Gamma decays of 2.97-MeV doublet in ²⁰F

J. C. Legg, D. J. Crozier,* and G. G. Seaman[†] Physics Department, Kansas State University, Manhattan, Kansas 66506

H. T. Fortune

Physics Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (Received 17 July 1978)

The new member of the 2.97-MeV doublet in ²⁰F has a dominant γ decay to a (3⁻) state at 1971 keV, further evidence that the new state has $J^{\pi} = (4^{-})$. The excitation energy is 2968.0 \pm 1.5 keV.

[NUCLEAR REACTION ¹¹B(⁴³C, $\alpha\gamma$), E=18.5 MeV; measured E_{α} , E_{γ} , $\alpha\gamma$ coincidences. ²⁰F deduced levels, gamma branchings, J, π .

The 2.97-MeV "level" of ²⁰F was recently found^{1,2} to consist of a close-lying doublet. One member, at 2.9661 ±0.04 keV, is known³ to have $J^{r}=3^{*}$. It was suggested that the new member might have $J^{r}=4^{-}$ and be the state expected from weakly coupling a $p_{1/2}$ hole to the $\frac{7}{2}$ * excited state of ²¹Ne. The 3⁻ state of this configuration is probably¹ the state at 2.86 MeV. Earlier studies³⁻⁵ of the γ decays of this state had reported conflicting branching ratios (as depicted in Fig. 1), giving additional credence to the suggestion that the state is really a doublet.

We have investigated the γ decays by making use of the ¹¹B(¹³C, α)²⁰F reaction. An earlier study⁶ had shown very strong population of the 2.97-MeV level in this reaction. A spectrum from that work is displayed in Fig. 2.

In the present experiment, a beam of 18.5-MeV ¹³C ions bombarded an enriched ¹¹B foil. Outgoing α particles were detected at 0° in an Si sur-

face-barrier detector. γ rays in coincidence with outgoing α particles were detected in a GeLi detector placed at 90° to the beam direction.

Results of the present investigation for γ decays in coincidence with α particles feeding the group of states near 3 MeV in ²⁰F are displayed in Table I. The 2146-keV γ ray can arise only from decay of the 2966-keV state to the state at 823 keV. Likewise the 996-keV γ ray must arise from decay of the 2966-keV state to the 1971-keV state. The majority of the 1147.6-keV γ rays undoubtedly arise from decay of the 1971-keV level to the 823-keV state, but could contain a contribution of 2966 - 1824. Our results for the decays of the 2966-keV doublet are displayed in the last column of Fig. 1, where they are compared with the earlier work.³⁻⁵ The branch to the 1971-keV level is considerably larger than previously measured and almost certainly arises from the new member of the doublet. Since the 1.97-MeV state has a (3) as-

TABLE I. γ rays in coincidence with α particles feeding the 3-MeV group in ¹¹B(¹³C, α)²⁰F.

E_{γ} (keV)	Identification	Ideal E_{γ} (keV)	Yielda
350,9	²¹ Ne		196
657.1	$656 \rightarrow 0^{b}$	656.0 ± 0.2	626
821.6	$823 \rightarrow 0$	822.9 ± 0.2	165
983.7	$984 \rightarrow 0$	983.8 ± 0.2	64
996.4	$2968 \rightarrow 1971$	997.6 ± 1.5	279
1020.1	$2865 \rightarrow 1843$	1021.6 ± 1.0	46
1147.6	1971 - 823	1147.7 ± 0.4	176
1310.9	$1309 \rightarrow 0$	1309.2 ± 0.2	218
2146.1	$2968 \rightarrow 823$	2145.3 ± 1.4	175
2855.6°	²¹ Ne		594

^aCorrected for efficiency.

^bAlso contains gammas from $1971 \rightarrow 1309$.

^c Broad.

18

© 1978 The American Physical Society

DISTANCE ALONG PLATE (cm)

FIG. 2. Spectrum of the ${}^{11}B({}^{13}C,\alpha){}^{20}F$ reaction from Ref. 6.

signment, the present decay puts further credence to a (4⁻) assignment for the new state. No decays are seen to states with J < 3 in the present work. We therefore make a tentative (4⁻) assignment to the new member of the 2.97-MeV doublet. Our measured γ -ray energies, combined with energies from the compilation³ for the 1971- and 823keV levels, imply an excitation energy of 2968.0 $\pm 1.5~\text{keV}.$

Authors J. C. L., D. J. C., and G. G. S. acknowledge the support of the Division of Basic Energy Sciences of the U. S. Department of Energy.

*Currently at Control Data Corporation.

†Currently at Canberra Industries.

- ¹J. N. Bishop and H. T. Fortune, Phys. Rev. Lett. <u>34</u>, 1350 (1975).
- ²H. T. Fortune and J. D. Garrett, Phys. Rev. C <u>14</u>, 1695 (1976).

³F. Ajzenberg-Selove, Nucl. Phys. <u>A300</u>, 1 (1978), and references therein.

- ⁴R. L. Hershberger, M. J. Wozniak, and D. J. Donahue, Phys. Rev. <u>186</u>, 1167 (1969).
- ⁵J. G. Pronko, Phys. Rev. C 7, 127 (1973).
- ⁶L. R. Medsker *et al.* (unpublished).