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The difkrential photon spectrum for radiative muon capture is expanded about the average maximum

photon energy k and the correction terms evaluated using for one a modified Thomas-Reiche-Kuhn sum

rule, thus extending previous work for ordinary capture. The resulting rate is much less dependent on k
than the usual closure result. The ratio k /v appropriate for closure calculations, with v the average
neutrino energy, is determined and found to be approximately constant and, when correction terms are
included, somewhat higher than values previously used. By similar techniques a consistency relation is
derived which can be solved to explicitly estimate "physical" values of k„and v.

I

NUCLEAR REACTIONS Radiative muon capture. Differential photon spectrum,
relative rate for Ca. Dipole sum rules used to correct closure approximation,
obtain estimates of mean excitation energy, average maximum photon energy.

I. INTRODUCTION

The calculation of radi. ative muon capture rates
in nuclei has been pursued by a number of authors
with the aim of extracting the magnitude of the
weak induced pseudoscalar coupling g& from mea-
surements of the differential photon spectrum or
the photon asymmetry. In essentially all of these
calculations, e.g. , Ref. 1, 2, the closure approxi-
mation on the final nuclear states has been used to
express the rate in terms of the ground state ex-
pectation value of a two-body operator. In this ap-
proach an average maximum photon energy k
corresponding to an average excitation energy of
the residual nucleus is introduced. The rate de-
pends very strongly on k and hence, uncertainty
in k poses a problem when one attempts to ex-
tract g& from experiment. The situation is entire-
ly analogous to that for ordinary muon capture,
where the result of a closure approximation cal-
culation is very sensitive to the choice of the aver-
age neutrino energy v.

Recent calculations' ' of ordinary muon capture
rates employing sum rules have succeeded in
largely eliminating the v dependence of the rate.
In particular, Bernabeu' has shown that a first
order expansion of the capture rate about v gives
a result which is essentially independent of the
specific value of v within a range of plausible
values.

In the present paper we extend these ideas to

radiative muon capture and show that a first order
expansion of the expression for the photon spec-
trum about k gives a corrected expression for the
spectrum which is much less dependent on the spe-
cific value of k used than the usual closure result.

In Sec. II we derive the corrected expression
for the differential photon spectrum. As for ordi-
nary capture, two additional terms arise besides
the usual closure term. One can be cal.culated
from the closure term and the other one is evalu-
ated using a generalized Thomas-Reiche-Kuhn
(TRK} sum rule. '

Several further corrections are considered
which were not included in earlier calculations of
ordinary capture. In particular, the effect of the
Coulomb energy difference between initial and
final nuclear states is included in a simple way.
Exchange effects are also included, albeit in a
very phenomenological way, by modifying the sum
rule term by an overall factor 'which is obtained
from a sum rule analysis of total photoabsorption
cross sections.

In Sec. III we try to clarify the meaning of these
average quantities k and v and show that by h sim-
ple extension of the sum rule technique we can ob-
tain a consistency equation which allows an explicit
calculation of average quantities related to k and

v. Then, as an example, in Sec. IV our results
are applied to the closed shel. 1 nucleus "Ca, using
a very simple harmonic oscillator model, and we
close with a brief discussion of these results and

our conclusions.
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II. THEORY

In an approximation which neglects the "velocity
terms", the differential photon spectrum for ra-
diative muon capture can be written

N(k) = (c»mqG'/4«»')l »1«q l' Q I'(k, x) .

Here Q& is the muon wave function, and the sum

on A. is over the circular polarizations of the pho-
ton emitted with absolute value of momentum k.
The function I'(k, X) contains the nuclear matrix
elements. If one assumes for radiative capture
the relations given in Eqs. (6) and (7) of Ref. 8,
which are the exact analogs of the relations M&'
=M& =M& usually assumed for ordinary capture,
and which follow, for example, from SU(4) invar-
iance of the internucleon forces, ' then

1 k k~ —k '
QI'(k, ~) = dye G„', e(k„"-k)l&f lp ~-(~) e '"~'» ls&l'

l

1

dy P G~'I~'(k'~, k) .
-1

kf =m„—(m„—m», ) —E«»s —(E, —E,)
E —(E —EJ—

in which E~z is the muon binding energy and E„E~
are the energies of the nuclear states.

Since G~' depends only weakly on k through the
combination k'~/2m 0.05, we replace k' in G,»,

'

by an appropriate average value k, and define

1

I„(k) = dy y" Q I ~'( k'~, k }.
1 a$

(4)

In this expression, y =k v and s~ = (k + v)~, with

v,~, k~, and k', respectively, the neutrino mo-
mentum, the photon momentum, and the maximum
photon energy corresponding to the transition a- b.
C,~' is a function of k", y, and the weak coupling
constants, and the sum on a b denotes an average
over initial and a sum over final nuclear states.
The maximum energy available to the photon is
given by

plicit y dependence from G,~', are functions of k
and the weak couplings. When the I„are evaluated
in the closure-harmonic oscillator model, Eq. (5)
gives an expression for the spectrum in closure
approximation N(k, k) which exhibits strong de-
pendence on the average maximum photon energy
k, as we shall see in the next section.

In an attempt to reMedy this situation we calcu-
late correction terms to the closure ayyroximation
using techniques analogous to those used in Ref. 4
for ordinary capture. We thus expand I,~'(k„,k) to
first order in k~ about an average value k and ob-
tain a corrected expression I™~'for which the k~
dependence is explicit and linear.

I.n'=I.n'(k~ k) la~=a

+»~ I~ (k~») l.~=,.(k". -k.) .

Using Eq. (3),

Thus the differentia1. photon spectrum can be writ-
ten

I~ =I&i+(E-kJ» lI„'(k,k)
Bk )

N(k) = (nm „G'/4««') l P „l' g C„I„(k) . (5)
—

ek [(Es EQI~'(k",-k)] lag=a„. (6)

The C„, which are obtained by extracting the ex-
Substituting Eq. (6) in Eq. (4), we obtain a new
expression

8I„(k,k) = 1+(E—k ) „ I„(k,k)

1 k k —k)' I

(E, -E.)e(k."-» l&k E ~-(*).- " '«ls&l'l, —,„l,-1 m a y lIL

(7}

where I„(k,k) is the closure approximation to
I„(k). When substituted in Eq. (5), this yields an
expression for the differential photon spectrum
which we shall call N(k, k)

The final term in Eq. (7) can be calculated using
a modified Thomas-Reiche-Kuhn sum rule. ' For
a many-pa, rticle Hamiltonian H= T+ V, an opera-
tor Q»0» which satisfies the commutation relation
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[Q,O„V]=0 then also satisfies

g(E;—E;) I&f IZ o I &
I'

&a IZ (%~OS) (&,O, ) Ia), (8)m

with E'„E~ eigenstates of &, and m the nucleon
mass.

There are two refinements which can now be
made before applying this sum rule to the evalua-
tion of Eq. (7). These have not generally been
made in previous calculations for ordinary cap-
ture, but do seem to have numerical significance
and so will be included here. The first deals with
the Coulomb energy shift. Observe that Eq. (8)
contains, E,' —8'„ the difference in eigenvalues of
the nuclear Hamiltonian, whereas Eq (6) .involves

E, —E„ the difference in the actual nuclear ener-
gy levels, which of course includes the Coulomb
energy. The two are related by E, —E=E~-E',
-E„where E, is the Coulomb energy difference
between the (A, Z) and (A, Z —1) ground states
Substitution of this relation into Eq. (7) effectively
replaces E by E+E, in the second term.

The second refinement has to do with the influ-
ence of exchange corrections. When the TRK sum
rule is applied to photoabsorption processes it
fails, predicting total photoabsorption cross sec-
tions which are too low. This is not entirely unex-

g(E:-E:)l&blyo, l &I'

&a lg(V, O,') (v, o,) la&. (9)
8g

g

Applying Eq. (9) to the final term in Eq. (7), we
obtain for the differential. photon spectrum

~(k„,k) =(o.)n„O'/«') ly„l'g C„i„(k,k), (10)

with

pected since it has been known for some time that
nuclear exchange potentials not satisfying
[Q,O„V,„,/ =0 give rise to terms which make a
significant contribution to the sum rule. "'" The
inclusion of exchange forces would enharice the
right hand side of Eq. (8) by an amount conven-
tionally described by a phenomenological factor
(1+n), which for specific nuclei may be deter-
mined from fits to experimental total photoabsorp-
tion cross sections. Moreover, since the pro-
cesses of photoabsorption and muon capture are
both dominated by dipole transitions and in that
approximation involve similar operators, we may
reasonably expect that values for e determined
from photoabsorption data" can be used to esti-
mate the o. necessary to calculate muon capture
rates. Thus we will make use of the modified
TRK sum rule in the form

a

(3kk ' —6k'k +3k')/(n+2) n odd

To obtain the relative rate we need the ordinary
capture rate calculated in the same approximation.
We thus write the ordinary rate A (again neglecting
velocity terms) as

M'(v) = 1+(E+E,—)/) —M'(v)
dv,

let

3

-2(1+n)Z
fPl (m p2

I4) I' Q (G~'+3Gor')uM. s'(&w)
L: ='- -:: -. -"a"5

with

(12) with M'()/) the usual closure result. This is es-
sentially the result of Bernabeu, 'with Coulomb
and exchange corrections added as above.

So far in this and previous work the velocity
terms have been neglected. This has been neces-
sary for the sum rule piece because an operator
-P does not satisfy the assumptions necessary to
obtain the simple sum rule of Eq. (9). Observe,
however; that both the velocity terms and the sum
rule corrections to the main terms are O(1/m).
Thus, presumedly a sum r'ule correction to the
velocity terms, which would involve commutators
with the kinetic energy P'/2m, would be of
O(1/rn'), i.e, , of the same order as other terms

(13)

Proceeding as for radiative capture we find for
the corrected rate

2

A(~) =
2,

"
IA„ I'(G~'+3Gar')M'(~), (14)

where

'=l» '/»L»') f )4)) /4)l( )Z»(4/)» '»»&1 )I'. »»
f.
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neglected. Corrections of O(1/m) are obtained,
however, by including the velocity terms in the
usual closure results Q„C„I„(k,k) and
(G~'+3Gor')M'(v) appearing in the first two terms
of Eqs. (11) and (15). So henceforth we shall in-
corporate the velocity terms in ~C„I„(k,k) and
(Gz'+3G&r')M'(v), obtaining a result which we ex-
pect will be accurate to O(l/n], ).

III. SUM RULE RELATIONS FOR AVERAGE EXCITATION
ENERGIES

Before actually evaluating the expressions de-
rived above in the context of a specific model, we
want to discuss the meaning of the parameters
k and v. In the process we derive, by using the
same sort of sum rule techniques applied above,
a consistency relation which allows an explicit
estimate of the "physical" values of k and v.

So far we have somewhat loosely referred to
k and v as "average" maximum photon energy
and "average" neutrino energy corresponding to an
"average" nuclear excitation of the residual nucleus.
Strictly speaking, however, they are not avei ages
in the physical sense but simply parameters de-
fined formally by N(k) =N(k, k) and A= A(v), where
N(k„, k) and A(v) are the closure approximations
to the actual rates N(k) and A. Thus k and v are
the values which, when used to evaluate the rates
in closure approximation, give the correct ans-
wer.

In the previous section we obtained improved
approximations to the correct rates, i.e. ,
N(k, k) and A(v), and we shall show in the ensuing
discussion that at least in a simple model these
are relatively independent of k and v. Thus the
appropriate values of k and v to use in a closure
ca1.culation can be estimated by solving the equa-
tions N(k, k) =N(k, k) and A(v) = A(v), that is, by
determining the inter section point of the closure
and corrected calculations. This is just the point

where the two correction terms in Eq. (11) or
those in Eq. (15) exactly cancel. The resulting
parameters are then those which must be used in
a closure approximation calculation for consistent
results. They are of course somewhat dependent
on the model used for the nuclear matrix elements
and thus if drastically different values are re-
quired to fit the data, one should view the model
with suspicion.

The physical values of average maximum photon
energy and average neutrino energy (which we
shall write as 5 and v) are in principle different
from the parameters k and v. Their Pth moments
can be defined formally as

Q (k f)~N~(k)
k' ="

N~(k)

Z va]) Aa
vP ay

Z A.o
(16)

where the denominators are just the rates N(k)
and A, and the numerators are the appropriate
quantities for the transition a- b weighted by the
probability of that transition and summed over all
states b.

In closure approximation, 0 =k and v= v, which
is what is normally assumed. We can however
calculate corrections to these relations in exactly
the same way that we have calculated corrections
to the closure approximation for the rates, so that
when such corrections are included, these equalimm

ties will no longer hold. To do this we expand both
numerator and denominator of Eq. (16) about k'~

=k. and v~= v and carry through the sum rule
evaluation as done in Eq's. (6)-(11). The results,
keeping only the first order correction, are

i) vn)]&k/mm„)(k —k) I[k
' —2k(k —k)]/]nv)) n even.

k =k,„+Pk ' E+E,—k — ~
" " C„

2k(k —k)/(n+ 2) n odd

and

]) p p k]] (1 +R)v Z/2PB
v = v +Pv '] E+E,—v—

(18)
Thus, for P =1 these relations express the physical
average k and v as the closure parameters k and
v plus a correction term. Note that the correction
is essentially the same, only without the deriva-
tives, as that appearing in the equations for

N(k„, k) and A(v).
A more useful result can be obtained by expanding

the right sides of Eq. (16) about k„and v instead of
k and v. The resulting equations (identical to
those above with k -k„and v- v everywhere) now

provide consistency relations which can be solved
for k and v. Since the leading terms cancel, the
solutions correspond to the zero of the term in
brackets and provide an estimate of the physical
averages corresponding to the physical average
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excitation energy of the residual nucleus. Note
that the results will depend on the model used for
the nuclear matrix elements in f„(k„,k) and M'(v).
We will evaluate these consistency relations for a
simple model in the next section.

IV. APPLICATION TO THE CLOSED SHELL NUCLEUS Ca

3+BIO
40cg

2.6 ~

0 2'

&& t.8-
k=60 MeV

k~/P= I.06

For the purpose of illustrating the calculations
outlined in the previous section, we make an ap-
plication of our method to the nucleus 'OCa, evalu-
ating the nuclear matrix elements using harmonic
oscillator shell modt. l wavefunctions. Such a mod-
el is perhaps too simple, but has been used for
most comparisons with data and in any case will
illustrate the results. In this model the closure
result for I„ is

kk —k l
„(k„,k) = ( II(k„-k) y dySR

-1

where for 'OCa with vf = (sk)' we have

4 6 8 'II

SR =20 1 — 1+———+ ~e8 80 640)

(19)

The oscillator parameter is taken to be b = 2.03
fm. We evaluate expressions (5) and (10) for the
differential photon spectrum using the C„ from the
appendix in Ref. 8 and the set of weak couplings
gv =1.0) g~=3.V, 8~=.-1.25, gs =VgA) g2 =0~ gs
=0. From Ref. 14 we have E,=~.13 MeV. and
from Ref. 15, E» =1.066 MeV, which give the
value E+E,=110.4 MeV. As noted above, the
velocity terms have been included as has the
phenomenological correction for exchange effects
(1+n)

It has been customary to present results for
radiative muon capture as a ratio of the differen-
tial photon spectrum to the ordinary rate, as pre-
sumedly some of the model dependence of the nu-
clear matr'ix elements will then cancel, though
factors which independently affect the overall
scale of the amplitudes for radiative and for ordi-
nary capture will of course affect also the ratio.
In Figs. 1 and 2 we show such plots which illus-
trate the main features of our results. We see
that the ratio of corrected quantities N(k, k)/A(v),
shown as solid and short-dashed curves for two
different values of n, is generally mich less de-
pendent on k than the usual closure result
N(k, k)/A(v), shown as a long-dashed curve. Thus
the important qualitative result is that for radia-
tive capture, just as for ordinary capture, ' the
sum rule technique allows one to obtain a result
more or less independent of the closure parameter

over a reasonable range of k . Note that since
A(v) is itself nearly independent of v in this ap-

proach, ' these qualitative features hold for the ab-
';solute rate N(k, k) just as for the ratio N(k„, k)/A(v).

We also observe that the curves for the corrected
ratio N(k, k)/A(v} and the closure ratio N(k, k)/
A(v) intersect in a region where N(k„, k)/A(v), and
due to the stability of A(v), N(k„, k) itself is stable.
Thus we can make the intersection of N(k, k) and

N(k, k) a criterion in the selection of a value of
k to be used in an ordinary closure calculation of
N(k). Similarly, the appropriate value of v can be
determined from the intersection of A(v) and A(v).
As emphasized in Sec. III, 0 and v determined
this way are basically just parameters which force
the closure approximation to give results for
N(k, k) and A(v) equal to the sum rule corrected
values, which in turn approximate the correct re-
sults.

In Figs. 1-3 we have shown results for two dif-
ferent values of ~, 0. =0 and +=1.15. The value
a = 0 corresponds to no exchange contribution cor-
rection to the sum rule piece, whereas += 1.15 is
the lower limit on e given by Ahrens et al. ,

" as

t.8~tQ
~oCa

I4-

o f.0-

0.6-

rr /r /
/ k=75 MeV

km/&=I06-

0.2-

76 80 84 88 92 96 f00
k (MeV)

FIG. 2. The relative capture rate N{k)/A for Ca for
k=75 MeV and k /v=1. 06. The curves have the same
meaning as in Fig. 1.

I I I I I I

76 80 84 88 92 96 f00
k (MeV)

FIG. 1. The relative capture rate Ntk)/A for Ca for
k = 60 MeV and k~/v=1. 06. The usual closure result
{long-dashed curve) is compared to the corrected result
for @=0 {short-dashed curve) and for a= 1.15 {solid
curve). The horizontal lines are experimental bounds on
N{k)/A from Ref. 16.
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t.8-
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X

40-

0.6—
rr

0,2 -~
I . . ~

76 80 84 88 92
k (Mev)

I

96 IOO

FIG. 3. InQuence of the Coulomb energy shift and ve-
. locity terms on the relative capture rate for Ca for
k =70 MeV and k /v=1. 06. Results including velocity
terms (solid curves) and not including them (dashed
curves) are shown for two choices of the phenomenologi-
cal factor 0. and with and without the Coulomb energy
shift E,: a—usual closure result; b—n = 1.15, E~= 7.1
MeV; c—e=l.15, E,=O; d—a=0, E,=7.1 MeV; e—
0. = 0, E,= 0; The horizontal lines are experimental
bounds on N(k)/A from Ref. 16.

determined from, the ratio of the experimental
photoabsorption cross section to the classical di-
pole sum. We observe that the introduction of the
correction n is numerically important, particu-
larly for large k. The correction is also import-
ant in principle since a consistent treatment of
both photoabsorption and radiative muon capture
using sum rules requires that the information
available from photoabsorption be used to con-
strain the parameters. for radiative muon capture.
It seems reasonable to take the values for n, 1.15
~a ~1.4, directlyfrom Ahrens et al. ,

" since the
operators in the nuclear matrix elements for
photoabsorption are essentially the same as for
muon capture, '" and since for "Ca the dipole
transition dominates both ordinary and radiative
capture. For the minimum correction a. =1.15 the
absolute rates are in much better agreement with
the data" than for no correction (cf. Table I). As
'o. is increased from 1.15 to 1.4, the relative rate
decreases, in most cases improving the agreement
with the data. The current experimental uncer-
tainty in e corresponds to an uncertainty in k,

TABLE I. Ordinary and radiative muon capture rates A and N, and corresponding average
parameters & and k, obtained from the intersection of the .closure and corrected rate expres-

. sions for Ca in a simple harmonic oscillator model. Also presented are values of the phys-
ical averages & and k~ obtained by solving the consistency relations [Eqs. (17) and (18)] for
these quantities. The cases are I: &=1.15, E,=7.1 MeV, velocity terms included; II:
=1.15,E,=7.1 MeV, no velocity terms; III: &=1.15, E~=O.O, velocity terms included; IV:
=O.O, E,=7.1 MeV, velocity terms included; V: a=O. O, E,=7.1 MeV, no velocity terms.

k v v k~ k 10 ~A N 106N/A

(Me V) (Me V) (Me V) (Me V) (Me V) k~/ k~/ v (sec ) (sec Me V ) (Me V )

60
65
70
75

78.72 82.76 84.08
83.92
83.53
82.75

84.93 1.068 l.026 0.333
84.42 1.066 1.020
83.73 1.061 l.012
82.81 1.051 1.000

6.55
4;96
3.15
1.32

1.97
1.49
O.95
0.40

60
65
70
75

77.12 80;78 82.22
82.31
82.

,
17

81.74

83.30 1.066 1.031 0.283
83.02 1.067 1.028
82.57 1.065 l.022
81.89 1.060 l.014

5.24
3.96
2.48
0.98

1.85
1.40
0.88
0.35

60
65
70
75

73.41 76.94 77.86
77.44
76.67
75.80

78.22
77.54
76.64
75.51

1.061 1.017 0.259
1.055 1.008
1.044 0.996
1.033 O. 981

3.65
2.24
0.83
0.01

1.40
0.86
0.32
0.00

IV 60
65
70
75

93.12 96.05 96.99 97.94
97.04 97.81
97.04 97.62
96.99 97.38

1.042 1.020 0.599
1.042 1.018
1.042 1.016
1.042 1.014

15.98
13.96
11.73
9.23

2.67
2.33
1.96
1.54

60
65
70
75

92.31 95.12 95.91 97.00 1.039 1.020 0.540
96.01 96.96 1.040 1.019
96.14 96.87 1.041 1.018
96.18 96.71 '1.042 1.017

13.87
12.20
10.33
8.17

2.57
2.26
1-.91
1.51
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determined from the intersection criterion, of
about 1.5 MeV.

Figure 3 shows in addition the sensitivity of the
results to the two other corrections we have in-
cluded, Coulomb energy shifts and velocity terms.
The Coulomb correction is very important. Its
inc'lusion tends to increase N(k„, k)/A(v) and the
radiative rate 1P(k, k') by amounts which can be as
much as a factor of two or three for some k in ex-
treme cases. It also increases A(v), though by a
smaller amount, and increases k and v obtained
from the intersection criterion by roughly the
Coulomb energy shift. Thus in this approach it is
clearly important to include this effect.

The velocity terms are somewhat less important,
but still should be included. They increase the or-
dinary rate by 15-209o, the radiative rate by 30-
35% and the ratio by 5—15%. This is a somewhat
larger effect than found in the usual closure ap-
proximation [where the velocity terms make very
little difference in the ratio N(k, k)/A(v)], both
because the corrected rates N(k, k) and A(v) are
more sensitive to the velocity terms than their-
closure counterparts and because these changes
in the rates change the values of k and v obtained
from the intersection criterion by about 1 MeV
(cf. Table I) which in turn produces a change in the
contribution of the leading terms.

Finally, we should discuss the results obtained
for A and v from the intersection criterion and
those for the physical. averages k and v obtained
by solving the consistency relations of Eqs. (17)
and (18). These results are given in Table I where
we show v, k, k„/v, the ordinary and radiative
rates and their ratio evaluated at 0 and v, and
the values v, k„, and k„/v, for several combina-
tions of the corrections discussed above and for
several values of k.

The most striking result is that for fixed e, the
ratio k„/v is essentially constant even though k
and v vary individually by sizeable amounts and
for some k the rates cari vary by as much as fac-
tors of two. Thus it seems sensible to fit data by
fixing k„/v and treating, say, k„as a parameter,
as was done in Ref. 16. For the standard Rood
and Tolhoek' model, using simple harmonic os-
cillator wave functions and a =1.15, we see from
the table that k„/v = 1.06 + 0.01 is an appropriate
value. For the less P'esirable choice o. = 0, k /v
is still fairly constant, but a bit lower, 1.04.

These values of k„/v are somewhat larger, than
those used before. We can understand this by
looking at the ratio of physical averages k„/v ob-
tained by solving the consistency relations starting
from the definitions of Eq. (16). The values are
not quite as constant as was the case for k /v, but

still vary by only +0.02. They are generally lower
than k /v. Values of k„/v used in previous fits to
data have usually been obtained from calculations
such as that of Rood and Tolhoek, ' who got 1.02 for
"0by comparing the closure result with that ob-
tained by summing over partial transitions. Such
a calculation starts with the definitions of physical
averages [Eq. (16)] however, and so is really a
calculation of k„/v. Hence the agreement with our
consistency result for k /v is encouraging. The
effect of the additional sum rul. e correction terms
we have included is to increase slightly the value
of k„/v appropriate for a closure calculation.

We should emphasize that the specific numbers,
e.g. , for k„/v, may depend on the model used, in
this case the standard Rood and Tolhoek' harmonic
oscillator model, though the qualitative features
we presume are general. In a more complete cal-
culation a number of additional corrections should
be included, in particular the propagator correc-
tions of Rood, Yano, and Yano, '-' the higher order
terms suggested in Ref. 18, perhaps better wave
functions, and perhaps the requirement of consis-
tency with electromagnetic matrix elements as
done in the GDR model. "

It is interesting to note however that, with n
= 1.15, the ordinary rate 3.33 x 10 s ' is in fair agree-
ment with the experimental values"'" (2.29+ 0.06)
x10's 'and (2.53+0.02) &10's '. Theradiativerate
is also somewhat high, but presumedly will be re-
duced on the order of 20%by the RYY" correction, so
that it may be possible to achieve qualitative agree-
ment here as well. Alternative}y, an increase in
a (a=1.15 is a lower limit) reduces ordinary,
radiative, and relative rates.

Thus to summarize, we have shown that the dif-
ferential photon spectrum for radiative muon cap-
ture can be calculated in a way which is nearly
independent of the value of the maximum photon
energy in a fashion analogous to that for ordinary
capture. ' The procedure consists of expanding
the expression for the photon spectrum to first
.order about k, then using closure to perform the
sum over final states. Evaluation of one of the re-
sulting correction terms is done using a modified
TRK sum rule, leading to an expression for the
photon spectrum which exhibits only slight depen-
dence on k . The intersection of this result with
the usual closure result determines values of k
and v for use in closure approximation calcula-
tions. From a practical point of view the most
useful result may be that in the standard RT
model' the sum rule correction gives values for
k„/v which are essentially constant, and slightly
larger than those used previously. -
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