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Differential cross sections for the ' Co(' 0, ' 0)' Co elastic scattering have been measured at laboratory
energies 36, 40, 45.5, 49, 52, and 56 MeV. The angular range was 15'-170' (lab) in 5' steps at lower

energies. At higher energies detailed angular distributions were carried out in 1' steps until the ratio to
Rutherford was & 10 ' with sample measurements at larger angles to assure that the differential cross
sections were less than 10 ' ratio to Rutherford. The data have been analyzed with a four parameter optical
model and the continuous ambiguities in this model are discussed. Strong absorption radii and the values of
the nuclear potentials at these points are determined. Good fits to the data have been obtained using a G-
matrix double-folding model with double-folded or Woods-Saxon forms for the imaginary potential. The
required normalization of the real double-folded potential is.near unity for all energies. Total reaction cross
sections have been obtained by the optical model, quarter-point, "half partial-wave, " and the sum of
differences methods. The sum of differences method gives slightly larger total reaction cross sections than do
the other methods by an amount consistent with estimates of the Coulomb excitation cross section. Estimates
of the errors in the sum of differences values are computed by applying the optica1 theorem and are shown to
be negligibly small.

NUCLEAR REACTIONS: Co( 0, 0) Co; measured o(8, E), El,b= 36, 40,
45.5, 49, 52, and 56 MeV; measured total reaction cross sections.

I. INTRODUCTION

The elastic scattering of '60 has been studied
for Fe, ' Ge, and Zr, ' the even Ni isotopes, '
and the odd Cu isotopes3'4 at various energies
from the barrier up to approximately 60 MeV (lab).
The present study of the elastic scattering of "0
by "Co at E„b=36-56 MeV extends the systemat-
ics for ' 0 scattering by targets near A -60. De-
tailed angular distributions were measured to as-
sure precise determinations of the total reaction
cross sections by the sum-of-differences (SOD)
method. 3'5 Total reaction cross sections are ob-
tained by the SOD, optical model, quarter-point,
and "half partial-wave" methods. Recent, but
seemingly disparate experiments on Coulomb ex-
citation and total fusion reaction studies have re-
vived an interest in total reaction cross section
measurements. ~

The data have been analyzed using a standard
four parameter %oods-Saxon optical model. The
continuous ambiguities in this model are discussed
and the parameters obtained are compared with the
results for neighboring nuclides. 4 Fits to the ex-
perimental differential cross sections have also
been obtained using a 6-matrix double-folding
model developed at the Oak Ridge National Labora-
tory and Florida State University. ' This model
has been incorporated in the computer code JIB&

by Stanley and Golin. This "one and one-half"
parameter model has previously been used with
success ' '8 in describing the experimental data

of Refs. 1, 2, and 4.
An estimate of the error in the SOD determina-

tion of the total reaction cross section is made by
applying the optical theorem. " It is vanishingly
small at low energies and only a few percent at the
highest bombarding energies.

Experimental procedures are discussed and data
presented in Sec. II. The results of scattering po-
tential analyses, both optical model and double-
folded models, are given in Sec. III. Comparisons
with results for other targets in the 4 -60 region
are also made here. Section IV contains the re-
sults of total reaction cross section determinations.

II. EXPERIMENTAL PROCEDURE

The Florida State University Super FN tandem
Van de Graaff accelerator was used to produce a
36- to 56-MeV '60 beam of charge state +5 or +6
from an inverted sputter source. " The beam im-
pinged upon 30 to 50 p, g/cm' of 'sCo target material
deposited on 15 to 25 p, g/cm' of t'C backing foil.
In this experiment, an array of six Si surface bar-
rier detectors of 100 p.m depletion depth were
mounted 10' apart in a wedge fixed to a rotatable
table in a 45 cm diameter scatterjng chamber. '3

Up to 66-point elastic scattering angular distribu-
tions (68=1' lab) were measured. A seventh Si
surface barrier detector of the same depletion
depth was used as monitor. The Rutherford scat-
tering of "0nuclei by 75 to 100 p, g/cm' self-sup-
porting '"Au targets was used for energy calibra-
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TABLE I. 59Co(&~Q, ~6Q)59Co. Qptical model parameters, the real and imaginary Igo constants (CU and Cti,), the strong
absorption radii and their corresponding nuclear potentials, and the Coulomb barrier and its radius are given at the
bombarding energies of the experiment. Since the barrier height is approximately 38 MeV, the parameters at 36 Me&
are poorly determined but are consistent with the values at higher energies.

(MeV) (MeV)
W

(Mev) CU(108) CI(10 )
D)(2
(fm)

He[VoM (D„,)]
(MeV)

Rg
(fm)

Vg
(MeV) X

36
40
45.5
49
52
56

.27.9
71.5
63.0
83.9
74.2
75.8

37.2
31.1
24.3
15.1
23.4
21.5

1.7
4.5
3.9
5.2
4.6
4.6

2.3
1.9
1.5
0.94
1.5
3.4

10.23
10.02
10.03
9.98
9.92

—.0.576 + 0.057
-0.770 + 0.086
-1.005 + 0;193
-0.981+ 0.214
-1.128 + 0.152

9.10
9.68 + 0.06
9.60 + 0.06
9.78 + 0.12
9.70 + 0.13
9.71+ 0.08

32.16
30.43 ~ 0.17
30.68 + 0.20
30.16 + 0.32
30.37 a 0.38
30.33 ~ 0.23

0.30
0.62
0.96
0.67
0.21
0.47

rz-—r&
——1.22 fm. a& ——az ——0.5 fm. R=rz(Ar P+A& ). R =1.22 AgP.

V,„(r)=—[U(r)+fW(r)j+V, (r),
where

U= Utl(1+e") ',
W= Wp(1+e*) ',

x-Rx— 76
l/3+A l/P)

and

( ~2
~3 — ~, for r~Rc

Vc(r) =ZtZ~e'
1
r , for x&R&.

ties against variation of the optical model param-
eters under the constraint of a continuous ambig-
uity.

Third, the energy dependence of the real and

imaginary optical model potentials and associated
constants is investigated. Finally, the optical
model well depths obtained in this experiment are
compared with those for ' 0 scattering by neigh-
boring nuclides. The solid curves in Fig. 2 rep-
resent optical model fits using the computer code
JIB' with%oods-Sazon real and imaginary poten-
tials of the form

Owing to the relative insensitivity of the results to
changes in R&, its value was set equal to R in all
the calculations that follow. . To investigate the
possible existence of discrete ambiguities, a two
parameter search was carried out with a four pa-
rameter (Up Wp rp a) optical model, holding rp and
the diffuseness a initially fixed at 1.22 and 0. 5 fm,

,
respectively. These values were adopted from pre-
vious analyses of '60 scattering. ' Separate ge-
ometries for the real and imaginary parts of the
optical model potential were also' tried. Since no
significant improvement was obtained, the same
geometry was adopted for both the real and imag-
inary potentials. Searches were made on U0 and
S'0 for minimum X'; defined as

s
2 Qj Oexp + calo 2

~ total t( gc l t
f=l exp

X' =X...g'/(n —P),

where X' is the value per point corrected for the .

number of degrees of freedom since n=(no. of
data points) and P =(no. of adjustable parameters).
With the geometry fixed, only one minimum in the
map of y'(U, W) was found. There is no evidence
for discrete ambiguities as illustrated in Fig. 3

~1 b 56 MeV.

TABLE II. Double-folded models' parameters.

(Mev) X2
Sp

(MeV) X2

36
40
45.5
49
52
56

0.464
0.804
0.672
0.898
0.803
0.805

0.597
0.456
0.661
0.394
0.525
0.570

0.30
0.69
1.44
0.69
0.48
0.52

0.277
0.899
0.811
1.007
0.919
0.933

37.12
31.19
27.81
25.30
30.66
30.88

0.30
0.62
0.96
0.62
0.26
0.43

Double-folded real and double-folded imaginary.
b Double-folded real and Woods-Saxon imaginary.
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When (R~ -R)»a, V~ is approximated by

VB -Uo exp + Vc(RB)
R -R~

=-C„exp(-R~/cr) + Vc(R~), (5)

which relates V~, R~, and the Igo ambiguity con-
stant.

To the extent that V~ and R~ are determined by
the experimental cross sections, Eq. (5) suggests

As expected, continuous ambiguities are evident
in the results of '60 scattering on '9Co. As pointed
out by Igo,~5 the scattering of highly absorbed par-
ticles depends on the tail of the complex potential,
the real part of which is approximated, for r/R
»1, by

Re[V (r)] =-Uoe 'e " ' '+Vc(r} . (3)

Equivalent scattering is calculated for any set (a,
R, Uo), such that Uoe r'=C„ i.s a constant. This
is demonstrated by the nearly constant value of

in Fig. 4 for'xp &1 85 fm. A similar expression
can be constructed relating S'p, xp, and g such that
+ze '=C+ is a constant. For small values of rp,
the ambiguity expression for 5'p is satisfied, as
seen in Fig. 4, but the points rise above the cal-
culated line for xp &1.25 fm. Values of the Igo con-
stants for each energy are given in Table I.

The conne. ction between the Igo ambiguity and the
uniqueness of the Coulomb barrier Va and its ra-
dius R~ has been discussed by West et al. ' for ' 0
elastic scattering by even mass nickel isotopes.
By definition, the barrier height V& is given by

VB =Re[VoM (Rs)]

+ Vc(R~) .
1+exp[(R~ -R)/a]

lo]

lOO

0e-
2 ~--r

X

IO
I.O

I

l.2
l I

I.5 IA l.5

ro (fm)

FIG. 4. The values of the real and imaginary poten-
tial weQ depths for which X2 is a minimum at 56 MeV
for different values of wp. The corresponding values of
the Coulomb barrier Va, the nuclear potential at the
strong absorption radius V~(Dqy2) (see text), and total
reaction cross sections are shown. The diffuseness
value is a=0.50 fm.

that any values of Up R and p which hold

R -Rg)
Cs ——Uo exp a j (6)

constant will provide a reasonable fit to the data.
Figure 5 shows the loci of best fit (Uo, I/a) and
(IVD, I/a) for ro ——1.22 fm. Again, the ambiguity
expression for the real potential holds over a.
longer range of I/a than does that for Wo.

As seen in Figs. 4 and 5, the barrier height V&

is rather accurately determined by the data. The
value is about 20% lower than that obtained from
the definition of the "ordinary" Coulomb barrier
Z,Z~e'/R, consistent with the results obtained by
Obst et al.

The quantity which is most precisely determined
by elastic. scattering at one bombarding energy is
the real nuclear potential at the .strong absorption
radius, Re[Vo„g)&Iq}]. ' ' This illustrated for
56-MeV data by the curve labeled VN(Dt/2) in Figs.
4 and 5 which is even more stable than V~.

The strong absorption radius I)
& ~2 is computed
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tion of the reciprocal of the diffuseness {1/a) at Ej@,
= 56 MeV with &0=1.22 fm. The corresponding values of
the Coulomb barrier Vz, the nuclear potential at the
strong absorption radius V„(D&g2) (see text), and total
reaction cross sections are shown.

from the formula for the distance of closest ap-
proach for Coulomb trajectories:

D!/2 (l fl ( 1/2«}'J"'J (7)

where q is the usual Sommerfeld parameter
Z, Z~e /52), /2 is the wave number, and I,/, is the
partial wave for which the transmission coefficient
is &. These values have been computed from the
four parameter optical model output. They are
listed in Table I for the bombarding energies of
this experiment along with values for the optical
model parameters, R~, V~, and the nuclear poten-
tial at the strong absorption radius Re[VpM(Dg/2)J.
Values for the total reaction cross section are tab-
ulated separately and will be discussed in Sec. IV.

The real optical model potential at D& ~& can be
expressed by

When (D&/2 —R)»a, Eq. (8) is approximated by

Re[v,„))),g, ))=-&&exp( "')I, (9)

the magnitude of which is labeled by VN (D&/2} in
Figs. 4 and 5. Because the real part of the poten-
tial at the strong absorption radius is precisely
determined by elastic scattering data at one energy,
i.e. , Y)))(D&/2) =constant in Figs. 4 and 8, Eq. (8)
is a continuous ambiguity relation which is very
well satisfied.

The Up and 8'p values which best describe the
angular distributions at each energy are plotted in
Fig. 6. The uncertainty assigned to Up was de-
termined from the criterion,

x2(f/0+&f/, wo) =x;„2(f/0, wo)+l,

and a similar criterion was used for the uncertain-
ty in 8'p. No systematic energy dependence for Up

and 5"p is suggested by Fig. 6 and horizontal lines
can be drawn through the uncertainty bars for both

Up and 5'p. The large uncertainty bars assigned
to the Up and 8'p values at 36 MeV are expected
since the bombarding energy is significantly be-
low the barrier (=88 MeV lab) and consequently
the optical model parameters are poorly deter-
mined. As seen in Fig. 6, average values of Up

and 8'p determined from the higher energy data
(E„,~ 40 MeV) fall within the uncertainty bars of
the values determined at 36 MeV.

When compared with neighboring Ni isotopes,
the Co nucleus appears to be more absorbing at
all energies studied here. A comparison is shown

inFig. 7 for "Oon" 'Niand "Coats.„=40. Average
values of Up and 8'p for the scattering of ' 0 by a
number of target nuclei are plotted against target
A in Fig. 8. These average values of Up and 8"p

have been obtained with the same geo'metrical pa-
rameters for all target nuclei. The "0+"Cosys-
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FIG. 7. Experimental angular distributions for the
elastic scattering of '0 from Ni, Co, and 6 Ni at
E&~—-40 MeV which illustrates the more absorptive
nature of 9Co( 0, 0) ~Co system.

tern has a larger imaginary well depth 5' and a
smaller real optical potential than do the Ni iso-
topes or 6 Cu for 40-MeV bombarding energy.

B. Double-folded real potential calculations

The justification for the common use of the op-
tical model in the analyses of heavy ion scattering
is more pragmatic than physical. Since the inter-
action originates in the nucleon-nucleon potential
operating between many nucleon pairs in both the
projectile and target, a more satisfactory heavy
ion interaction model is one which explicitly ac-
counts for the interaction of a nucleon in one nu-
cleus with the nucleons in the other. Such a model
is the G-matrix double-folding model mentioned
earlier. ' '~ In this model the real part of the op-
tical potential is obtairied by the double-folding of
a G-matrix interaction with realistic density dis-
tributions describing the projectile and target
ground states. The model is expected to give a
reasonable estimate of the real nuclear potential
only in the region r &D &~2 which is adequate for
elastic scattering. For further details the reader
is referred to Refs. 4, 8, and 9.

In the present calculations oscillator distributions
with parameters obtained from electron scattering'
were used to describe the "0 projectile. The
Woods-Saxon densi:ty parameters given by the drop-
let model of Myers~~ were used to describe the ~~Co

target. The calculations were made with the com-
puter code JIB modified by Stanley and, oolin. '~

20-

IO-

0 I I I I I I I I

58 59 60 6 I
' 62 65 60 65

FIG. 8. The values of the real and imaginary poten-
tial well depths as function of the atomic mass A, for
isotopes withe - 60. The same ro and a values are
used throughout and the U() and W() values are averages
over comparable energy ranges.

Two form factors were used for the imaginary
part of the potential, the double-folded form fac-
tor and the Woods-Saxon expression, i.e. ,

& (I+&P )Uf.(«~(r) )
op(

o.U f,)d,d +iW()f(r),
where

(10)

(11)

f(r) =(1+ezp[[r r(,(g -+A, ~)jj~)) ~, (12)

((f $(x) fdF~dr, p~ (r~)=p, (r, )( (s)

s =- (Ir+ r, —r, I) .
In Eq. (18) the p's are the densities and g is the
G-matrix interaction. When the form given by Eq.
(10) was used n and p were varied to minimize y2.

When the form given by Eq. (11)was used r, and
a were fixed at 1.22 and 0. 50 fm, respectively,
and & and 5'o were varied to minimize g .

In the analysis in which both the real and imagin-
ary potentials had the double-folded forms, Eq.
(10), the normalization factors ranged from 0.7 to
0.9 for n and 0. 4 to 0.6 for P in the bombarding
energy range 40-56 MeV. With a double-folded
real potential and a Woods-Saxon imaginary po-
tential [Eq. (11)] the analysis yielded 0.8 to l. 0
for z and 25 to 31 MeV for Wo again neglecting the
below barrier point at E„b——36 MeV. Numerical
results are given in Table II andplotted in Fig. 9.
The fits to the data are very good and comparable
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low as pointed out by Philpott. Structure in the
excitation curve occrus when the energy interval
between successive partial-wave absorption is
sufficiently large that the contribution of the par-
tial wave just absorbed markedly decreases (pro-
portional to I/E) before the rapid rise of the next
partial-wave contribution. Where the total reac-
tion cross section is dominated by one mechanism,
for example fusion, structure due to successive
partial-wave absorption will be reflected in the ex-
citation curve for the fusion reaction as suggested
elsewhere. ' Sperr et a/. ' have reported struc-
ture in the fusion cross section for light-heavy ions,
in particular reacting pairs for which the absorp-
tion is small.

In this section the total reaction cross sections
for '0 og 5~Co are extracted using scattering po-
tential models, the Fresnel quarter-point method,
a "half partial-wave" method, and a model inde-
pendent sum-of-differences (SOD) method. ~'5

~ WoAve
& 40 MeV

A. Total reaction cross section from optical model

and double-folded potential models

0
30

I

40
l

50
E lqb(MeV)

I

60
0

FIG. 9. The values of the normalization factors e and

P for the double-folding real and imaginary potentials,
and the values of the normalization factor n for the
double-folding real, and the Woods-Saxon imaginary
potentials S"() as functions of the bombarding energy.

with those obtained with the optical model (see Fig.
2, Tables I and II). A particularly satisfying re-
sult of the double-folding analysis is the near u-
nity range of values found for z, the strength nor-
malization factor for the real potential.

IV. TOTAL REACTION CROSS SECTIONS

Potential models for heavy ion scattering such as
the optical model or doubel-folded models incor-
porate specifically nuclear mechanisms for de-
pleting the elastic channel flux and yield a value
of the total reaction cross section. Without modi-
fication, these models do not incorporate the Cou-
lomb excitation which can represent a significant
contribution to the total reaction cross section as
shown by Thorn et ul. Recently, a theory of dy-
namic Coulomb excitation has been discussed by
Love g g al.

The typical total reaction cross section for heavy
ions rises monotonically with increasing bombard-
ing energy and asymptotically approaches a geo-
metric limit. An exception to the. monotonic rise
in the total reaction cross section is expected for
light-heavy ions for which absorption is relatively

The total reaction cross sections for "0 on "Co
obtained by optical model analysis are given in
Table III and shown in Fig. 10. As expected from
the equivalence of the fits to the data, the total re-
action cross section values determined from the
double-folded models is in good agreement with
those obtained from the optical model. The val-
ues are insensitive to the changes in the optical
model geometry provided that continuous ambig-
uity relations are satisfied as can be seen from
Fig. 11 for 8„„=56MeV. Except for the SOD val-
ues, the determinations in Fig. 10 do not specif-
ically include the contribution from Coulomb exci-
tation which suggests that the SOD values should
be consistently higher as observed. An account
of this difference by possible Coulomb excitation
is taken up in a later subsection.

where S(n) and C(n) are the Fresnel sine and co-
sine integrals of argument

n = —" csc 'I4 sin[-,'(8 —8f/4}] . (15)

g is the usual Sommerfeld parameter and 8«4 is
the center-of-mass angle determined from the ex-
perimental angular distribution for which the ra-
tio to Rutherford is —,'. In this analysis, the total

B. Fresnel model and the quarter-point method

Frahn showed that the ratio of the elastic differ-
ential cross section 0',~' to the Rutherford differen-
tial cross section v, (8} is given by

n„(8)/n„(8) = -,' f[-,' —S(n )1' + [& —C (n)]'},
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TABLE IIf. Total reaction cross section.

(MeV}
OM

(mb)

j.2-Partial wave
(mb)

1
&-vt-
(mb)

SOD
(mb)

D-Zb
(mb)

Coulomb excitation
cross section

(mb)

36
40
45.5
49
52
56

- 22
176
482
677
813
963

155
479
691
819
969

423
638
775
938

42
201
520
711
899

1116

22
183
515
699
838

1002

23
173
480
679
814
968

39
62

100
129
153
188

Double-folded real and double-folded imaginary.
~Double-folded real and Woods-Saxon imaginary.

reaction cross section can be obtained from

c„=m+'(1, „.+1)', (16)

where l „. „is the maximum angular momentum for
which particles take part in the reaction:

i/4 ~~max+ z ~ cot

All the values for the total reaction cross sections
that can be evaluated by this method are listed in
Table III. The agreement is good, and is in most
cases, well within 10/~ At energies near the Cou-
lomb barrier, the calculation is not possible since
the ratio to Rutherford is everywhere larger than
1

the barrier. The total reaction cross section, . Eq.
(16), is used with l,„replaced by 2& ~2 defined as
the angular momentum of the first partial wave for
which the transmission drops to &. With these
definitions, values for the total reaction cross sec-
tions were calculated and are presented in Table
III. As expected since the transmission coeffici-
ents are evaluated with the optical model, these
values are in better agreement with the optical mod-
el values than those obtained from the quarter-
point method. The advantage to this method over
the quarter-point method lies in the fact that there
are energies near but above the Coulomb barrier
such that there exists a partial wave for which the
transmission or reflection is ~, but &/o'z & 4.

C. "Half partial-wave" method

This method is an extension of the Fresnel quar-
ter-point method to a lower energy, but still above

D. Sum-of-differences method

In the previous subsections the total reaction
cross sections were obtained using various mod-

l500

' O. M.
0 SOD

I 1

59$ ( l6O 16Q)59C

IOOO—

500-

o
35

I

45.
E) b (MeV)

50
l

55

The values of the total reaction cross sections, evaluated by the various methods (see text) and the esti-
mated Coulomb excitation cross section, as a function of the bombarding energy.
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FIG. 11. The values of the total reaction cross section for E,~=56 MeV as a function of ro and diffuseness a. Other

parameters are determined by continuous ambiguity relations.

2r

mb, 2=a„+1, v„(8)dA, (18)

since

els for heavy ion scattering. The scattering po-
tential models explicitly incorporate and the quar-
ter-point and half partial-wave methods implicitly
take into account the short range nuclear forces
and the long range Coulomb forces involved in
heavy ion collisions. Moreover, the quarter-point
and the half partial-wave methods require suffici-
ent absorption to satisfy the respective conditions
for selecting a characteristic l value.

The short range of the nuclear force, the long
range of the Coulomb force, and the high reaction
probability in heavy ion collisions are directly ex-
ploited in the sum-of-differences method (SOD) to
determine the total reaction cross section from
heavy ion elastic scattering angular distributions. 3'5

The condition for the validity of the semiclassical
SOD method is the existence of a measurable seg-
ment of the angular distribution which is Ruther-
ford within experimental error, i.e. , there exists
an angle 8&, such that the measured ratio to Ruther-
ford is unity for 8(8&. All of the angular distribu-
tions in Fig. 2 show this "typical" feature. Asso-
ciated with 8& is an impact parameter b& such that
the area nb&' contains all of the reaction cross sec-
tions plus the integrated elastic scattering cross
section from 8& to 180',

without recourse to other models.
Holdeman and Thaler, ' and more recently

Schwarzschild et gl. ', applied the optical theorem
to charged particle scattering and obtained an ex-
pression for the total reaction cross section

a„= 0 8 -a8 0+a,
0 ei

(21)

which differs from the result in Eq. (20) by the ad-
ditional term b. In the SOD method, 4=0. Hold-
eman and Thaler derived an approximate expres-
sion for 6 which can be written as

4~, . 8
n, = —I '(0') exp 2i r11n sin~ —o'0I

k 2 ')g

-4w
I

f'(0 ) I2sin'~ (22)

where f'(0') is the residual nuclear amplitude at
0 given by

f'(0 ) = . Z(2l+I)exp(2io, )exp(2ib, —1). (23)
1"

2zks 0

q is the Sommerfeld parameter, a, are the Coulomb
phase shifts, and 5, are the nuclear phase shifts.
The equation for 6 is valid for small 8& since the
residual nuclear amplitude f'(0') is evaluated at
O'. This approximation was used in the estimate
of 4 by Wojciechowski et zl.

To formulate the 6 function accurately for lar-
ger 8&, the exact expression must be used,

(2o)

Ode

the total reaction cross section, is obtained from
the measured elastic scattering differential cross
section &„(8),

a„= a„8 -a 8 Q,

e(
If'(8) I'»nede

&n

e
+4m Re fg(8)f'(8)sinede

~n

4m
+—Im f'(0'),

(24)
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and

l[2so+r-e la sin &a j2)32

c —
2k sin2(8/2)

(27)

Computational difficulties arise in the evaluation
of the integrals because of the large amplitudes
and rapid oscillations of the integrands as 8 be-
comes small.

Two plots of 4 as a function of starting angle 8&

are shown in Fig. 12 for the analysis at 56 MeV.
Curve a is calculated using the Holdeman and
Thaler approximation which is accurate for very
small 0&. As 8& approaches zero the amplitude of'
b, is constant and small compared with the value
of the total reaction cross section, -1,000 mb.
The inadequacy of the Holdeman and Thaler approx-
imation as 6}& increased is illustrated by a com-
parison with curve b which was calculated with the
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FIG. 12. The quantum mechanical correction b as a
function of starting angle, (a) using the Holdeman and
Thaler approximation, and (b) an exact evaluation of the
integral by use of a 32-point Gaussian quadrature inte-
gration method.

60-nm
where e =2expn

q

with

2jao&
j'(g) = . (2l +l)e2'"~(8, —l)P, (cose), (25}

f s{}

(u, =(r, -(r, = stan 'I —,I, (26}
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FIG. 13. The amplitude of 4 determined by the Holde-
man and Thaler approximation as a function of the bom-
barding energy.

exact expression for 4. It is clear that the Holde-
man and Thaler approximation (curve a) has failed
for an angle as large as 6 . An attempt to smoothly
join the two curves at an angle sufficiently small
that the Holdeman and Thaler expression was still
valid was frustrated by computational difficulties
in extending the exact calculation to smaller angles.
Using a 32-point Gaussian quadrature integration
method, the envelope of the 6 amplitude blows up
as the starting angle for curve b is reduced below
5'. Curve b was truncated at that point since the
envelope of 4 diverges rather than converges to
the envelope of the Holdeman and Thaler curve a
as it must for small ~&.

Using the Holdeman and Thaler approximation of
Eq. (22) the amplitudes of L are less than 2/pof
the total reaction cross section at higher energies
and decrease with decreasing energy as shown in
Fig. 13. Where the exact expression can be re-
liably calculated at larger angles for 56 MeV, the
4 amplitudes are approximately 10/p of the total
reaction cross section and increase with angle.
As in the case of the Holdeman and Thaler approx-
imation, 4 amplitudes calculated with the exact
expression decrease with decreasing energy.

The calculation of d requires knowledge of the
phase shifts obtained by some means, the optical
model in this case, Estimates of 4 do provide a
theoretical measure of the error in SOD, but one
which is subject to the errors in the phase shifts
used in the calculation.

As seen in Fig. 12, 6 oscillates rapidly as a
function of the starting angle 8& so that for a num-
ber of randomly chosed starting angles, the aver-
age value of d is approximately zero. In an ap-
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FIG. 14. The values of the total reaction cross section obtained by the optical model (OM) and SOD, the estimaed
Coulomb excitation cross section and the sum of OM total reaction cross section and the estimated Coulomb excitation
(see text) as a function of bombarding energy.

plication of the SOD method to data, a number of
forward angle points are used to fix the Rutherford
scattering segment of the angular distribution, and
these points are randomly chosen with respect to
oscillations of ~. There are minute differences
in a„determined by SOD depending on which exper-
imental point is chosen as the initial angle, but the
major contribution to the experimental |.rror in the
SOD method is the error in the normalization of the
Rutherford scattering segment. This depends, of
course, on the precision of forward angle data.
For example, an assumed —,

'
/terror in Rutherford

normalization produced the error bars in the SOD
values in Fig. 14. This error is equally applicable
to the optical model values of the total reaction
cross section.

As mentioned earlier the SOD technique produces
a total reaction cross section due to all reactions
which deplete the elastic flux. In particular the
yield of Coulomb excitation is included in SOD es-
timates consistent with the fact that the SOD values
are somewhat higher than those obtained using an
optical model alone. Of course part of the Coulomb
excitation yield is accounted for by the tail of the
imaginary part of the optical model potential. Thus
the SOD total reaction cross section is not expected
to be simply a sum of the optical model total reac-
tion cross section plus the Coulomb excitation con-
tribution. Nonetheless, this simple sum relation
was investigated by estimating the Coulomb excita-

tion cross section of the lowest six closely spaced
excited states from results of previous experi-
ments"'" since the inelastic yield was not resolv-
able in this experiment. Coulomb excitation cross
section estimates are presented in Table III. A
plot of the sum of optical model total reaction cross
section plus Coulomb excitation contribution is
given in Fig. 14 and compared with the total reac-
tion cross section obtained by the SOD method.
The sum of the optical model and the Coulomb ex-
citation values is somewhat larger than the SOD
values but generally within the error bars assigned
4o SOD only.
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