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The approximations of the interacting boson approximation of Iachello and Feshbach and the ability of this
approach to describe the %0 nucleus are tested. In the interacting boson approximation some “exchange”
parts of many-boson matrix elements and violation of the Pauli principle in many-boson states are ignored.
Matrix elements, two-boson wave functions and energies resulting from the interacting boson approximation
are compared with exact two-hole two-particle calculations for the lowest 2+, 0 and the lowest excited 0%, 0
states in '°0. It was found that neither of the above two approximations of the interacting boson
approximation are valid. Calculations without these two approximations improve the approximate energies but

not the wave functions.

NUCLEAR STRUCTURE !%0; calculated structure of lowest 0* and 2* excited
levels.: Interacting boson and shell model approaches.

I. INTRODUCTION

Shell model calculations are fairly successful
in explaining many features of the low lying states
in spherical nuclei near doubly magic numbers.
For such nuclei one considers only a few particles
outside a doubly magic core, or a few holes in a
doubly magic core, or a few holes in and a few
particles outside a doubly magic core, and tries
to choose as a basis those configurations which
will be important in describing the structure of
the low lying states. It is necessary that a trun-
cated basis be used in order that the matrices
that are diagonalized are of a finite size. Typical
examples of such shell model calculations are giv-
en in Refs. 1-5.

When one tries to extend these shell model cal-
culations away from closed shells to include many
holes and/or particles, the number of basis con-
figurations rapidly become too large to handle.

In such cases several methods are commonly used
to limit the size of the matrix to be diagonalized.
One method is to severely truncate the number of
basis states allowed. Only limited success has
been obtained this way because important config-
urations have often not been included due to trun-
cation. Another method®™® is to do a “two-step”
calculation. In this approach, one first calculates
the energy spectrum of one or two nuclei which
have only a few valence particles and then forms

a truncated basis for a more complex nucleus by
constructing product wave functions from a few of
the low lying states obtained in the first step of the
calculation. For example, several low lying levels
in 2%°Pb and 2?°Po were coupled together to form

a basis for 2°°Po shell model calculations.® An
approach similar to the two-step approach de-

scribed above was proposed by Iachello® and by
Feshbach and Iachello!® (FI), which they called
the interacting boson approximation (IBA).

This paper will explore and discuss the validity
of the approximations made in the IBA model®:!°
as applied to the 50 nucleus. In Sec. II, the nec-
essary formulism is developed. Section III dis-
cusses the boson basis used. Section IV will dis-
cuss the IBA results for 60, while Sec. V will
examine what happens when some of the approx-
imations made in the IBA model are removed.
Section VI will compare the results of Secs. IV
and V with a more complete calculation.

II. FORMALISM

In this section, the formulas and terminology
will be given which will help one to understand the
approach and approximations made in the IBA mod-
el used by Feshbach and Iachello®'® and the calcul-
ations presented in this paper.

A. Shell model Hamiltonian

The shell model Hamiltonian will be written
schematically as

H=Ho+Hpo+Hyo+H,, +H,,+Hy +H'. @)

H_ represents the '°0 closed core energy, and all
energies used will be relative to this core energy
causing H . to have an expectation value of zero
for any state considered. Consequently, H_, will
be ignored from now on. H,. describes the kinetic
energy of a particle in an orbital outside the O
core and its interaction with the core particles.
H,. similarly describes the kinetic energy and in-
teraction energy of a hole in an orbital in the core.
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H,,, H,,, and H,, represent the hole-particle,
particle-particle, and hole-hole interactions, re-
spectively. H’ represents all remaining terms in
the Hamiltonian and it will be ignored from now

on since it will not give any contributions to ma-
trix elements discussed in this paper. Two-body
central forces are used for the calculation of the
H,, H,, and H,, matrix elements while the energy
eigenvalues of H,; and H, will be taken from ex-
perimental results as will be discussed in Sec. II F
below.

B. Fermion states

The excited levels of the 0 nucleus can be de-
scribed as linear combinations of one-hole-one-
particle states (1h-1p), two-hole~two-particle
states (2h-2p), etc.

A (1h-1p) state will be-written as

|kypJT)=[H}PL]'T [0), @)

where the hole-creation operator H' and the par-
ticle-creation operator PI are coupled to a total
angular momentum J and total isospin T and |0) is
the closed core. The symbols %, and p, depict the

—
N?=1+06(JJ,) (T, T,)0(h,h;) 6(p, p,)6( T)
: T, D2 by J,y
—(jljzflf‘z)z }2_ % Tz 5(h1h3) hl by Jz
' T, T, T J Jy J

is the normalization factor expressed in terms of
9-j coefficients, Kronecker 8 functions, and %2
=2x+1. The wave function in Eq. (3) can be re-
coupled and written as a linear combination of the
wave functions of Eq. (4) via a unitary transforma-
tion which involves four 9-Jcoefficients, two for
isospin and two for angular momentum. Converse-
ly, Eq. (4) can be expressed as a linear combina-
tion of the wave functions given by Eq. (3) and this
will be done later in calculating the matrix ele-
ments of H,, and H ;.

C. Boson states

The one-boson states are obtained by diagonal-
izing the Hamiltonian in a (lh-1p) basis. In the
work of FI and in this paper, the holes are re-
stricted to the 1p shell and the particles are re-
stricted to the 2s-1d shell. After diagonalizing,
one has a spectrum of eigenstates with integer spin
consisting of linear combinations of (1h-1p) states.
These eigenstates are assumed to be bosons and
will be written as

quantum numbers =, I, and j specifying -a given
hole orbital and a given particle orbital, respec-
tively. All H’s and P’s satisfy the fermion anti-
commutation relations so that all states satisfy
the Pauli exclusion principle. The bar over &,
represents a hole in the core.

The states containing two holes and two particles
can be formed in two ways. One way is first to
couple two holes together and two particles togeth-
er. Then one couples these two states together
giving the (2h-2p) antisymmetric normalized wave
function,

ity \T ) (s p T2 TIT)

__[EE ] PP T J0)
T+ 0 ) AT+ 8(pp ) TP

®)

An alternative way is to couple two (1h-1p) states
together giving

l(ﬁl pZJlTl)(ESP‘lJZTZ)JT)N
=N7([H] P T [H PY] 2] T 0), (4)

where

hy Py J,

+0(p,p,) D. ks J,

J J, J

lb¢>=BEIO>=Zwi:1h.1P1J¢ Ty, ()
7

where B: is a boson creation operator for the
J,T, state and obeys boson commutation rules.

Two-boson states can be formed by coupling
two one-boson states together,

[0,6,0T) =N, [B] B]'" [0}, (6)

where N% =[1+8(b,b,)] and the boson creation op-
erators B! and B} are coupled to J and T.

The two-boson states above can be written as a
linear combination of products of (1h-1p) states
using Eq. (5). Although the individual (1h-1p)
states satisfy the Pauli exclusion principle, the
product of two of them does not necessarily do so
in general. One of the approximations in the IBA
method is to assume that this violation of the Pauli
principle is not important. The Pauli forbidden
parts in these two-boson states, however, can be
eliminated. The method used in this paper was to
express the two-boson states as linear combina-
tions of the (2h-2p) states given by Eq. (3). When
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expressed as (2h-2p) states, the Pauli forbidden
terms canbe easily recognized, asthese nonallowed
components will have the configurations (3J,T,)
and/or (p?J,T,) with J,+ T, and/or J,+ T, even
numbers. In the calculations described in Sec.

V, these Pauli forbidden terms were eliminated
from the two-boson states and the states were
renormalized to have a unit norm before matrix
elements of the Hamiltonian were calculated.

D. Matrix elements on H,,p s pr ,and Hy,

Only H,, has nonvanishing matrix elements
between (1h-1p) states. The hole-particle matrix

GrjudajgT) = SadeI TV L isjd 1)+ 6o j I TV Gy I TV | oo T)
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element is given by

(R, pJT |H,y | By poI T)
1
=_ Z (j,i,)z npd } { 2
7T hopd’) 3 T/
XG (hypyhypod 'T) ("

[N N
=
N— o~

in terms of 6-J coefficients and the normalized
two-particle matrix element between antisymmetric
states, G(j,4,7,7JT). In terms of vector coupled
states, G(4,7,7,7JT) is given by

[1+0(,5,) 2 [1+ 6(j,5,) ' 72

where 6(abc)=(-1)%"**. FI in Egs. (3.4)-(3.8) and
(3.21)-(3.25) of their Annals of Physics paper!®
give expressions for the hole-particle and. the two-
particle matrix elements for a zero-range force.
It appears that an overall phase of 6(j,7,7,7,) is
missing from their T7=0 and T =1 expressions for
the two-particle matrix elements.

The two-boson states are given by a linear com-
bination of (1h-1p) (1h-1p) states and so the matrix
elements of H,,, H,,, and H,, between two-boson
states can be expressed as sums of matrix ele-
ments between (1h-1p) (1h-1p) states.

, ®)

The H,,+H ,, matrix elements are easily calcul-
ated by transforming from the (1h-1p) (1h-1p)
representation of the (2h-2p) representation and
then evaluating the resulting expression. An un-
normalized (1h-1p) (1h-1p) state will be denoted by

l(’;lszlTl)(h_:}p4J2T2)JT>
= [P [ PY] 2 2] T [0)

and this state differs from the normalized (1h-1p)
(1h-1p) state of Eq. (4) by the normalization factor
N. The H,,+H,, matrix element is

Oy p, I\ T )y o o TIT | H,yy+ Hyy |y py I3 T5) (g p, I, T )IT)

hl by A hz bs Js % % T1 % '% T3
=I T I I I, ,Z, VI TT"VCh, p, Jyp Shy by Jup (3 3 Ty (3 3 T,
‘T':T” J J" J J J" J T T T T T™" T

X{[6(h, h3) 0(hy hy) + (kg Ry 'T )0, k) Oy )  [1+ Oy o) ]2 [1+ O(pyp,) '/

XG (D103 04T "T")+ [0( by 5)0( by D4) + 8(D3 04T "T ") (D, b) O b2 b5)]
X[1+ 6(h, hy) F/2[1 + 6(hoh) 1 2G (hyhohh J'T )} (9)

Equation (9) above is very similar to Eq. (3.15)
given by Feshbach and Iachello® but differs by
factors of [1+0(p, p,)]*/2[1+8(p,p,)] /% and
[1+8(h, hy]*2[1 + 6(kyh,)]*/2. These additional
factors are necessary if G(j,4,j57,J7) is the
standard matrix element between antisymmetric
two-particle states. From inspection of Eq. (9),
one can see that if there are any Pauli forbidden
components in the two-boson wave functions, they
will give a zero contribution to the H op ANd H
matrix elements as the brackets with the Kronech-
er 0 functions will vanish.

The H,, matrix elements are more complex and
one needs to look at them in more detail in order
to appreciate one of the major approximations of

v

the IBA model. The matrix element

((y p, I, T )by p, T, TIT [Hyy [y 3T To) ey 4 T T )T T

can be expanded in terms of 16 two-body matrix ele-
ments with suitable coefficients. It is readily seen
that there will be four matrix elements of the form
Qb T;|Hyy|hp J,T ;) multiplied by Kronecker 6
functions of the other quantum numbers. These four
matrix elements will be labeled “direct matrix ele-
ments” and will be denoted by D,,. The re-
maining 12 matrix elements will be labeled
“exchange matrix elements” and will be denoted

by X w The X » Matrix elements occur when a

|(Ryp4J,T ), p,J,T,)JT) component in a two-bos-
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on state is recoupled to a linear combination of
|7, p;J'T")h,; p; J"T")JT) components giving rise
to matrix elements which are of the form
(hyp,J'T"|H,,|hyp,J'T"), Where i#j and/or k#1.
The X, matrix elements will include either two or
four 9-J coefficients along with other factors
which arise from the recoupling. These X,,
matrix elements were neglected in the IBA model
for reasons discussed below.

It should be noted that if the D,, or X, matrix
elements are calculated between two-boson states
which have Pauli forbidden components in them,
then the Pauli forbidden components will contri-
bute to the D, or X, matrix elements. However,
if the D,, and X, matrix elements are calculated
and added together, the contributions from the
Pauli forbidden components cancel and will not
contribute to the total H,, matrix elements.

For computational reasons, the (1h-1p) (1h-1p)
components of the two-boson states were recoup-
led to (2h-2p) components before the matrix ele-
ments of H,, were calculated. The matrix element
of H,, between (2h-2p) states is given in the Appen-
dix where the first 4 terms represent the D,, con-
tributions to the matrix element while the remain-
ing 12 terms represent the X,, contributions to the
matrix element.

E. Spurious center of mass states

Whenever shell model calculations, involve iden-
ticalparticles from two different major shells,
there is always the possibility that spurious
center-of-mass states will occur.!!™*® In these
calculations, the five (J,T)=(1", 0) one-boson
states contain a spurious 1P center-of-mass
state which was eliminated. The procedure!®:!¢
used in thls work was to add to the shell model
Hamiltonian the term

L =AW, ~3Hw/2) (10

and then diagonalize H+H!  with the (1h-1p)
basis. H_ is the center-of-mass Hamiltonian,
A is the nuclear mass number (16 in this case),
and 7w is the harmonic oscillator spacing (13.92
MeV was used in these calculations). If a (1h-1p)
state has no spurious center-of-mass components,
H! . will have a matrix element of zero. On the
other hand, states with a large center-of-mass
spuriousness will have matrix elements for H/

of the order of AZw=223 MeV. With such a large
energy separation, the states with a large center-
of-mass spuriousness will not mix appreciably
with those having a small center-of-mass spurious-
ness. Inthe calculation of the lowlying (J, T') = (17, 0)
one-boson states in '°0O, this admixture was found
to be much less than 1% verifying that this ap-
proach can effectively remove the center-of-mass
spuriousness in the low lying states.

Even though the one-boson states have very
little center-of-mass spuriousness in them, it
is not guaranteed that the two-boson states will
not have any. Since the two-bosons used do not
span the complete 277w shell model space, one
cannot eliminate the center-of-mass spuriousness
by diagonalizing H+H/ . For the calculations de-
scribed in this paper the amount of spurious center-
of-mass motion in the two-boson states appears
to be small as will be discussed later on.

F. Single particle energies and residual forces

The single particle energies in the 2s=-1d shell
and the single hole energies in the 1p shell were
taken from experimental data in the *O region.

In the '*0, the Coulomb energies of a proton part-
icle state and of a proton hole state almost cancel
each other and so it is a good approximation to
use the neutron energies for both neutrons and
protons. The energies of the hole orbitals and
particle orbitals are given in Table I.

The residual interaction used in the H,,, H,,,
and H,, matrix elements was assumed to be a cent-
ral force of the form

V=0(r)(W+MP" + BP°+HP"P°), (11)

where P" and P° are the space and spin exchange
operators, respectively. In order to see how sen-
sitive the final results were to the residual force,
calculations were done with the zero-range force
used by FI and a short-ranged Gaussian force.

The zero-range force, V__, had a radial depen-
dence of

eU(’V) = V()G(Fl - I-?2)

and a Soper type admixture. The parameters of
this force and the harmonic oscillator parameter
v=mw/l used for the radial part of the single
particle wave functions are given in Table II. The
Gaussian force, V., had a radial dependence of

zr?

TABLE I. Single hole and single particle energies.

Orbital 1p3/9 1519

1ds;, 251/ 1ds/y

Energy (MeV) 21.85 15.67

—4.14 -3.27 0.94




TABLE II. Force parameters,

Zero-range force Gaussian force

V, (MeV) —959 40

w 0.365 0.65
M 0.365 0.65
B 0.135 0.15
H 0.135 " 0.15
v (fm) 0.3228 0.3354
B (fm<2) 0.2922
V(r) =V e o?

and the parameters for this force are given in
Table II. Neither of these forces have singlet-
odd or triplet-odd components. The V, force has
a triplet-even to singlet-even ratio of 2.17 while
the V; force has a triplet-even to singlet-even ra-
tio of 1.60.

The lowest (J,T)=(37,0) level in '°0 is expected
to be due mainly to the (1h-1p) configurations.
Any admixtures of (3h-3p) configurations are an-
ticipated to be small and to have very little ef-
fect on the position of this level. The V,’s of V,,
and V, were chosen to give the lowest (37,0) level
close to and slightly above the experimentally
observed value of 6.13 MeV. A value of V,=-959
MeV for the zero-range force gave the lowest
(37,0) level at 6.27 MeV while a V,=-40 MeV for
the Gaussian force gave the lowest (37,0) level
at 6.18 MeV. These levels and the other low lying
(1h-1p) levels will be discussed in more detail
in Sec. III.

I1I. BOSON BASIS

The bosons used in the IBA model dre the eigen-
states resulting from diagonalizing the shell model
Hamiltonian in a (1h-1p) basis. As mentioned
above, the holes were restricted to be in the 1p
shell and the particles were restricted to be in the
2s-1d shell in this paper as well as in FL

The spurious 1P center-of-mass state in the
(17,0) spectrum was removed by the method de-
scribed in Sec. IIE. As was anticipated there,
one (1-,0) level moved up above 200 MeV and
was found to have an overlap of 99.99% with the
pure 1P spurious center-of-mass states. The
other four (17,0) levels remained lower than 30
MeV and had negligible spuriousness in them.

The resulting (1h-1p) spectrum for the zero-
range and Gaussian forces are compared with
the low lying experimentally observed levels!’
in %0 in Fig. 1. It is seen in this figure that for
both the zero-range and Gaussian forces the low-
est (37,0) and (17,0) levels are low lying and fair-
ly well separated from the rather dense set of
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Isp 3 27,0 37,0 1
370 17,0
15¢ 2 o
- 2-,1 -
s- el =1
3 : o1
14} 2- . 0-,0 37,1
ﬁ':o -
13k Iz_,: 2-,| )
:0_-,6 0-,0
12k Ni-lo 0 |
-37,0
¢ ) 37,0 27,0
" 0,0 J
1o} 1
. 15,0
> -
w 9 — 20 mo
= I-,0
Z 8}t 4
>
2 7t 17,0 i
z
- - 37,0
w sk 37,0 3,0 |
5t 4
4} -
3t .
2F 4
I F
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FIG. 1. Comparison of the calculated (1h-1p) levels
below 16 MeV for a Gaussian force and a zero-range
force with the experimentally observed negative parity
levels in %0 (Ref. 17, Table 16.9). )

negative parity lying above about 12 MeV. For the
Gaussian force, the lowest (27,0) level at 11.2 MeV
is also well separated by about 3 MeV from the
more dense set of states above.

These two lowest (1h-1p) eigenstates will as-
sume to be the bosons to be used in the IBA model
and one hopes to be able to describe the multihole
multiparticle excited states of '*O by coupling
these boson states together. The approach will
be described in more detail in Secs. IV and V be-
low. '

It is interesting to explore the structure of the
low lying (37,0) and (17,0) states in more detail.
These two states are given in Table III for the
zero-range and Gaussian forces and are com-
pared with the FI resuits kindly sent to us by
Iachello.®

In Table III, it is seenthat the energies and the am-
plitudes of the (1h-1p) components for the (37, 0) level
are essentially the same for the Gaussian force, the
zero-range force calculated in this paper, and the
zero-range force as calculated by Iachello.

The Gaussian force causes the lowest (17, 0) level
to lie about 1.5 MeV below the value that the zero-
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TABLE III. Position and amplitudes of the lowest (3-,0) and (1-,0) states in 10 for a zero-range force and a Gaussian

force.
(3-,0) state (1-,0) state
zero-range force zero-range force
Gaussian this Gaussian this

force calculation Iachello force calculation Iachello
Energy (MeV) 6.18 6.28 6.1 8.44 9.92 7.7
Configuration :
(1B4,51d5,5) 0.85 0.87 0.87
P3/91dg)s) -0.36 —0.33 -0.35 0.06 0.05 -0.17
(153/51d5,5) -0.39. -0.37 ~0.35 0.30 0.28 —-0.25
(151/9251/2) 0.77 0.85 0.62
(1P 3/92s1/9) -0.51 -0.39 -0.61
(15 1/51d5/5) 0.24 0.23 -0.37 .
Spuriousness 0.0008 0.0029 0.7613

range force gives even thoughthe (37, 0) levels were
close together for the two forces. The amplitudes of
the (17, 0) states calculated for these two forces are
essentially in agreement both in magnitude and sign.
On the other hand, the lowest (1, 0) level of Iachello*
differs substantially from the results obtained

by the authors of this paper. Iachello’s energy

is 2.2 MeV lower and his amplitudes differ con-
siderably in magnitude and sign. In fact, the over-
lap of Iachello’s (17,0) eigenfunction with a pure
spurious 1P center-of-mass state is 76% so that
it does not appear that Iachello has correctly re-
moved the spurious center-of-mass admixture in
this eigenstate. '

Since the authors of this paper do not have ac-
cess to Iachello’s calculation, it is difficult to
speculate as to the probable cause of this discrep-
ancy. Iachello' diagonalized his shell model Ham-
iltonian in a space orthogonal to the (17,0) spurious
state given by Elliott and Flowers! which should
give states free of spurious center-of-mass mo-
tion. Firstly, Elliott and Flowers use a coupling
scheme of §+1=] while this paper, FI, and Wang
and Shakin'® (who also do a similar (1h-1p) cal-
culation in *¢0) use the coupling scheme of T+ §=7.
Secondly, and perhaps more important, Elliott
and Flowers use radial wave functions which de-
cay positively to zero at large 7. In their case,
the radial wave functions start off positively (neg-
atively) at the origin for odd (even) » quantum
numbers. The usual convention is to use radial
wave functions which start off positively at the
origin and decay positively (negatively) at large
7 for odd (even) n. Since the results of this paper
agree quite well for the lowest (37,0) state with
the results of Iachello and Wang and Shakin, and
for the lowest (17,0) state with the results of Wang
and Shakin, it is assumed that all three are using
the T+ §=T convention and that the radial wave func-
tions all start positively at the origin. If Iachello

used Elliot and Flower’s spurious center-of-mass
state without noting the above differences, then

the spurious center-of-mass motion would not

have been removed from the (17,0) wave functions.
Otherwise, it is not possible at this time to resolve
the differences between the two calculations with
the same zero-range force.

IV. IBA MODEL

The interacting boson approximation model, was
applied to the calculation of the lowest 0*,0 and
2*,0 levels in '%0.

In order that the IBA be useful, one should be
able to use only a few of the low lying one-boson
states which when coupled together will form a
“good” two-boson basis. In this paper and in FI,
only the lowest (37,0) boson and the lowest (17,0)
boson was used to form the two-boson basis.

With these bosons, there are two two-boson states,
(37,0)% and (17,0)%, which can couple to a total J*, T
of 0*,0, and there are three two-boson states, '
(37,0)%, (17,00, and (37,0)(17,0), which can

couple to a total J*,T of 2*,0. Consequently, one
only has to diagonalize 2x2 and 3 X3 matrices: for
the low lying 0*,0 and 2*,0 states of %0, respec-
tively, as compared to 40x40 and 110x110 ma-
trices, respectively, for exact (2h-2p) calcula-
tions. But on the other hand, the two-boson ma-
trix elements are more difficult to evaluate in
general due to their more complex structure.

The IBA simplifies the calculation of the matrix
elements in several ways. As has been pointed
out above, when two bosons are coupled together,
the resulting wave function can have Pauli forbid-
den components. In the IBA approach, it is as-
sumed that the effects of the Pauli forbidden com-
ponents will be small and can be neglected. As
was mentioned in Sec. II D, the Pauli forbidden
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components will give zero contribution to matrix
elements of the H,, +H,, parts of the Hamiltonian.

Even though the one-boson states have zero
center-of-mass spuriousness in them, this will
no longer be true when one couples two bosons
together. The IBA neglects this possible center-
of-mass admixture. Evidence will be presented
below which indicates that there probably is only
a small amount of center-of-mass admixture and
that this approximation is valid.

The other important approximation of the IBA
model concerns the matrix elements of H,, As
was pointed out in Sec. IID above, the H,, matrix
elements can be split into two parts, the D np ATt
which does not involve recoupling of the (1h-1p)
(1h-1p) components of the wave functions and the
X4, Part which does require recoupling of the
(1h-1p) (1h-1p) components. The IBA model as-
sumes that only the D,, part of the matrix element
is important and the X, part can be neglected.
One reason for neglecting the X, part is that the
recoupling introduces either two or four 9-J co-
efficients would make the X, part much smaller
than the D, part. If this was the case, the X,,
part could be neglected without much error. The
size of the D, and X,, parts will be discussed in
detail below. It can be pointed out, however, that
it seems somewhat inconsistent to keep the H,,
+H,, parts of the matrix elements which involve
four 9-J coefficients [see Eq. (9)] and neglect the
X4 Parts which involve either two or four 9-J co-
efficients. FI argue that the neglect of the X,
part is-compensated by the neglect of the Pauli
principle. Neglecting the X,, parts will allow the
Pauli forbidden components in the two-boson
states to contribute to the matrix elements through

the Dy, part. Note that only when the D,, and X,,
parts are added together will the Pauli forbidden
contributions in each part cancel.

The matrix elements of H,, +H,, and the D,,
part of the H,, matrix elements have been calcul-
ated according to the IBA prescription and are
given in Table IV where (30) and (10) symbolize
(37,0) and (17,0), respectively. The X,, parts,
which would not normally be calculated in the
IBA model, have been calculated and are given
in Table IV in order that the size of D,,, X,,, D,,
+X,, and H,, +H,, can be compared.

For both the Gaussian and zero-range forces,
Table IV definitely shows that the X,, parts of the
matrix elements are not small compared to the
D, parts. In fact, the X,, parts are comparable in
magnitude to the H,, +H,, parts and are opposite
in sign. Consequently, neglecting the X,, terms
does not appear to be a good approximation be-
cause the resulting states will lie too low in ener-
gy.

The H,, + Hy, matrix elements given by FI in
Table II of their Annals of Physics paper!® do not
agree with those of Table IV. One does not expect
them to agree when the (17, 0) boson state is in-
volved as the (17, 0) boson state of FI and the (17, 0)
boson state used in this paper differ substantially
as discussed in Sec. III above. Since the (37, 0)
boson states are similar, one would expect to ob-
tain similar matrix elements. The only reason '
which can be offered for the difference between
the (37, 0)2 JT diagonal matrix elements of FI and
this paper is the phase factor difference in the
two-particle matrix element in Eq. (8) and the
square root factors appearing in Eq. (9) as dis-
cussed in Sec. IID.

TABLE IV, Matrix elements between two-boson states for the IBA model.

Gaussian force

Zero-range force

Matrix . Boson . Boson
element energy Dy, Xnp Hy, + Hyp _energy Dy, “Xnp  Hpp+Hyy
0*,0
(30)2-(30)2 12.35 —15.44 8.65 -7.04 12,56 -14.65 5.76 —7.58
(30)%-(10)? 0.00 0.49 -1.43 0.64 -1.79
(10)2-(10)2 16.88 -12.43 9.06 —9.49 19.84 —-8.14 5.37 ~8.02
2*,0
(30)2-(30)2 12.35 -15.44 6.47 —5.13 12.56 —-14.65 4.06 -4.70
(30)2-(30)(10) 0.00 —-0.95 0.08 0.00 -0.95 0.20
(30)%-(10)% 0.00 0.14 —0.52 0.00 0.24 —-0.67
(30)(10)-(30)(10) 14.62 ~13.94 7.7 —-5.73 16.20 ~11.40 4.75 —4,38
(30)(10)-(10)? 0.00 -1.93 1.87 0.00 -1.50 1.27
(10)2-(10)? 16.88 -12.43 8.97 —7.04 19.84 -8.14 6.28 -5.64
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V. EBA MODEL

In the previous section, it was seen that the X,
parts of the matrix elements were not negligible
compared to the D,, parts of the H,, + Hy, matrix
elements which raises questions about the validity
of the IBA approximations. From the D, and X,,
parts of the matrix elements given in Table IV, it
is not possible to determine how much of a con-
tribution was due to the Pauli forbidden compon-
ents in the two-boson basis states.

Consequently, a more complete calculation was
undertaken in order to clear up some of the above
questions and to see if a more complete and ac-
curate description of the low lying positive parity
states of %O could be obtained while retaining
the desirable features of the IBA model. This
more complete calculation will be called the
extended boson approximation, EBA.%

In the EBA model as in the IBA model, it will
be assumed that only a few two-boson states are
needed and that these few two-boson states will
contain the important (2h-2p) configurations in
the excited states. In contrast to the IBA model,
the EBA model will satisfy the Pauli principle
by eliminating the Pauli nonallowed components.
In this paper, these nonallowed components were
eliminated after recoupling the two-boson states
so that their components could be written in the
(2h-2p) scheme as described. in Sec. II C above.

In the microscopic picture, the two-boson states
do not have a norm of unity even with the boson
normalization of Eq. (6). This deviation from a
unit norm comes from the third term of the micro-
scopic normalization factor N in Eq. (4) and this
third term is absent in the boson normalization.

In the present calculations, the overlap between
the boson-normalized two-boson states ranged
from 1.008 to 0.835. After deletion of the Pauli
forbidden terms, the resulting two-boson states
were renormalized to a unit norm. These mod-
ified two-boson states in the EBA model will be
called extended two-boson states to distinguish
them from the two-boson states of the IBA model.
Because the Pauli forbidden components have been
removed, the various extended two-boson basis
states will no longer, in general, be orthogonal
to each other.

The boson energies in the IBA model gave the
matrix elements of H,; and H,; and the direct
part of the H,,. In the EBA model, the matrix
elements of H, +H,. between the extended two-
boson states were evaluated directly. The final
difference between the two approaches is that in
the EBA model both the D, and the X,, parts of
the matrix elements of H,, between the extended
two-boson states are kept.

As with the calculations using the IBA model de-
scribed in the previous section, the (37, 0) and
(17, 0) bosons were used to construct the 0*,0 and
2*, 0 two-boson basis states. Then the Pauli non-
allowed terms were eliminated and the states
renormalized to produce the extended two-boson
basis states. Using these extended two-boson
states, the matrix elements of Hy, +Hye, H,,
+Hy,, and the D, and X, parts of H,, were cal-
culated for the Gaussian force and the zero-
range force. These matrix elements are given
in Table V and several interesting remarks can
be made. Compared to the D, parts of the dia-
gonal matrix elements in the IBA model, the D,,
parts in the EBA model are drastically reduced

TABLE V. Matrix elements between the extended two-boson states for the EBA model. E, is the matrix element of

Hyc + Hpc between the extended two-boson states.

Gaussian force

Zero-range force

Matrix
element E, Dy, Xnp H,, + Hyp E, Dy, Xnp Hp, + Hyp
0*,0
(30)2-(30)? 27.54 —4.18 —2.54 —6.97 26.95 —4,42 —-4.33 ~7.45
(30)%-(10)? —-0.97 0.05 0.47 -1.52 -0.76 0.05 0.60 =1.81
(10)2-(10)? 28.44 -2.77 1,12 -10.95 26.95 -1.97 —0.90 -8.33
2,0
(30)%-(30)? 27.81 —4.70 —4.20 —5.09 27.22 -4.82 —5.69 —4,66
(30)2-(30)(10) 0.85 -0.22 —0.74 0.08 0.75 -0.21 -0.73 0.20
(30)2-(10)2 —0,44 0.02 0.14 0.60 —0.39 0.02 0.27 —0.79
(30)(10)-(30)(10) 28,37 —6.52 -0.38 —5.84 27.28 ~5.09 ~1.58 —4.39
(30)(10)-(10)2 3.79 —0.08 -2.16 2.17 2.80 —-0.03 -1.78 1.52
(10)%-(10)? 30.30 —-3.52 -1.06 -9.32 28,91 ~2.64 -0.03 -8.09
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in size due to the elimination of the Pauli nonal-
lowed components in the two-boson states. The
X,, parts of the diagonal matrix elements in the
EBA model are not only reduced in size but are
opposite in sign from the IBA results. The sum of
the D,, and X,, parts are essentially the same for
both models with the small differences.arising
from normalization. Consequently, it is seen
that the Pauli nonallowed terms make a big dif-
ference in the D,, and X,, matrix elements.

Since the Pauli nonallowed terms do not contri-
bute to the H,, + H,, matrix elements, the small
differences between them in the two models are
due to the differences between the boson and ex-
act normalizations.

In the IBA model, the only contribution to the
off-diagonal matrix elements come from the H,,
+H,, part of the Hamiltonian. In both models,
the calculated X, parts tend to cancel the H,,
+H,, part making the off-diagonal matrix ele-
ments smaller than if the X,, part were neglected.
Because of the smaller off-diagonal matrix ele-
ments in the EBA" calculations, there will be less
mixing of the two-boson states after diagonaliza-
tion in the EBA model than in the IBA model.
However, this effect will be negligible due to
the large energy separation of the diagonal
matrix elements in both models.

In both the IBA model and the EBA model, the
two-boson states can have some center-of-mass
spuriousness in them even though the original
one-boson states were free of center-of-mass
motion. Although the spuriousness of these
states cannot be readily removed, a fairly good
estimate of the spuriousness can be obtained by
evaluating the expectation value of AH_ , between
the extended two-boson states. It was found that
(AH ) ranged from 2 to 8 MeV making (AH, )/
Anw=~0.009 to 0.036 which indicates very little
spurious center-of-mass motion in these states.

With all the relevant matrix elements, one can
now diagonalize the shell model Hamiltonian with
the two-boson basis states in the IBA model and the
EBA model. In the EBA case, the nonorthogonal-
ity of the extended two-boson basis states was tak-
en into account in the diagonalization process.

The results of the diagonalization for the two mod-
els will be compared with an exact (2h-2p) calcul-
ation of the lowest 0*,0 and 2%, 0 levels in '°O in the
next section.

VI. EXACT (2h- 2p) CALCULATIONS

For the IBA model and the EBA model to be able
to describe the low lying excited positive parity
levels in 0, the energies and microscopic struc-
ture resulting after diagonalization should be

" range forces used previously, H+H/,

similar to the results obtained when an exact cal-
culation is done. That is, not only should similar
energy eigenvalues be obtained but the larger dom-
inant components of the eigenstates should be the
same.

With holes in the 1p shell and particles in the
2s-1d shell, and the same Gaussian and zero-
m, Was dia-
gonalized in a complete 2h-2p basis for the 0*,0
and 2',0 states. By diagonalizing H+H[ ., , it is
beheved that the spurious center-of-mass admix-
tures were removed from the low lying states.
However, the amount of spuriousness in the low-
lymg states was not checked by calculating their
overlaps with the spurious 1S-2D state or the
spurious 1P states. In the 0°,0 spectrum for ex-
ample, one eigenstate appeared around 400 MeV
while four eigenstates appeared around 200 MeV
and these five eigenstates presumably contain
most of the spurious center-of-mass motion. One
can account for the appearance of these five states
by using the fact that in the 1h-1p space, there is

one 1P spurious state and four nonspurious states.

The 1P state could couple with itself a form a
2S-1D spurious state of energy 27w which one
identifies with the 0*,0 eigenstate near 400 MeV
in the (2h-2p) spectrum. The 1P spurious state
can couple with the other four nonspurious states
to produce four 1P purlous states of energy
17w which one 1denti'ﬁes with the four 0*,0 eigen-
states around 200 MeV.  That these 5 elgenstates
are well separated in energy from the remaining
35 lower lying eigenstates is evidence that these
lower lying eigenstates contain very little spurious
center-of-mass motion. Similar remarks can be
made about the 2*, 0 eigenstates where one spur-
ious eigenstate appears around 400 MeV and 12
spurious eigenstates appear around 200 MeV.
The results for the exact calculation, the IBA
calculation, and the EBA calculation are com-
pared in Tables VI-VIII. The lower lying 0*,0
and 2°,0 energy levels are compared with the ex-
perimental positive parity levels in %0 in Fig. 2.
The exact calculation gives the lowest 0°, 0 level
at 9.08 MeV for the Gaussian force and at 4.88
MeV for the zero-range force as compared to the
observed 0,0 level at 6.05 MeV. If this observed
state was entirely due to 2h-2p configurations,
then the Gaussian force would be too weak and
the zero-range force would be too strong. One
believes that there is substantial (4h-4p) admix-
ture in this state and inclusion of these (4h-4p)
configurations would tend to push the calculated
levels lower making the Gaussian force results
closer to the experimental results and the zero-
range results further away. On the other hand,
the 1 MeV difference between the exact zero-
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TABLE VI, Energies and dominant configurations of the lowest 0,0 eigenstates for the exact calculation, the IBA
model, and the EBA model. Configurations whose amplitude is less than 1% in any of the calculations are not included.
The lower observed 0*,0 level in 10 is at 6.05 MeV. The components marked by an asterisk do not occur in the

two-boson states.

Gaussian force

Zero-range force

. . \ Energy in MeV Exact IBA EBA Exact IBA EBA
Configurations 9.08 4.59 12,18 4.88 4.54 10.26
(py5%01) (dy/5%01) -0.55  —0.60 046  -0.44  -0.69  —0.68
(b1 5°10) (ds5210) 0.15 0.29 0.23 0.20 0.33 0.33
(py/5110) (ds ) 9d5/510) —-0.17 * * —0.23 * *
(by/5%01) (dy/5%01) -0.14 -0.19  -0.03 -0.08 -0.01 -0.01
(py,°01) (s1/,%01) —0.24 -0.28  -0.50 -0.09 —-0.18 —-0.22
(py,5210) (s1,5210) 011 0.09 0.17 0.11 0.06 0,07
(b1 /205 /210) (ds/5%10) -035  —0.24 -019  —0.44  -0.25  —0.25
(b1 /203/221) (d5;4221) 0.02 0.30 0.23 0.14 0.31 0.31
(byyob3)210)  (ds)ads;510) 0.32 0.20 0.17 0.42 0.20 0.19
(b1 /203/211) (d5 /903 511) 0.13 0.28 0.18 0.17 0.31 0.30
(By/9b3/221) (ds/951/921) -0.14 0.00 000  —0.07 0.00 0.00
(b1 /203/510) (ds/5210) 0.08 0.00 0.00 0.11 0.00 0.00
(b 2b3/210) (s1/5%10) -0.24  -0.18  -0.31 -0.20  —0.08  —0.10
(b5 /5201) (dg;,201) -0.24  -0.11 -010  -0.16  -010 . —0.10
(p3/2210) (ds4210) —-0.14 -0.02  -0.03 -0.18 0.00 0.00
(b3 /2210) (ds/9d5/,10) 0.19 0.09 - 0.07 0.26 0.09 0.09
(p5/5°21) (d52d3/521) ~0.04  -0.13  -0.09  -0.08  -0.13  —0.12
(B5,5201) (dy /,201) -0.13  —0.09  —0.07 -0.11 -0.09  —0.09
(b3/5230) (ds;4%30) 0.10 0.07 0.12 —-0.07 0.02 0.03
(b5 /5°01) (s1,9201) ' ~0.13 -0.09 -0.16  -0.04  —0.03  -0,03
(b5/5°10) (s1/5%10) -0.13 -0.07  -0.12 -0.11 —0.02 -0.03

range results and the observed position of 6.05
MeV is not a serious disagreement for this re-
gion of the periodic table.

For all six calculations of the lowest 0,0 level,
the amplitudes follow similar trends in sign and
magnitude. However, for both the Gaussian force
and the zero-range force the IBA and EBA amp-
litudes are sufficiently different from the exact
results so that there is only a 50% to 60% overlap
between the wave functions of the exact results
and those of the IBA and EBA results. One nor-
mally requires a 95% or better overlap before it
can be said that the wave functions agree. So the
small overlaps above indicate non-agreement.

. In the exact calculation, the lowest 2,0 eigen-
state is-at 11.25 MeV for the Gaussian force and
at 9.74 MeV for the zero-range force both of
which are above the observed position of 6.92
MeV. The IBA model gives the energy level fairly

close to the observed value for both forces while
the EBA results are too high.

The amplitudes of the lowest 2*,0 state for both
forces in the IBA and EBA cases are in poorer
agreement with the exact results than was the case
for the 0*,0 results. Not only is there disagree-
ment in signs for some amplitudes, but some amp-
litudes in the exact case are large (small) while
those in the IBA and EBA cases are small (large).
It should be noted that the amplitudes of the exact
calculations do not even agree for the two forces
indicating a sensitivity to the force used. The
exact zero—range force results have two relatively
large amplitudes which do not appear in the two-
boson basis states and which are less than 1% in
the exact Gaussian force results.

Thus, it appears that there is rather poor agree-
ment between the exact calculations and both the
IBA and EBA results. With sensitivity to the force
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¥ ) and the generally poor agreement between the re-
" ‘%'? 2%0 — 20 | sults of the calculations, one is not encouraged to
) S —— 2! =9 1 proceed further and consider (4h-4p) admixtures
sk §§: 2%0 ] arising from four boson states or to calculate
N 0%.0 2%0 transition rates between states.
14t “$0 —— %0
1*,0
3 — 2 . VIL. CONCLUSIONS
r2r ;gflg 2o 20 | In this paper, the interacting boson approxima-
nt =;;:Eg 2o oo tion and a modification of it, the extended boson
440 — 20 | approximation, was compared with exact (2h-2p)
or 2%0 ] calculations of the position and structure of the
E sf — 0% 20 1 lowest 0*,0 and 2*,0 states of '°*0. The EBA mo-
z o ] del was used to examine the effects of two ques-
% tionable approximations made by the IBA model
§ f —— 2%0 1 which are the neglect of the Pauli principle and
Wl —  oeo ] the neglect the recoupled parts of the H,, matrix
elements.
5t —— 040 ] The results indicated that both of these approxi-
al ] mations of the IBA model are not valid and result
in large changes in the matrix elements from what
3r 1 is the case for the more exact EBA calculation.
2| - Furthermore, neither the IBA model nor the EBA
| | model agree sufficiently well with complete exact
(2h-2p) shell model calculations so one concludes
) 0%0 0%0 0+,0

that neither of them is a good model to describe
the low lying positive parity states of °O.

These results do not, however, preclude the
EXPERIMENT GAUSSIAN ZERO-RANGE possibility that the IBA or EBA approaches might

FORCE FORCE work better for nuclei in other regions of the per-

iodic table. Recently Iachello and Arima2"?? have
developed an interacting boson approach in which
collective nuclear states are described by a Ham-
iltonian written in terms of /=0 and /=2 bosons
and interactions between them. This approach

FIG. 2. Comparison of the low lying 0*0 and 2* 0
levels from exact (2h-2p) calculations for a Gaussian
force and a zero-range force with the experimentally

observed positive parity states below 17 MeV (Ref. 17, appears to be able to describe: vibrational and
Table 16.9). rotational states of deformed nuclei.
J
APPENDIX

The matrix element of H,, between two (2h-2p) states can be written as a sum of 16 terms. Only the
first term denoted as I will be explicitly given. The remaining 15 terms can easily be calculated with
the expression for M by suitable interchange of quantum numbers as described below.

Let lower case Roman letters refer to the particles with the letter b denoting (n,7,,j,) and lower case
Greek letter referring to holes with the letter a denoting (n4l4jq). If b or o appears in 6(abc)=(—-1)*?*°
in a 6-J or 9-J coefficient, etc., it is understood to denote j, or j,, respectively. 9(a =B) means that the
quantum numbers o and 8 appearmg in 9N are to be interchanged before IN is evaluated. Similarly,

IM(a =B, aZb) means that the @ and B quantum numbers and the -a and b quantum numbers are to be inter-
changed.

The matrix element for H,, can be written as
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TABLE VII. Energies and dominant configurations of the lowest 2*,0 eigenstate obtained with
the Gaussian force. The lowest observed 2*,0 level in 180 is at 6.92 MeV.

Exact IBA EBA
Configurations Energy in MeV 11.25 6.91 13.47

(py/9°01) (ds/9%21) —0.40 ~0.50 -0.39
(py/5110) (d5/5210) -0.07 ~0.26 —0.20
(p1/,°10) (d5 /5230) 0.13 0.13 0.10
(by/210) (ds, 25 510) -0.11 0.04 0.06
(b ,201) (ds 351 /221) ' ~0.40 0.26  0.36
(py/,210) (ds ;251 /230) 0.19 —0.03 -0.05
(by/,%01) (ds/251/221) 0.15 -0.08 -0.14
(b1 203/910) (ds/5210) 0.10 0.08 0.06
(By/903/210)  (ds/4730) -0.21 -0.17 -0.14 -
(b1/2P3/221) (ds/5221) —0.16 -0.11 —0.04
(b1 9P3/210) (dy 45 7920) 0,17 -0.12 -0.10
(b1 203/210) (d5/251/220) : -0.18 0.07 0.09
(1903 /210) (d5/251/230) -0.31 0.14 0.21
(B1,903/210) (ds;251/210) -0.12 0.04 0.11
(B1/203/220)  (dy951,220) —0.12 0,04 0.06
(b5/5°01) (ds;5%21) -0.15 —0.06 -0.06
(b3 ,210) (d5;,%30) -0.11 —0.04 -0.04
(b5 /5°01) (dg/251/921) -0.19 0.07 0.11
(b3 /4710) (ds5/251/230) _ -0.18 0.05 0.07
(p3/5%01) (d3/951/221) 0.12 —0.05 -0.07

((@BJ,T ) (abd ,T,)IT | Hy, | (¥8J T ,)(cdd ,T,) I T)
=M+ O(apabd T, J,T,)Ma=B,a=b)+ 6(ydcd] ,TJ, T )My =56, c=d)
+ 6(aBydabedd, T J, T, TJ T )M a8, y=06,a =b, c=d)
+ 6(aBd T )M = B)+ 6(ydd ,T,)M(y = 8)+ 6(abd,T,)M(a= b)+ (cdJ T )M(c = d)
+ 6(aBedd , T\J T )M aZB, cZd)+ 0(ydabd ,TJ,T,)M(y =5, ab)
+ 8(abcdd T, T, M(a= b, ¢ =d)+ 6(aBysJ,TJ,T,)Mazp, y=5)
+ 6(aBydabd T, J,TJ,T,) M a=B, y=06, aZb)+ apydcd] T\ J,THJ,T)MaB, vy 5, cZd)
+ 8(aBabedd T J,TJ T,)MaZB, alb, cZd)+ 6(ydabed,TJ,TJ T, My =06, a’b, cZd). (Al)

The reduction of the (2h-2p) matrix element to the form given by Eq. (A1) proceeds in the same way as
a similar derivation done by True and Ma® where isospin was not included.
For conciseness in giving the relation for M, the following notation will be used:

6(86)0(bd)acayd J ., T, T, T.T,0(aByabed J JT,T.l.L)
[1+06(aB)][1+08(yd)][1+5(ab)][1+ 5(cd) ]2 ’

o=6(T"), (A3)

Ax)= {c a x {Jz J, x} {a Y x} ’ (A4)
J, d, b J, d, ) \J, J, B

(A2)
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TABLE VIII. Energies and dominant configurations of the lowest 2*,0 eigenstate obtained
with the zero-range force. The components marked by an asterisk do not occur in the
two-boson states.

Exact IBA EBA
Configurations Energy in MeV 8.74 7.77 11.95

(py/5201) (ds/4221) —0.46 —0.65 —0.65

(by,5°10) (ds/5%10) -0.20 -0.33 —0.33

(p1/5%10) (d5/,230) ~0.06 0.17 0.17

(b1/5710) (ds 4y 410) ' 0.39 0.01 ~0.002

(p1/210) (dy5%10) 0.12 * *

(p1/,°10) (s1/,210) -0.28 —-0.06 -0.07

(B1/9b3/210) (ds/,°10) 0.34 0.11 0.11

Py 903 /921) (ds/,%01) ) 0.13 024 0.23

(b1/903/220) (d5/9%30) —0.17 -0.03 —0.04

(b1/905/921) (ds/9%21) -0.11 -0.20 —0.22

(b1/203/210) (ds;3d3/910) -0.28 0.09 0.09

(b1 /2b3/10) (s1/5°10) 0.22 -0.01 —0.01

(p3/510) (ds;4710) 0.21 -0.04 —0.04

(p3/2°10) (d5/2d3/210) -0.22 * *

(b3/510) (s1/5710) 0.16 0.002 0.002
$o(B)=RMILIL)L,]|C| | XL | C] |20, (A5)

and :

b2 (B)=RYI 111 || [1XL] €] 1) 5 (A6)

where R*(,1,1,1,) is the conventional Slater integral and (l,| |C*||1,) is the reduced matrix element of
Ck=[4n/(2k+1)]/2Y*(8, ¢).
In terms of a 12-J coefficient and the definitions in (A2)-(A6), I is given by

1 ,
z Ty Ty ‘ {yax} aa ky (v ck
¢ 1 H 9 =2

T' 3 T, (W+o )kz'; (B )2\ (x)pp (k) e c b 1,1, }{lc I }
b7 -

I, L, k) (L Iy x ¢ X
—(B+GM)29(k)9?2X(x)¢p(k) {l 1 x} {a y L}{C a..l_}

Rex a

a c kY(y a bk
—(H+0W) D 6N (k) by (R) 11 L }{ }
[ c a2

[N

3ll=pz: oT"2
T'

~

2

+(M+ oB) Z 6(kX2G\(x )5 (k)

LIET ]

{a'yx {lala }{l,lcq 1, I,k
e aq @ a3 cry )l a)l ol

_Q
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