Sussex matrix elements i.s re-
produced. For the ((P,/, )'~ V((P,/, )') matrix ele-
ment, the calculated J, T =0, 1 matches the Sussex
value quite well, but the J, T = 1, 0 value is again
too repulsive compared to the Sussex value. For
the (P,/+, /, ~

V~P, /Q, /, ) matrix element, the
calculated values tend to reproduce the trends of
the Sussex values. However, the J, T = 2, 1 state
is calculated as too attractive compared to the
Sussex value. For the (P,/+, /, ~ V~(P, /, )') matrix
element, with J, T = 1, 0, the calculated matrix
value is attractive, but the Sussex value has the
opposite sign. Finally, for the ((P,/, )'~V(P, /, P,/, )
matrix element, the calculated values show little
hint of possible agreement with the Sussex values.
For J, T = 1, 0 the calculated value is negative,
while the Sussex value is positive. For the J, T
= 2, 1 case, the calculated matrix element is
generally positive, while the Sussex value is
negative.

We have been comparing two calculations here.
There is a general sense of agreement between them,
but the detailed comparison shows differences, in
some cases, differences of sign. It is possible that
a potential oscillating about" the correct potential"
could r"eproduce scattering phase shifts well and
still fail to agree with the Sussex matrix element. We
are comparing small bits and pieces of the potential
here ina detailed manner. Secondly, the two quan-
tities being compared would not match exactly, even
if an identical two-body potential were used in both,
due to the differing treatment of the geometry with
respect to the center of mass motion. The Sussex
treatment tries to avoid a potential. Anyway, we
have here a prescription of obtaining effective inter-
action for shell model calculations working directly
from a two-nucleon potential, without a hard core.
One simply evaluates the nondiagonal matrix element
of the potential energy in the hypersphere formalism
atavalueof p=[K+2/2(N —1)]'/'b, whereb isthe

oscillator length parameter.
Other improvements of this prescription can be

found, possible, but even this first prescription
offers a guide to obtaining an effective interaction
for shell model Calculations.

C. Convergence of the hyperspherical harmonic solution to Li

One must go beyond K;„calculations to test the
convergence of the method. That has not been
done here. The three-nucleon problem did not
converge" at K= K;„, but instead harmonics out
to about K= 7 were found to contribute. For N
greater than four, only one calculation has used
K greater than K . , the E . „calculation of
Sadovoi and Siminov' for the "0ground state.
They found the contribution of K~,, harmonics
to the binding energy to be about 25% in a "model
calculation" and that single particle excitations
where n increased rather than the orbital angular
momentum l increases were the most important.
The brunt of their calculation suggests that K
greater than K . should be investigated for 'Li.
This will be reported on in a subsequent work.
The agreement between the calculated spectrum
and the experimental spectrum offers another
reason for believing the influence of K con-
figurations is dominant. Experiment shows that
odd parity states are more than 20 MeV excited
in energy. These would correspond to K ~„con-
figurations can be expected then at about 40 MeV
of excitation. No states capable of being pro-
duced by a K „configuration, and not by a K ~

configuration, such as a 4' or a 5' are seen in
the experimental spectrum.

VI. SUMMARY

We have presented a systematic way of solving
the six-nucleon bound state problem. Only soft
core potentials can be used in the hyperspherical
method. The center of mass motion has been re-
moved from the usual nonrelativistic N-body
Schrodinger equation. Slater determinants ar e
used to construct antisymmetric hyperharinonic
polynomials of definite J, J„T, and T, . A set
of coupled one dimensional radial equations are
obtained from the Schrodinger equation when the
N-body wave function is expanded as

1((1,2, . . . , N)= (3N 4)/2 Xa, (p)Y~, (A).
aa

The summation over K is truncated at its minimal
value consistent with the antisymmetrization re-
quirement. A many-body angular momenium
barrier tends to justify this truncation. A po-
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tential with phase shift credentials is used,
and results in calculated binding energies in fair
agreement with experiment. A modified potential
that is slightly state dependent could be used to
bring about agreement with experimental binding
energies. The dTS potential used has central,
tensor, spin orbit, and L squared parts. " Each
part resembles a sum of meson exchange con-
tributions and has soft, finite, repulsive core.
The numerical solution to the coupled radial
equations are shown and compared to the shell
model. The proper handling of the potential energy
matrix element with center of mass motion ex-

eluded is detailed. A prescription for obtaining
effective interactions for shell model type cal-
culations is presented. The results of this pre-
scription are compared to the bare Sussex
matrix elements. The agreement is fair.

The difference in the potential energy matrix
element of four S,~, nucleons in a 'He nucleus or
in a 'Li nucleus is shown not to be zero. A J, T
= 1, 1 state is found with a binding energy of
15.245 MeV. This binding energy spin, parity,
and isospin suggests the state may resemble a
nuclear molecule of 'H and 'He. Further work is
suggested along the lines of a K ~„calculation.
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