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Isospin nonconservation in the N-N interaction
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A relativistic formalism of the N-N scattering including the electromagnetic contributions is presented.
Relativistic electro- magnetic phase shifts are defined and evaluated. The difference between the nuclear
phase shifts of the p-p and n-p interactions is evaluated taking into account the interference between strong
and Coulomb forces, electromagnetic n-p contributions and the mass difFerences between the charged and
neutral pions. The n-p interaction is described with the aid of six amplitudes. Neutron- proton observables
are calculated with these six amplitudes. The mixing angle of the singlet-triplet transitions is evaluated.
Experiments which should show these transitions are discussed.

NUCLEAB BEACTIONS N-& interaction, electromagnetic effects, isospin non-
conservation.

I. INTRODUCTION

The study of the amount of isospin nonconser-
vation in the PT-N interaction is interesting for two
reasons. First, one would like to have an exact
evaluation and experimental verification of it. The
second reason is of practical nature. At present
there are not enough experimental data to perform
the n-p phase shift analysis and one is obliged to
use the isospin T = 1 phase shifts obtained from the '

P-P phase shift analysis. If one would like-to per-
form a precise n-P phase shift analysis the differ-
ences between the P-P and n-P T = 1 phase shifts
should be taken into account as well as the electro-
magnetic contr ibutions of the n-P interaction. The
isospin nonconservation comes from two sources:
from the isospin noninvariant electromagnetic in-
teraction, from the mass differences between the
proton and neutron and the mass differences of ex-
changed charged and neutral particles (especially
the pions). In order to cope with all these prob-
lems we had to develop a six amplitude formalism
of the n-p interaction and to use a sixth phase shift
parameter, the mixing angle of the singlet-triplet
transitions.

The presentation of our work follows this plan:
In Sec. II we present the six amplitude formalism
of the n-P interaction including the electromagnetic
effects. In Appendix A we give formulas for c.m.
observables in terms of these six amplitudes and
in Appendix B we give formulas for lab system ob-
servables. In Sec. III we evaluate the electromag-
netic contributions to the n-p interaction, while in

Sec. IV we evaluate the differences between the
P-P and n-P phase shifts. In relation to this we
give in Appendix C formulas for the isospin non-
conserving one-pion-exchange (OPE) contribution.

In Sec. V we show results of some calculated ob-
servables and suggest possible experiments for
detecting the isospin nonconservation. In Sec. VI
we evaluate our results.

II. SIX AMPLITUDE FORMALISM OF THE NA'

INTERACTION

There are many ways of choosing the six inde-
pendent amplitudes of the isospin nonconserving
N-N interaction. As the electromagnetic contri-
butions are in a simple way evaluated in the frame-
work of the helicity formalism' we shall start with
the helicity amplitudes (X,X, I P IA.,A2) which have the
partial wave expansion

1
(~,~, Ill~A)= —P (2&+1)y'(~„~„~„~,)

J=O
xd'„„, , (e),

where p is the c.m. momentum.
In order to include properly the electromagnetic

contributions we split the right-hand side of Eq.
(2.1) into

(2.1)

&~,~, III~,~,)= —P (2d+1)I.4'(~„~., ~„~,)
J'= 0

4EM( 1t 29 ~3& ~4)~

is the electromagnetic contribution.
It should be noted that due to the infinite range

x d', (&)+ (x,z, I g,„lx,x,), (2.2)

where o, = X, —X, and P= X, —X,

I z, q)

Q (2J+ 1)'Q~ (X, X, X, X )d 8(8) (2.3)
J'
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of the electromagnetic interaction the expansions
(2.1) or (2.3) might diverge. It was shown by Tay-
lor' and Semon and Taylor' that Eqs. (2.1)-(2.2)
are correct in terms of distributions.

The six independent helicity amplitudes of the
n-P interaction are

y, (8)=&++ Iel++&=
~ g(2J+I)y,'d,'.(8),
j.

J

ton. As we shall see the difference between these
two observables is a sensitive measure of isospin
nonconservation. In Appendix 8 we give a list of
observables defined in the laboratory system. We
again follow the notation and procedure used in,

Hoshizaki's review with the x, y, z directions de-
termined by the un. it vectors

z=p,./ lp, I, y =n, x=n xz, (2.V)

y, (8) = &+- I y I+ &= —g (2J+1)y,'d,', (8),

(2.4)

where p, and p& are laboratory system initial and
final momenta respectively.

The transition between the a, b, c, d, e, f am-
plitudes and the helicity amplitudes can be obtained
using a procedure outlin. ed in Hoshizaki's review.
We obtain

y, (8) =(+ I pl +&= —g(2J+ I)gdf, ,(8),
J

e.(8) = &++ ill+-&= —2 (2J+ 1)e.'d,'.(8),
1

J'

y, (8) = &++ I 0 I +&= —P (2J+ 1)y,'d,',(8),P J'

Q, = —, (a cos8+ b —c+ d+ie sin8),

Q, = -,' ( ac os 8- b+ c+ d+ie s i n8),

P, = —,
'

(a cos8+ b+ c —d+ ie sin8),

Q, =-, (-a cos8+b+c+d —ie sin8),

P, = —, (-a sin8+ie cos8 —if),

P, =-, (asin8-ie cos8-if),

(2.8)

where + or —denotes X =+ & or X = —&. For the P-P
interaction only five amplitudes are independent
(due to the fact that the protons are identical) with

~.(8) =-e.(8).

Another set of six independent amplitudes can be
chosen which have the advantage that with them the
N-N observables are relatively easily calculated
and the observables are presented in a rather con-
cise form. The N-N elastic scattering matrix is
represented by"

M(kq, k,) = —,'((a+ b)+ (a —b)(o, ~ n)(o, ~ n)

+ (c+d)(o, ~ K)(o, ~ K)

+ (c —d)(o, ~ P)(o, ~ P)+ e[(o, + cr,) ~ n]

+ff(o, -o,) n]], (2.5)

where k,. and kz are c.m. initial and final momenta,
respectively, a, b, c, d, e, and f are the six am-
plitudes and

k~+ k) k~ —k]
Jkz+k, I

k( xk~

/ky xk] /

(2.6)

The amplitude f is the isospin violating one. In
Appendix A we give a list of c.m. observables cal-
culated with these six amplitudes. The notation and
the procedure follows that presented in the review
of Hoshizaki. ' The exception is P p which denotes
the neutron polarization in neutron-proton scatter-
ing, while P,„denotes the polarization of the pro-

where 8 is the c.m. scattering angle.
The inverse relations are

a= —,
'

[(P, + Q, + Q, —Q,) cos8 —2($, —P,) sin8],

b=-'(4, —0,+4.+ 4,),
c= 2~ (—Q, + p, + p, + p,),
d = -'(4, + 4,,

—4, + 4,),
(2.9)

e= —~i [(p, + p, + Q, —Q,) sin8+2(p, —p,) cos8],

f= i(Q, + $8).

In order to complete our discussion of the six
amplitudes we still have to give a convenient re-
presentati. on. of the partial wave amplitudes. For
this purpose we shall generalize the bar phd, se
shift I.-S representation, where I. is the total or-
bital angular momentum and S is the total spin.
The T-matrix elements in, this representation,
&I.S IT(J) II.'S'&, are given by

2i (JO I T(J) I
J'0) = cos2 y~ exp(2i 6~) —1,

2i(J1 l T(J)lJl&= cos2y~ exp('2i6~~) —1,

2i&JI I T(J)l JO) = -i sin2y~ ex'p(i6~. , 5«), (2.10)

2i(J+1 1IT(J) IJ+1~1)=cos2e~exp(2i5~„~) —1~

2i(J+1, 1 IT(J) IJ+1&= -i sin2eJ exp(ibz, ~, p~„z).
The new parameter 7J is the mixing angle of the

singlet- tr iplet tran. sition.
The relation between the T-matrix elements

(2.10) and the T-matrix elements Qf of the helicity
representation (2.4) are'
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&J, 0IT(J) IJ, 0&= e,'- e.',
«, I IT(J) IJ, »= y,'- y,',
«, oIT(J) IJ, »=e.'- ~.',
(J vl, 1 I T(J) I

J+I, I)=((J+—,
' + 2)(ki~+ 42~)+ (J+ ~ ~ ~2)($3~+ (pe~) +2[J(J+ 1)p~'(0s~+ 46~)}/(2J+ 1),

&J-1,1I T(J) I J+1,J& = f- [J(J+»]"'(y,'+ 4.'- 4,'- 0,') —4,'- 0.']/(2J+ 1).

The inverse relations are

y,'=-,'[&J, 0IT(J) [J,o&+@,',], 4,'=-,'[ &J, o(T(J) IJ, 0&+y,',],
g= l [«,1IT(J) IJ, »+ e,', ], g=-,' [-&J, IIT(J) IJ, »+ y,',],
0,'= a [-&J, o IT(J) IJ, 1)+4,6], 0,'= a [&J, oIT(J) tJ, 1)+ 0,'J,

where

(2.11)

(2.12)

y,', =&(J+ 1)&J+1,1IT(J) IJ+1, 1&+J(J 1, 1IT(J) IJ —1, 1& 2[J(J+1)]'"&J+1,1IT(J) IJ 1, I&]/(2J+ I),
&p ~~ = LJ&J+ 1, 1 ) T(J) [J+ 1, 1&+ (J+ 1)&J—1, 1 ( T(J))J' —1, 1& +'2 [J(J+ 1)]'~.'&J+ 1, 1

~
T(J) [J—1, 1&j/(2J+ 1),

05.= 0&(J+ 1)]'"(«-I, 1IT(J) I
J-1,» —«+ 1, 1IT(J) I

J+ 1,») —(J+1,1
I T(J) [J- 1, »]/(2J+ 1)

=- —Q (2J+ 1)&J,0 IT(J) IJ, »d,'o(&)
P

g (2J+1) sin2yz exp(i5z+i5zz)d~~(8) .
J=1

(2.13)

The last equality gives a direct relation between
the singlet-triplet mixing angles y~ and the isospin
nonconserving amplitude f.

The nuclear phase shifts can be defined in the fol-
lowing way. Let 5 denote one of the six phase shifts
of Eq. (2.10). We define the "quasinuclear" phase
shift 5" as

gE g gEM (2.14)

where 5E" is the corresponding electromagnetic
phase shift. In practice the amplitudes are calcu-
lated according to Eqs. (2.2) and (2.3).

III. ELECTROMAGNETIC CONTRIBUTIONS

The details of the treatment of the electromag-
netic contributions are described in our earlier
papers. "Before reviewing the results it seems

The formulas presented so far in this section al-
low a. complete description of the isospin noncon-
serving N-N scattering. For the p-P case we have

It is interesting to have a formula for the
isospin nonconserving amplitude f in terms of
phase shifts. From Eqs. (2.9), (2.4), (2.12), and
(2. 10) we obtain

f(8) = [4,(~)+'A.(&)]

to us necessary to discuss some bf thepeculiarities
of the electromagnetic in'teractions.

For the spinless case the Coulomb amplitude [is de
termined up to an overall phase factor' and up to a dis-
tribution with a support at zero scattering angle. '
The Coulomb phase shifts are determined up to an
overall additive constant. ' For particles with spin
the nature of ambiguities is more complicated. For
the p-p interaction all helicity amplitudes are singu-
lar at zero scattering angle. This implies that
go information on the phase of the amplitudes at'zero
angle is available. Therefore one can multiply
8,11 the helicity amplitudes by a common factor.
By doing this all the p-p observables are un-
changed. This also implies that one can add an
overall common constant to the electromagnetic
phase shifts of 5~, 6«, 5~„~. The result of this
change is that all ampl. itudes are multiplied by a
common phase factor and distributions with support
at zero scattering angle (5 functions) are added to
the amplitudes. This can be verified by inspecting
Eqs. (2.4), (2.12), and (2.10) and by noting that the
suDls

2J+1 dq 8

are distributions with a support at zero scattering
angl. e only.

Other peculiarities arise from the large anomal-
ous magnetic moments of the nucleons. The inclu-
sion of magnetic moments requires a derivative
coupling interaction which makes the interaction
nonrenormalizable. Therefore if Feynman dia-
grams are used for calculating electromagnetic
amplitudes or electromagnetic phase shifts, at
present time one can not go beyond the Born ap-
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g(I+ 1)= -y+1+ —,'+ ~ ~ ~ + I/I. (3.1a)

For the n-P interaction the helicity amplitudes

$, (8), $,(8), and $,(8) are singular at zero scat-
tering angle. However, the amplitude P, (8) is re-
gular at 8= 0 and the phase of $,(8) is well deter-
mined. Therefore for the n-P scattering there is
no common phase factor ambiguity and the electro-
magnetic phase shifts are well defined. On the
other hand due to the above singularities, the total
cross section is infinite and the differential cross
section is singular at 8= 0.

From the Born approximation one can obtain the
electromagnetic phase shifts. If in Eq. (2.10) one
expands the T-matrix elements and phase shifts
in power series of the Coulomb parameter, one
finds for the first order (and also up to the second
order)

5~„~= (J + 1, 1 I T(Z) IZ + 1, 1).,

e I =-g+ 1, 11 T(J) I J- 1,1).

(3 2)

We shall calculate the electromagnetic phase
shifts up to the first order in the Coulomb para-
meter g (taking also into account the anomalous
magnetic moments) from the one-photon-exchange
contribution, which is most easily calculable in the
helicity representation. We shall give expressions
for the matrix elements from which, using Eqs.
(2.11) and (3.2), the phase shifts could be directly
calculated.

The matrix elements Q~ can be obtained by using
the technique and results of Ref. (8). For the P-P
interaction we obtain

4 1 fi&( + 1)+ fio&zo —fil~J'1&

(3.3)

proximation. Therefore in deriving relativistic
formulas for the electromagnetic phase shifts we
have to limit ourselves to the Born approximation.

Our partial wave expansions of the Born approxi-
mation are b~ed on the formula which we derived
earlier, '

1/(1 —cos8) = —g (2l+ l)[ti(l+1)+ &]p,(cos8), (3.1)
)=0

where $(l + 1) is the digamma function, q is an ar-
bitrary constant and y is Euler's constant
= 0.577. . . ,

where the g(J+ 1) are obtained from Eq. (3.1) and

one can add to them an arbitrary constant common
to Q~ and p~ (one can check that this will lead to
adding a common constant to the phase shifts 5~,
5«, 5~, , ~), the 5«are Kronecker 6's, and

q= —,8'M/k,

f, = f~ = q(M'. + 2k') /(ME),

f„=g(2M' —8 v~k' —v~'k') /(4ME),

fu=f2i= 2fsi= 2f~i=nvp k /(12ME)

f2o=g(2M —4vP + v& k +2v& k /M )/(4ME),

f» =f20+ Sfu

f5= q(v&k /M —2),

f5' = M2'gvt, k

where g is the Coulomb parameter and v~ is the
anomalous magnetic moment of the proton, v~
= 1.792 8456.

The electromagnetic helicity amplitudes can be
calculated from the electromagnetic phase shifts
using Eqs. (2.10), (2.12), and (2.4). One should
note that the partial wave series (2.4) are diver-
gent and can not be summed directly. The result-
ing sums up to the first and second order in the
Coulomb parameter are presented elsewhere' and
will not be repeated here. The numerical tech-
niques of summation of divergent partial waves by
a generalization of Padd approximants will be
treated in. a separate payer.

In practice the first two orders in the Coulomb
parameter are sufficient. We will quote here only
the singular contributions which are sufficient for
practical calculations,

&=--, (1 —cos8), y -=sin-,'8,
kg, (8) = -f, [1—if, (2y+ In&) j/(1 —cos8) —2if, lnb,

kg, (8) = —2if, in&,

kg, (8) = —~f,(1+ cos8) [1—if, (2y+ inb, )j/(1 —cos8)

+ —,
' i(l+ cos8) ( f,' —2f, ') Inb, (3.4)

k(f&4(8) = 2 if, f~ln&,

kg, (8) =-f, sin8[1 —if, (2y+ ink)]/(1 —cos8)

—if, (-,'f, —f,)[y ' —In(l+y ')]sin8.

The appearance of the Euler's constant y in the
above formulas is the result of a particular choice
of the arbitrary constant, it is consistent with the
usual definition of Coulomb phase shifts. The ob-
servables should not depend on th'e particular
choice. However, for Eq. (3.4) this is not the case
and further improvement of Eq. (3.4) is needed.
We can observe from Eqs. (S.la), (3.3), (3.2), and
(2.11), that with the constant y of Eq. (S.la) an
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An equivalent method of calculation. is to replace
y by zero in Eq. (3.1a), and in all equations follow-
ing it. For practical calculations we recommend
the following procedure:

1. Define the electromagnetic phase shifts from
Eqs. (3.2) and (3.3) only with terms containing f„
1",(=f,), f0, and f,. The rest can be absorbed in the
definition of the nuclear phase shifts.

2. Define the electromagnetic and nuclear ampli-
tudes according to Eq. (2.2).

3. For the electromagnetic part use Eq. (3.5). A

very small regular part is absent from Eq. (3.5)
which can be omitted. (For details see Ref. 9.)

For the neutron-proton interaction we obtain

h105 JO 116Jl &

~20 h2052'0+ h21611t

&2 - h21521

$4~ = h4/[J(J'+ 1)]+h41 6~1,

~2 21 Jl&

y,' = h,/[J(J+1)]+h„5„,
where

1)v„k'(1+ -'. v, )/(EM),

(3.6)

—,
' I1„= qv„v2k2/(12ME),

2ivp2[1 v, (Z'+M')/M']/(2@M),

h, = —,
'

&v k2(1 v, E'/M')/(EM),

h21= h0, = W2qv„v2k'/(12M'),

h0 = 1iv„k2/M,

overall constant f,y—is common to the phase
shifts. From this fact and from Eqs. (2.12) we
can infer that up to some 5 functions at zero scatter-
ing angle the helicity amplitudes have an overall
phase factor exp( —2if,y). Therefore if we multiply
the helicity amplitudes by the factor exp(2if, y), the
results shouM not depend on y, and we can replace
Eq. (3.4) by equations equivalent to it up to the sec-
ond order in g:

A -=exp(2if, y),

kA $, (g) = f1(1 -if, in&)/(1 —cosg) —2if, ' in~,

kA$2(g) = -2if, 'In&,

kA g, (g) = ——,
' f, (1+ cos8) (1 —if, in&)/(1 —cos8)

+ ,'i(l—+cosg)( f,' —2f2') in&, (3.5)

kAQ, (8) = —,'if, f, in&,

kA p, (g) = f, sing(l —if, in')/(1 —cosg)

if,(—,'I, —f,)[y ' —ln(1+y )]sin8.

and v„ is the anomalous magnetic moment of the
neutron, v„= -1.913 148. The singlet triplet mixing
parameter can be calculated from Eqs. (2.11),
(3.6), and (3.2). The result is

yz = @vs'/ 1M [J(J+1)]'~'J. (3.7)

The helicity amplitudes, up to the first and sec-
ond order in the Coulomb parameter, obtained
from the phase shifts, are calculated elsewhere. '
Here we will list only the singular parts which are
sufficient for practical calculations (the regular
part is small and can be treated in the same level
as the short range interaction),

k/0(8) = h, sin8/(1 —cos 8),

kg, (8) = —ih021n[—,'(1 —cosg)],

k /2(8) = ——,
' ih, '(1+ co s8) ln[-,' (1 —cos 8)],

(3.8)

and $2(8), $4(8), $2(8) are regular.
From Eq. (3.8) we see that o„, for the n-P inter-

action is infinite. Also the differential cross sec-
tion at very small angles

q„= 2 (141I'+ I 0. I'+
l 0, I'

+/+. I'+2 I~. I'+21~. I')

= IV,(8) I'
=h,' sin'8/[k (1 —cos 8)]' (3.9)

has a pole at zero momentum transfer 'squared
t = 2k2(1 ——cos 8).
Some of the indirect electromagnetic contribu-

tions resulting from the mass differences of
charged and neutral particles are discussed in Sec.
IV.

IV. DIFFERENCES BETWEEN THE p-p AND n-p PHASE

SHIFTS

The nuclear p-p and n-p phase shifts may differ
as a result of the following effects:

A. mixed electromagnetic and strong interaction
contributions,

B. differences in the field- theoretic electromag-
netic contributions,

C. differences in masses of the exchanged neu-
tral and charged mesons as well as the neutron-
proton mass difference, .

D. isospin symmetry breaking of the coupling
constants.
The knowledge of these effects is important for
the phase shift analysis of the n-p system. The
isospin. T=1 phase shifts are taken from the p-p
phase shift analysis. In recent years significant
progress has been achieved in fixing the mixed
Coulomb and strong interaction contributions aris-
ing in potential scattering. Several formulas give
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& (P-P)=jil —
2I 1

—
~ ~~ (P- ),( Me' s ) (4.1)

where M is the nucleon mass, e is the electric
charge (e'=1/13o), k is the c.m. momentum,
6,(p-p) and 6,(P-n) are nuclear p-p and n-p phase
shifts, respectively. Formula (4.1) is in good
agreement with E ~ 1 phase shifts which are calcu-
lated in potential models. A somewhat improved
formula for /= 0 was recently given by Streit,
Frohl. ich, Zankel, and Zingl, "

contributions which are model independent. ' Ples-
sas, Streit, and Zingl" found the following simple
relation:

where

+ (e-215& Q-n& ]) (4 2)
2k'

Me2
Q) ——

2l+ 1 (4 3)

to
For practical use Eq. (4.2) can be transformed

Qp 5 37746 MeV, a, = —2.17940 MeV,

e, = -1.34436 MeV, a3= -0.96861 MeV,

and for higher l, a, approaches values consistent
with Eq. (4.1), namely,

8 sin26, (p —n) l ( cos25(p —n) —1
5r(& &)- i p 6i(& f!)+ 2I, I 1+I 2„( /sg), ( ) 5(p„) I

(4 4)

V(r) = "
Vo~E(r, mc)(1+ 7„~TP

I Cnrtra thoro
4+

' opE ~mp (4.5)

where Vo~l(r, m) is the usual OPE potential with

where the sign of n, was chosen to agree with that
of Eq. (4.1). For the n ppha-se shift analysis the
phase shifts 6,(P-n) in the right-hand side of Eq.
(4.4) can be replaced by 5,(p-p) if their difference
is small.

The effect of neutral-charged pion mass differ-
ences and differences in pion-nucleon coupling con-
stants for the case of one and two pion exchanges
was discussed by El-Ghabaty, Gupta, a,nd Ka,skas. '
They found that for the T=. 1 np states one should
use one pion exchange with an effective mass of
2m, —mp = 144.173 MeV, where m, is the mass of
the charged pions and mp the mass of n.eutral pions.
This should be confronted with the trend to use an
average pion mass (for example 136.5 MeV in a
recent N-N phase shift analysis" ). These differ-
ences in the effective pion masses might lead to
small. but significant differences in the phase shift
a,na, lysis.

The problem of the isospin symmetry breaking
of the pion-nucleon couplirig constants was dis-
cussed by Morrison" but without any definitive
conclusions. However, it seems that if symmetry
breaking in the coupl. ing constants exists, it is ra.—
ther negligible. In Fig. 1 the one-pion-exchange
(OPE) diagrams are given, allowing for isospin
symmetry breaking. In Appendix C the correspond-
ing partial wave projections are given. The cor-
responding OPE potential should be written now in
the following form:

'~ppm.

IJ2 g QpTI~. 5

I

pA
I

I

'ITr,
I

I
Ip, n
I

iJ2g
npTl+ 5

Flo. 1. One pion exchange diagrams. The condition
for isospin conservation in the xNN Born vertices is

2= 2= 2
gnome, 0 =gppg 0 =~a@ m'+ ~

pion mass m. In the case of charge independence
this potential reduces to. (g /4v) Vo~E(r, m)T„~ r~
Above, m, is the mass of charged pions and mp is
the mass of neutral pions, the proton-neutron.
mass difference (being relatively very small) is
neglected; ~ is the isospin vector composed of
Pauli ma, trices.

In Fig. 2 we presen. t results of calculations for
the nuclear n-p and p-p phase shift differences
5„~—5». The curve C is obtained by switching off
the Coulomb potential in a potential model of the
N Ninteracti-on (Par is potential" ). The curves
OPE and TPE (two-pion-exchange) were obtained
by calculating phase shifts of one and two pion ex-
changes with the unitarization procedure as in Eq.
(3.2). The pure electromagnetic nP phase shift
(denoted by E-M) is only shown for the 'S, state,
for higher angular momenta, it is rather negl. igible.
From the above results we learn that the contri-
butions due to pion mass differences are (for lab
kinetic energies bigger )han 10 MeV) of the same
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FIG. 2. The differences between various np and pp phase shifts, 6„&-5&&, in degrees. The solid line labeled OPE
represents the differences in OPE due to the pion mass differences. The dashed line labeled TPE, represents the
differences in two pion exchanges due to the pion mass differences. The dashed line C is the phase shift difference
obtained by switching off the Coulomb potential in a potential model. The dashed point line labeled E-M gives the
electromagnetic np phase shifts.
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FIG. 3. The polarizations P~o andP«obtained by
assuming y~=1 calculated with the phase shifts of Ref.
14 for lab kinetic energy 50 MeV.

order of magnitude as the contributions resulting
.from switching off the Coulomb potentiaL Unfor-
tunately, for lower angular momenta the TPE con-
tributions are of the same order as OPE contri-
butions which indicates that summing only one and
two pion contributions is rather insufficient for
partial waves with low angular momentum.

V. DETECTION OF THE ISOSPIN NONCONSERVATION

In- Appendixes A and B are accumulated formulas
for &-P observables in terms of our six amplitudes.
We have made calculations using the formalism de-
veloped in Secs. II and III including electromagnetic
effects. Among the observables we have tested we
found that the polarization might be a very sensi-
tive observable to test isospin nonconservation.
We used nuclear phase shifts from the recent phase
shift analysis of Amdt, Hackman, and Roper. '4 En

Fig. 3 we show an example of possible differences
in the polarizations P„D (the polarization of the neu-
tron is measured) and P,„(the polarization of the
proton is measured) taking the mixing angle of the
'P, 'P, transition of 1'. [This is only an example
(with a small angle) to indicate. possible effects.
There exists no theory to evaluate this angle. ] As
one can see, the difference I'~ —I'„0 might be a
sensitive way to detect isospin noninvariance. In
Fig. 4 we show how the inclusion of the electro-
magnetic effects, discussed in Sec. III, changes
the values of the polarizations. In this figure I' is
the polarization calculated without the electromag-
netic effects. In experiments performed till now
the &„,was measured. The differences are quite
significant belo& 50' and become quite dramatic
at very small angles [Fig. 4(b)]. The electromag-
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FIG. 4. The polarizationsP„p P«and P for lab kinetic energy 50 MeV. P is obtained without the electromagnetic
contributions. The small angle's details of Fig. 4(a) are shown in Fig. 4(b).
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FIG. 5. The small angle differential cross section Io
for lab kinetic energy 50 MeV.

netic contributions have an effect only on very
small angles of the differential cross section,
which should be singular at the forward direction
according to E'I. (3.9). This effect of the electro-
magnetic contribution is shown in Fig. 5. We see
that only at very small angles (at present time un-

measurable) one can observe deviations from the
calculated differential cross section without taking
into account the electromagnetic contributions.

Till now there are no reliable theoretical pre-
dictions for the mixing angle of the singlet-triplet
transitions resulting from strong interactions.
These transitions may be present due to the proton-
neutron mass difference which is relatively small.
If one meson exchanges are concerned, the singlet-
triplet transitions might appear only in diagrams
which have vertices with different nucleon masses,
i.e., only diagrams with charge exchange. The
mixing angles of the singlet-triplet transitions 7&
resulting from the OPE charge exchange diagram
of Fig. 1 are evaluated in Appendix C. As the
singlets and the uncoupled triplets (with ~ ~ I) are
qualitatively well described at low energies by the
OPE, we conjecture that the mixing angles of the
singlet-triplet transitions y~, ™ghtbe also qual-
itatively well described by the OPE. In Fig. 6
are plotted g, and y, . In Fig. V the polarizations
+p„and I'„, are presented. The deviations at small
angles are obtained mainly due to the electromag-
netic effects. The deviations at the intermediate
angles come from the singlet-triplet transitions
evaluated with the OPE.

VI. SUMMARY AND CONCLUSIONS

In Sec. II we have developed the six amplitude
formalism of the &-& interaction allowing for iso-
spin nonconservation. Three different sets of
amplitudes were given and also transition form-
ulas linking the different sets. Using these am-
plitudes we obtained formulas for the observables
of single, double, and triple scattering (Appendix-

0.1

0 100 200 300

FIG. 6. The mixing angles p~ and p2 of the singlet-triplet transitions resulting from the n-p mass difference in OPE.
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electromagnetic effects will become necessary if
&-P polarization measurements will be performed
with greater precision or for smaller (than 20')
angles, where P„,-P,„becomes quite large.
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APPENDIX A: OBSERVABLES IN THE c.m. SYSTEM

l, =a(l al'+I bl'+I cl'+I dl'+I el'+If l'),
I,P„,=I,A„, =R. e(a*e+b*f),
I P~ =IOA0„=Re(a*e Jb*),-

FIG. 7. The polarizations with the electromagnetic
contributions and pion and nuclear, mass differences
in os (Po„and P„O) and without these contributions (P)
for lab kinetic energy 325 MeV.

es A and B). The electromagnetic contributions
are discussed in Sec. ID. The treatment is based
on the lowest order Feynman diagrams and in-
cludes the anomalous magnetic moments of the
nucleons. This formalism can not be applied for
too low energies, below about 10 MeV, as in this
case more photon exchanges are needed. Due to
the nonsymmetric spin-orbit interaction of the
neutron's magnetic moment with the proton's cur-
rent one obtains singlet-triplet transitions con-
tributing to the isospin violating amplitude IEqs.
(2.13) and (3.7)J. Small contributions to the sing-
let-triplet transitions, proportional to the rela-
tive proton-neutron mass difference are obtained
in the charge exchange OPE (Sec. V and Appendix
C). The new features of the &-P interaction are
the forward singularity of the differential cross
section at very small angles and sensitivity of the
polarization to the isospin violating effects. As
we have demonstrated the difference between the
polarization P„,-&,„might be sensitive to the
singlet-triplet transitions. Experimental evalua-
tion of this difference can lead to a qualitative
evaluation of the mixing angles of the Isinglet-trip-
let transitions. We also found that the inclusion of
the electromagnetic effects is important in the
description of small angle &-P polarization. The
obtained deviations are of the same order as the
experimental errors for existing 50 MeV experi-
ments for angles above 20'. The inclusion of the

I C„„=IA„„

=l(l al'-I bl'-I cl'+I dl'+I el'-Ifl'),
I,D„„=l(lal '+I bl '- I cl '-

I dl '+I el '+If l ')

I,&..=2(l al'-I bl'+I cl'-I dl'+I el'-Ifl')
I,D»~ = I, D~» = Im-(b*e +cd�),
I,X»~ = lm(c+e —d+f ),
I C»~ — IA»~ = lm-(d +e —c+f),
IOC~» = IOA~» = Im-(d+e+c+f),

I D»»=Re(a*b ~c*d —e*f),
I, D~~ =Re(a+b —c+d —e +f ),

I E» --Re(a+c —b+d),
4

I,C» J,A» =Re(a+d-—b +c),

I,K~» = —Im(c+e +d+f ),
I, C»» --Re(a+d yb+c),

I,E»» --Re(a*c yb +d),

APPENDIX 8: OBSERVABLES IN THE LABORATORY

SYSTEM

Let us denote the following:

6I =the scattering angle in the c.m. system,
~& ——the angle of the recoiled particle in the

c.m. system,
8& =the scattering angle in the lab system,
» =the scattering angle of the recoiled particle

in the lab system,
1e =-, 8- e„

2 ~B ~LR ~
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Using the notation of Ref. 6 for the observables
and the directions as defined by Eqs. (2.6) and
(2.V), we obtain

R = (D«c'os& 8+DE sin~8) coen

—(Dspcos28+Dppsin ,'8) s-ino. ,

A = (-~ sin~ 8+Dpxcos28)cosa

—(- D~sin~ 8+D»cos 28)sinn,
R' = (~ cos~ 8 + Dp~in~ 8)sinn

+ (Dgpc osg 8 ++psllla 8}coslx
y

A' = (-+xsin2 8 +Dp~os~ 8)sinn

+ (-Dxpsin2 8+Dppcos~ 8)cos n,

R
&

—(Krp cos + 8 +KpJsin& 8)cos as
1 ~ 1—(K«cos2 8 +Kpxsin~ 8)sinn„,

A, = (-K~sin28+K»cos&8)coso. „
—(-K«sln2 8+K cos-8)sino. '„,

R', = (Kxpcos28+Kppsing 8)sino'z

+ (K«cos28+Kpxsin~8)cosos,
A', = (-Kxpsin28+Kppcosz 8)sinai„

1 1+ (-K«sin@ 8+Kp xcozs8)cosos,

= C~pcos ccosQg. —Cppsine cos n„
—C«cosa sinn~+Cp~sino. sine&,

C„=C~p»n~coso. g+ Cppcos@ cos&„
—C«sino. sinn~- Cp~coso. sin&&,

C~g =CgpcosQf sining —CppsjnQ sing&

+C«cosa. cos 0.„-Cpj;sino. cos 0.~,
C~ =C~psino. sino.z +Cppcos ~ s jno.&

+CggslnQ cos Q~+CpgcosQ cos&g ~

A =C«cos~~ 8 —,' (C—px+ Cx p)sin8

+Cppsin'2 ~,
A„=C«sin'~ 8 + ~ (Cp» +Cxp)sin 8

21+Cppcos 2 ~
~

Ag„-- Cpxcos'28+2(Cpp —C«)sin8

+C sin'2 ~,
A = —Cxpcos'& 8 +-,' (Cpp C«)sin8

+Cp~sin 28.

APPENDIX C; ONE-PION-EXCHANGE CONTRIBUTION

FOR THE n-p INTERACTION

Up to the lowest order in the coupling constants
we have for the OPE &-matrix elements and phase
shifts the following contributions. Let us introduce
the notation

0 =c.m. momentum,

R = (k'+ 3P)'~',
I

M= nucleon mass,

P, =kl a ...Z...,l /(1«&),

P, =kgb„+2/(16n'Z),

ger, g..ro, gp.g are the coupling constants for
0

the pp~0, +1&0, and p+& vertices, correspondingly,

x =1 +2@» '/k2,

x, = 1 + ~ p, ,+'/k2

p~, p, «are neutral and charged pion
masses, respectively,

y~(x) = 6~, —(x —1)Q ~(x),

(J +1)QJ -,(x)- (2J+1)(2J+ 1)QZ(»)+ JQz.l(x)

we obtain

6z=(JOI1 (J)l JO& P, y~(x, ) —2(-1)~P.yg(x ),
~~g=(J1l &(J)l J1& =p,mg(x, )+2(-1)'p+ng(x. ),
&J; ~, =(J —1, 1[ &(J}~J—1, 1& =( —p, [Jy~(x, ) + (J+1)q~(x,)]+2(-l)~p, [Jy~(», ) + (J+1)q~(x, )]]/(2J+1),

~g, g+, =(J +1,1l 1'(J)l J+1 1&= 2J 1
(- pa[(J+1)r~(x,)+He(x,}]+2(-1)'p.[(J+1)r~(x.)+Jn~(x. )l],

[J(J+1)]'
&g =-(J+1,1I 1'(J)l J-1,1&= ( —p, [r, (x,) n, (x,)]+2P.-(-1)'[y,(x, ) -rj, (x.)]),

y,'=y,'=y,'=O, y', = pr( x) +-2(-1)' py, (x.),
e,'=2(-1)'P, n. (». ),
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4,'= —Pp'g (&,)

The above expressions are accurate up to the first order in the mass difference (+—M~), where M„
and M& are the neutron and proton masses, respectively. If one takes into account the first order correc-
tions of (M„-M~) a very small correction to the above formulas is added. The new feature is the appear-
ance of singlet triplet transitions according to

&'2
m -W

r~=(~OI ~(~)l J&) =4P. (-&)
~ ~ l ~ ~ [&.Q~(&,)-Q~, (&,)],(~ +1 %'g +TVp

*On leave from the Ben-Gurion University of the Negev,
Department of Physics, Beer-Sheva, Israel (present
address).
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