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Methods for embedding phenomenological distorted-wave techniques for rearrangement and inelastic
scattering within well-defined theories. of multiparticle scattering are developed. The essential point Of contact
between the two approaches is in the definition and choice of distorting potential. It is shown that the
concept of a channel coupling scheme allows a comparative freedom of choice for these potentials; if they are
connected operators, such as optical potentials, then it is possible to obtain connected-kernel equations for
the distorted transition operators. The latter are introduced in the course of exploiting the two-potential
formula for the full transition operator and have the property that their matrix elements with respect to
distorted waves are the physical scattering amplitudes. It is found that the distorted counterparts of the
Kouri, Levin, and Tobocman and the Bencze-Redish integral equations maintain their connected-kernel and
minimally coupled properties. These equations can be used to derive other integral equations with the same
properties for the distorted-wave operators which consist of the product of the distorted transition operators
and the wave operators corresponding to distorted waves. These simplifications are not realized for arbitrary
channel coupling schemes. In order to deal with the general situation an alternative approach employing a
subtraction technique which involves projections on the bound two-cluster channel states is introduced. When
the distorting potentials are essentially the optical potentials in the entrance and exit channels a set of
multichannel two-particle Lippmann-Schwinger integral equations for the two-cluster distorted-wave
transition operators are obtained. The input into these two-particle integral equations involves the solution of
a modified N-particle equation. Approximations to the latter are discussed in the particular cases of the
Kouri, Levin, and Tobocman and Bencze-Redish channel coupling schemes. The inhomogeneous terms of all
of the integral equations investigated for the distorted transition operator are of particular interest in
connection with the distorted-wave Born approximation and modifications to it.

NUCLEAR REACTIONS Distorted-wave techniques, N-particle scattering, inte-
gral equations, channel coupling, distorted-wave Born-approximation, scattering

theory.

I. INTRODUCTION

The distorted-wave Born approximation
(DWBA)' and its many varia. nts and extensions'
are highly useful phenomenological tools for the
description of nuclear rearrangement and inelastic
collisions. Attempts at the justification of this
class of approximations are legion. ' ' However,
only recently have we begun to learn just what
is involved in doing this within a completely well-
defined formulation of multiparticle scattering. ' '
It is only in the latter context that the magnitude
of neglected terms can be reliably estimated —at
least in principle. In practice it is unlikely that
this opportunity will be exploited very frequently
and thereby provide compelling reasons for the
use of such formalisms.

However, successful approximation methods in
collision theory ultimately depend upon the rec-
ognition of the dominant structural aspects of
the underlying scattering integral equations for
the class of processes of interest. A well-defined
set' "of such equations would seem to be in-
dispensable for the formulation of optimal versions

of techniques such as the DWBA as well as im-
provements upon them. -

In view of the practical success of distorted-
wave methods, multiparticle scattering theories
which retain some contact with the phenomeno-
logical spirit of such approaches are of evident,
interest. %e have in mind particularly the flex-
ibility present in early formulations with regard
to the introduction of distorting potentials. ' '
This is important for two related reasons. First,
the distorting potentials are customarily regarded
as subsidiary to the calculat;ion of interest, i.e.,
they are either determined phenomenologically
or obtained elsewhere. Second, in any meaningful
comparison between a typical heuristically for-
mulated distorted-wave prescription and the type
of complete scattering formalism we have in
mind, the meaning and use of the distorting po-
tential must be identical in the two instances.

The introduction of arbitrary distorted potentials
into the Kouri, Levin, and Tobocman (KLT)'""
scattering integral equations was suggested by
Tobocman" and elaborated upon in more detail
by Kouri and Levin. ' The starting point is es-
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sentially the same as in earlier treatments. ' 3

Namely, a generalization of the two-potential
formula"~ " is first used to derive an expression
for the rearrangement amplitude which consists
of a distorted transition operator sandwiched
between incoming and outgoing distorted waves.
The distorted transition operator is essentially
the usual transition operator in which the inter-
actions between the fragments (usually two) in
the entrance and exit channels have been modified
by distorting potentials. The next step is to ob-
tain a set of well-defined integral equations for
the distorted transition operators. This was done
by KLT,'"but the attributes of the distorting
potentials needed to preserve the connected kernel
properties of these equations were not explored
extensively.

A very interesting distorted-wave theory of
rearrangement collisions has been formulated
by Redish' using the connected-kernel scattering
integral equations of Bencze and Redish (BR).""
Only a restricted class of distorting potentials
enter into Redish's formalism. One of the original
motivations for the present work was to investigate
how this class could be enlarged to include, for
example, the type of optical potential used in many
practical calculations of rearrangement collisions.

Following an exposition of our notation in Sec.
II, we demonstrate in Sec. III that the concept of
a channel-couPling scheme" allows the combina-
tion of a comparative freedom of choice of dis-
torting potential with the possibility of well-de-
fined scattering integral equations for the distorted
transition operators. The BR and KLT scattering
integral equations correspond to special choices
of such schemes.

The original (undistorted) KLT and BR scat-
tering integral equations have the very desirable
property of being minimally coupled. " We mean
by this the situation where the integral equations
for the two-cluster transition operators are closed
with respect to other types of channels, and the
transition operators representing entrance or
exit channels with more than two clusters can be
obtained without the solution of any additional
integral equations. Evidently this is a desirable
property to retain for the integral equations sat-
isfied by the distorted transition operators, but
it certainly will not be realized without some
restrictions on the distorting potentials. In view
of the dominant interest in reactions with two
fragments in the initial and final channels, it is
reasonable to limit the distorting potentials to
those which vanish in all channels corresponding
to more than two clusters. In Sec. IV it is shown
that with these constraints the distorted counter-
parts of the KLT and BH integral equations re-

main minimally coupled. The proof for the KLT-
type equations is straightforward and is implicit
in the work of Refs. 6 and 13. The BR case is
more complex and requires the properties of the
BR kernel established in Ref. 19.

Moreover, in both the KLT and BR cases it is
demonstrated in Sec. IV that if the array for the
distorting potential is diagonal, then minimal,
closed equations obtain for the so-called distorted-
wave transition operator. The latter is the product
operator consisting of the distorted transition
operator lying between the wave operators which
generate the distortions in the entrance and exit
channels. . This is the object of direct relevance
in practical distorted-wave calculations since
its matrix elements with respect to channel states,
rather than distorted channel states, yield the
scattering amplitudes. The kernels in the integral
equations for the distorted transition operator
are shown to be the same as in the case without
dis tortion.

The simplifications of Sec. IV are not realized
for an arbitrary channel coupling scheme. How-
ever, when the distorting interactions are es-
sentially the optical potentials within the relevant
channels it is possible to derive closed, coupled-
channel equations for the distorted-wave transi-
tion operator. This is done in Sec. V. These
integral equations are of the multichannel Lipp-
mann-Schwinger variety with only two-particle
channels. The input into these equations is ex-
pressed in terms of an auxiliary quantity which
is itself the solution of an N-particle integral
equation. 'The structure of this subsidiary N-
particle equation and some classes of approxi-
mations to it are considered in Sec. VI.

The primary purpose of this paper is to deal
with the technical problems associated with the
introduction of distorting potentials into well-
defined theories of multiparticle scattering. The
important subsequent questions concerning the
justification and improvement of the various types
of distorted-wave approximations are considered
here only briefly. However, the present work
provides a well-defined basis for these investi-
gations.

II. PARTITIONS, INTERACTIONS, AND SCATTERING

OPERATORS

A nuclear rearrangement collision even of the
simplest sort is a multiparticle scattering prob-
lem. This fact is the starting point of any com-
plete description of such a process. One's prac-
tical objective, of course, is to learn how to
suppress all the relatively unimportant aspects
of the full complexity of the N-particle problem.
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A related goal is to construct an approach which
is capable of utilizing information about the sys-
tem and its subsystems obtained in other contexts
and perhaps by phenomenological means. We
have in mind, in particular, various bound-state
wave functions and optical potentials.

The discussion of N-particle scattering is made
much more convenient by the notion of a par-
tition, a, of the N particles into m clusters,
where rn = I, . . . ,¹"" This is merely a sub-
division of the N particles into groupings called
clusters within which the arrangement of the par-
ti.cles is irrelevant. As an illustration as well
as to facilitate the later use of this case as an
example we list and identify the distinct partitions
for %=4: a, =(1234), a, =(1)(234), b, =(2)(134),
c,= (3)(124), d, = (4)(123), e, = (12)(34), f, = (13)(24),
g, = (14)(23), a, = (1)(2)(34), b, = (l)(3)(24),
c, = (l)(4)(23), d, = (12)(3)(4), e, = (13)(2)(4),
f, = (14)(2)(3), and a, = (1)(2)(3)(4).

We associate with each partition a a channel"
Hamiltonian

by a subscript as in a„. Two-cluster and (N-1)-
cluster partitions play special roles in our work;
they are denoted, alternatively, by lower case
Greek letters o., P, . . . , and primed Latin letters
i', j', . . . , respectively. "

The total N-particle interaction V can be de-
composed into the partition degenerate form"

V =Vb+Vb, (2.2)

or

T(+) Vb Vb G Va

bing

T,'-.'= V'+ V'G V',
(2.3a)

(2.3b)

Uba= ~b, aG+ + Tb, a

Gb b, e+Tb, c t (2.3c)

where we regard (2.2) as the definition of the
interaction Vb'among the clusters appropriate
to the partition b. Then the transition operators
for the scattering from channel a to channel 0
can be taken as any one of the on-shell equivalent
operators

H =Ho+ V (2.1)

which consists of H„ the kinetic energy operator
of the N particles plus V, , the sum of the inter-
actions of the particles within each of the m clus-
ters among themselves. No interactions between
particles in different clusters are included in
V, . For example V, consists only of the pair
interactions between particles 1 and 2 and betw'een
particles 3 and 4. Thus, each partition a re-
presents a physical system consisting of m dis-
joint groups of interacting particles.

The particles within a given cluster may or may
not be capable of forming a bound state. However,
all of the asymptotic states of an N-particle sys-
tem correspond to partitions in which every clus-
ter containing more than one particle is in a bound
state of the particles within that cluster. The
partition index itself, however, does not distin-
guish among possible different bound states of
a cluster.

The single partitions a, and a„correspond to
the extreme situations of the fully interacting
N-particle system and a system of N noninter-
acting particles, respectively. Clearly

w'he re &b, a = 1 —&b, a and

H. =H,

where H is the full Hamiltonian, while

H =Ho.

Evidently a, cannot correspond to an asymptotic
state of the system while a~ can.

In general arbitrary partitions are denoted by
lower case Latin letters a, b, c, . . . . When it
is necessary, the number of clusters is identified

and

G =(z a)-'

G. = (e a,)-'

refer to the total and channel Green'8 functions,
respectively. We consistently suppress the de-
pendence upon the complex energy parameter s.

The distorted-wave viewpoint begins upon re-
writing any one of Eqs. (2.3) in terms of a dis-
torting potential Vb which is subtracted off from
V . Then, for example, as shown in Ref. 15,
U, , admits of the fully symmetric two-potential
form

U~, = V, 0,(1)b~, +At" (1) U~~", A,(1),
where

n.(1)-=G.(1)G -'

and

(2.4)

(2.5a)

(2.5b)

G,(1) '=G, ' —V;.

U,",' is the symmetric version of what we refer
to as a distorted transition operator. It is defined
by

U~", =6, ,6,(1) 'y T,",(2),

U~2,'= G~(1) '5~, +T~ ,'(2), "
(2.6a)

(2.6b)

are wave operators corresponding to the distorting
potentials Vl and Vbit respectively wltht e.g. t
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where

T~~",(2) = V, + V",GV,',
T,';,'(2) = V;+ V', GV;,

and the potential V, is defined by

(2.7a)

(2.7b)

(2.8)V, =—V —V, .
I.et

l Q~(q )& denote an eigenstate of H cor-
responding to the situation in which the groups
of particles in each of the m clusters form bound
states. The index g refers to any other variables
which are necessary to specify this state com-
pletely including m indices which label the dif-
ferent possible bound states of each of the clus-
ters. We call

l &f&, (q}& an m cluste-x bound state
of the N-particle system. A partition a for
which such a bound state exists is referred to
as a stable partition. " Then the rearrangement
amplitude R, , corresponding to two unequal stable
partitions is given by the equivalent on-shell
distorted-wave matrix elements

II,,.=(x,' '(n)
l U,';.' lx."(8)&

=(x! '(~) ITl'. .'(2} lx!'(~}& (2.9)

where the distorted-wave vectors are defined by

lx."(6)&=-fl.(I) l~.(6)&,

(x' (n)
l

-=(0 (n) l
II "(1}.

(2.1Oa)

(2.1Ob)

III. CONNECTED-KERNEL EQUATIONS FOR THE

DISTORTED TRANSITION OPERATOR

The discussion of general classes of connected-
kernel24 N-particle scattering integral equations
is facilitated by the introduction of the concept
of the channel-coupling scheme. "'"" We now

adapt this idea to the distorted transition operators
defined by Eqs. (2.6) and Eqs. (2.7).

We suppose that we have a channel-coupling
scheme appropriate to the full transition operators
defined by Eqs. (2.3). By this we mean that there
is an array of partition-labeled operators 'U"'

Equations (2.9) express what is usually referred
to as the on-shell equivalence of the distorted-
wave matrix elements of T~~,'(2) and U~",'. This
attribute is in general not preserved in the course
of making approximations to ea,ch of the operators.
This has given rise to a great deal of discussion
in the past and it is certainly a, point of some
importance in specific applications, although it
is not of direct concern to us in this paper. Qle
do demonstrate that the integra, l equations satisfied
by all three sets of operators have the same ker-
nels so that the off-shell inequivalence is mani-
fested solely in the Born terms of these equations.

such that

V= (s.l)

where the sum is over all partitions of the N-
particle system. We assume that this array has
the property that (%)G) is a connected operator
for some positive integer P ~ I, where we have
introduced a matrix notation with respect to the
partition indices. Namely, Q denotes the matrix
whose elements are the operators 'U~' a,nd G is
the diagonal matrix with elements 6,5, , Then,
if we let V be the diagonal matrix (V~5, ,), Eq.
(3.1) can be expressed in matrix form as"

V(1+5)='U(1+5), (3.1')

where it follows from the definition of 5 = (K~,)
that (1+5) is a matrix in the partition indices all
of whose elements are equal to unity.

Using Eqs. (2.3) and Eqs. (3.1), one can easily
derive sets of coupled integral equations for each
of the sets of operators (T,",'), (T,'.'), and

(Ut, ,)."'" In matrix form each of these sets of
equations possesses the same kernel &G so that,
by hypothesis, these are connected-kernel equa-
tions. '4 Corresponding sets of equations but of
the "other way around" variety with kernels G'Q'

also obtain. Here g' denotes the transpose of
with respect to the partition indices.

The similarity of the forms (2.7) for T~~,'(2}
with Eqs. (2.3) for T,",' as well as the similarity
of Eqs. (2.3c}and Eqs. (2.6) suggests that we
introduce a channel-coupling scheme , appropri-
ate to V, = (V', 5~,) so that instead of (3.1') we have

V, (1+ 5) =~,(I+ 5).
In view of definition (2.8) we see that the intro-
duction of 'U, entails the consideration of an array
p, corresponding to the distorting potential
= (V~6~,) so that

V,(1+ 5) =V,(l+ 5) (3.3)

and consequently

'0 ='V, +'V, . (3.4)

T' = u, G,(1+5)G, '+g, G, T,",
where G, = [G,(1)6, ,]. The operators T,' ' and U,
satisfy equations differing from (3.5) only in the
inhomogeneous terms.

(s.5)

The choices of the arrays 'U and 'U;, are nonunique
but are constrained by Eqs. (3.1)-(3.4) as well
as connected-kernel requirements.

One finds from Eq. (2.7a) using Eq. (3.2) that
T,"= [T',(2)] satisfies a set of coupled integral
equations which can be written concisely in matrix
form as
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(S.ea)

where

In general we have no assurance that '02Gy
will be a connected kernel. '4 However, if the
distorting potential V, is a connected operator
wp can confine ourselves only to those arrays
for which '0, is a connected operator. Then given
that UG is a connected kernel it follows that 'Q, G,
possesses this attribute as well. It is instructive
to demonstrate this. Let us write G, in the form

G, =5+ GT, G,

~e= Vopt+ Voptge~e

= Vopt+ 7age Vopt~

(3.9a)

(s.gb)

where

g =—P Ge= GePe,
has on-shell matrix elements equal to the elastic
scattering amplitude in channel n:

&e.(n') lT'.",'. (e.(n)& = &e.(n') ~r. ~4.(n)&,

T, = Vx+ V, G, Vx.

Then the kernel , 4, decomposes into

2 Gz = + G+ con &

where

(s.sb)
where q' refers to the same bound states of each
of the two clusters as does g. A particular re-
alization of %t is'"

%t =V +V Q, iQ V, (3.10)

For k&2 or for any two-cluster partitions b,
which are not stable. Typical choices for Ve are
connected operators. We can then confine our-
selves to arrays 'U, such that

ggbys afoot P1 (3.7)

Keen ~1 G j. 1

is a fully connected operator. Thus, if ('UG)~

is connected for some P ~ 1 then it follows that
('O, G,) is connected as well since the cross terms
involving K„,all have this property.

We now have sufficient conditions for T2' to
satisfy connected-kernel equations of the form
(3.5). Moreover, these conditions can be satisfied
in practical applications. First, arrays of the
form Q exist with the stipulated properties. '""
Second, because most applications of distorted-
wave approximations are confined to two-cluster
entrance and exit channels corresponding to stable
partitions we can take

Vbp P

where Q = 1-P . The connected structure of
the operator V„, is illustrated diagrammatically
in Fig. 1.

We let V~, refer to a diagonal matrix whose
only nonzero elements V„, correspond to stable
partitions n. In Sec. V specific choices for the
arrays 'U, corresponding to V~~ are proposed.

When V„, is identified with the distorting po-
tential V, in practical distorted-wave calculations
of rearrangement scattering its elements V„,
are usually either determined phenomenologically
or in any case are regarded as given. In accord
with this we do not take up the question of cal-
culation of this quantity in the'present work.

'//////Illlllllll//, ~&N'////////I/////////i N, ,

N, /III/'/i/IIIIIIIIIII/x&~P'll/IIIIIIIIIIIIIIIIIII N,

V, t=P ~'P (s.8)

if k&2 or m&2.
One choice for V, deserves special mention.

This is the case in which we identify V, for a
stable two-cluster partition n with the full optical
potential, V „for elastic scattering in channel

V, is an operator with the structure

N, ///gi//

///i@'///i 2~&&~!///I gK N&
C

where P is the projection operator onto the space
spanned by the two-cluster bound states

(rl)&. '"26 We recall that the latter state includes
the relative momentum of the two bound clusters
so that P involves an integration over this vari-
able. The operator %t which appears in (3.8)
consists only of various interaction linkages be-
tween particles lying in different clusters and is
such that the operator 7' defined by

FIG. l. (a) Connectedness of the optical potential op-
erator Vopt (4) The relation of V"opt to the elastic scat-
tering transition operator v e. The cross hatched lines
represent bound cl usters of N& and N2 particles with N&

+N2=N. Cross-hatched squares connected by a single
wavy line correspond to the action of the operatorcae,
while cross-hatched squares connected by a double wavy
line represent the. operator 7 . The vertical line depicts
the Green's operator ge.
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EV. MINIMALLY COUPLED DISTORTED TRANSITION

OPERATOR EQUATIONS

We suppose, henceforth, that V and 'U, have
been chosen so that Eq. (3.5) represents a set
of connected-kernel integral equations for the
opera. tors T,",'(2). However, the kernel term of
(3.5) contains a sum over all partitions so that
these equations couple together transition oper-
ators to all possible channels. On the other hand,
for the KLT or BR. coupling schemes the full
transition operators Tb",' defined by Eq. (2.3a)
satisfy integral equations similar to (3.5) with
this sum limited to two-cluster channels. As a
consequence the integral equations for the two-
cluster transition operators are closed among
themselves and operators such as T,",k) 2,
can be calculated without solving any additional
integral equations. ' '"""" Such sets of integral
equations are called minimally coupled"" and
it is evident that this property is of major practical
importance.

There are implicit criteria of simplicity attached
to this nomenclature as well as the requirement
that the connected-kernel property be preserved.
It appears difficult to characterize the generation
of minimally coupled equations in a general fashion
and still satisfy these criteria. For example,
if we define a projector onto the space of two-
cluster partitions,

bbb a„= b» a~, a

we can rewrite (3.5) as

A. KLT channel-coupling scheme

In their original work KLT'"" consider only
two-cluster channel coupling schemes. This is
easily extended, however, and we take

bye am
. UKLT ~ ~bb, a~ t (4.2)

where W, , is a channel-coupling array which

by definition ' satisfies

and the sum is over all partitions. In order to
ensure the connected-kernel property of VK»G
as well as the minimal coupling of the equations
for T"we take the two-cluster subarray Wz

to form a channel permuting array'""' and
for k)2 we require that

unless m =2. We stipulate that for each b~ with
k&2, there is one and only one two-cluster par-
tition, y(bb), such that"

Wq „(~ ) =1.
If we choose g, so that (3.7) is satisfied, then

Eq. (4.2) along with our choice for Wb, implies
that

respectively. In Sec. V we develop a method sim-
ilar to that represented by Eqs. (4.1) for dealing
with the problem of an arbitrary channel-coupling
scheme as well as these particular arrays.

T,"=KG,(1+ 5) G, '+ &G, () T,", (4.1a)
am —0 if m)2

2(KLT )
(4.3a)

where ~ is defined as the solution of

(4.lb)

Here we have presumed the validity of Eq. (3.7),
so that [G„S]=0 and G, (1 —3) =G(1 —8). We
observe that Eq. (4.1a) is certainly minimally
coupled from the point of view of closure. How-
ever, we have picked up another (nonminimal)
integral equation in Eq. (4.1b) and we have no
assurance that the kernels of Eqs. (4.1) will be
of the connected variety. Also, one can reduce
Eqs. (3.5) to equations which are minimally cou-
pled, by the substitution of the (Lippmann-Sch-
winger) identities implied by Eqs. (3.5) with
diagonal ~,. The resultant equations, however,
have more complicated kernels which do not
necessarily retain the connected-kernel property
and may admit spurious solutions. '""

As a consequence of the preceding remarks we'

confine ourselves in this section to the special
cases of the KLT and BB coupling schemes which
are represented by the arrays UK» and U»,

which can be expressed as

2(KLT ) 02(KLT) ~

In this instance Eq. (3.5) becomes

(+) (+)
T2 -%2(KLT) ++2(KLT) G, 3 T2'

where

Qa(KLT) = Ua(KLT ) 8G,(1 b 5) G,

(4.3b)

(4.4)

(4.5)

Tb" (2)= Qg", (KLT)G„(1)G (1) '

+ Q u;(KLT) G„(1)T)"a(2) . (4.6b)

From (4.4) we easily see that we obtain a closed
system of equations for the two-cluster operators,
namely,

32(KLT) 3 + 3 2(KLT)

(4.6a)

or, when written out explicitly in terms of the
partition indices,
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Equations (4.6) can be simplified if we keep
in mind that our ultimate goal is the calculation
of the on-shell matrix elements 8&, which are
defined by (2.9). First, as a consequence of the
half-on-shell Lippmann identity, "

G, G. 'l4. (n)&= 5„.l4. (U)&, (4.7a)

and its analog for the distorted-wave vectors,

G (1)G (1) 'lx."()})&=6, lx."(n)&, (4 Vb)

the Born terms in Eqs. (4.6) simplify significantly
as they do in the undistorted case."" Indeed,
one finds that

2(KLT)))&. .Ix- ( I » =(&KLT U&)&&, lx! '( l »

(4.8)

As a result of (4.8) we can consider instead of
T,"the half-on-shell equivalent operators, which
satisfy Eqs. (4.6) with Q,«LT& replaced by
(0KLT

A more important simplification derives from
the observation that Eqs. (4.6) do not directly
involve what we call the distorted-mane transi-
tiOn OPeT atOrS,

T =—co T (0 ~+
D% 2

whose matrix elements with-respect to the chan-
nel states are the amplitudes of ultimate interest.
Here

(4.9)

and

~"=-G, C-'a = 3(1+G, V,)

~( "-=() G 'G, =(1+V,G,) 8

(4.10a)

(4.10b)

are wave operators corresponding to the distorted-
wave vectors lx(') and &x' 'l, respectively. We
note that on-shell

1 ~l & (4.12)

which is by far the most common implicit choice
for 'U„' ' one can obtain an integral equation for
T Dw ltareanti vteo (4.11). We can best appreciate

It is easily demonstrated starting from (4.6a)
that T» satisfies the minimal, connected-kernel
integral equation

Dw ~2«LT)+ + . U2(KLT)( s) TDw
4-)t- (+) (-)t

(4.11)

We note, relevant to the connected-kernel aspect
of (4.11), that (d( ' differs from (& by a connected
operator so that the arguments of Sec. III may be
applied to show that (4.11) possesses a connected
kernel.

If 'U, is diagonal, viz. ,

the implications of (4.12) by starting from Eq.
(4.4) which can be rewritten as

[(I f&)+~(-"]r('=6„„„„+1&„„(Ga)~(-&'r( &

(4.13)

through the use of Eqs. (4.10b) and (4.12). Multi-
plication of (4.13) on the right by &u" and on the
left by 8 yields

TDW (l +2(KLT) + 3 +KLT( ) DW (4.14)

However the "Born approximation" to Rt, as
defined by Eq. (4.6) or Eq. (4.11) is, by way of
comparison in the case that (4.12) is valid, given
by

(4.15b)

Equation (4.15b) is more in accord with the usual
DWBA prescriptions than is (4.15a). From the
point of view of the integral equation (4.14), the
approximation (4.15b) involves the inclusion of
higher-order corrections, although it is not pos-
sible to state which of the two expressions (4.15)
constitutes the better approximation to R without
further information.

It is worth pointing out that the only property
of the KLT coupling scheme, besides the con-
nected-kernel attribute, which is essential to the
preceding development is (4.3b). Therefore,
Eqs. (4.6), (4.11) and (4.14) realize for any scheme
for which (4.3b) holds. From the sta.ndpoint of
Eqs. (4.1) we note that (4.3b) corresponds to the
case A=9,.

The KLT scheme itself is highly asymmetric.
In fact, for a given n and choice of channel per-
muting array there will be only one p en, say
p, for which 'DIKLT =V 00. Thus the Born terms
(4.15) with p o p, p 4 o. all' vanish identically. The
normal Born expressions for the p cp channels
are contained implicitly in the kernel terms of
Eqs. (4.6), (4.11) and (4.14) in a manner discussed
in great detail by Kouri and Levin. ' Obviously
one can always regard the channel permuting

The minimal, connected-kernel integral equa-.
tions, (4.11) and (4.14), for TDw have several
interesting properties. We note that the distorting
potential appears only in the inhomogeneous term
of (4.14) in constrast to Eqs. (4.6) and (4.11). As
a consequence the kernel of (4.14) is precisely
the same as for the undistorted transition operator.
Equations (4.8) and (4.12) imply that the inho-
mogeneous term in (4.14) can be taken to be
(VKLT —V, ) so that the on-shell "Born approxi-
mation, " as dictated by Eq. (4.14), is given by
the asymmetrical expression

R,' ""=&/ ()l') ll)'„" —V', 5, lX"(rj)) . (4.15a)
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array to be such that P is the channel of com-
putational interest. So for all practical purposes
we can regard 'UggtT V] &g as replaced
V~ —V~5& in Eqs. (4.15).

Our discussion of the conditions sufficient to
preserve the connected-kernel property and the
derivation of Eqs. (4.11) and (4.14) for the dis-
torted-wave transition operators constitute an
extension of the work contained in Ref. 6 concerning
T2' in the KLT case.

8. BR channel-coup1ing scheme

In at least two ways the BR channel coupling
scheme provides a more interesting example than
the KLT case. First, it is a more symmetrical
scheme than the latter and, second, nothing as
simple as Eq. (4.3b) obtains in this instance. The
BR scheme is defined by the identification'P" ""'

~'~'-=v'~(-i) (m i)t, (4.16)

where V~& is defined next.
We confine ourselves, for the sake of simplicity,

to the situation where there are only pair inter-
actions among the N particles. In accordance
with our notation introduced in Sec. II, & is a
generic pair index and V;, represents the inter-
action between that pair of particles. Then V'~

is the sum of pair potentials such that both par-
ticles are entirely within one of the clusters of
the partition a while at most one particle is in
any cluster of bI,. It is useful to express this as"

K =MG D

where

(4.18)

(D'),„, =( I)"(m i)t 5(a„lb,).
Then the right-hand side of (4.17) consists of a
sum of products of operators of the form
MQ G p M g Gp But M „ is of conne ctivity d
and o'0 d, so as a consequence no pair i' of
particles lying entirely within any of the (con-
nected) clusters of d is such that nai'. Hence,
each of these pairs of particles travels to a dis-
tinct cluster of n. Therefore, every cluster of
d containing more than a single particle is con-
nected to both clusters of a and every single-
particle cluster is connected to one of the clusters
of n. Thus, each of, these products of operators
is connected. This is illustrated in Fig. 2.

The minimal character of the original (undis-
torted) BR equations'"" is also implied by Eq.
/4 17) 19

We next derive the counterpart of (4.17) for
the distorted kernel

+p(BR) 2(BR) ]. &
(4.19a)

diagrams of connectivity a which end in pair
interactions i' such that hagi' .We consider'a
few explicit examples of M operators later; we
note that M~ =0 if b~&a .

Equation (4.17) implies that lf'» is a connected
kernel. This follows from the fact that E» admits
of the representation"

v'.~ = g 6(b,
I
i') v, , 6(a„ I

i') where

2(BR) +BR Uj. ' (4.19b)
where the sum is over all pairs. Here If we use (4.17), the square of If„»& can be put

= 0 otherwise .
The notation a &b~ means that the clusters which
define b~ are contained entirely within those of
r~,„, which can occur if m ~k. Finally,

&(a. lb.) -=1 —&(a. Ib,) .
It can be shown that the array '0» defined by

Eq. (4.16) satisfies the constraints (3.1). The
crucial property that ('V»G)' is a connected oper-
ator is proved in Ref. i~. In fact, if we call &»
=-ii»8, then"

~////////////////////i

~////////////i///////i

/////////////////////

(Ksa)2=MGo sKsa. (4.17)

Here Gp is the free N-particle Green's function
or, equivalently, the channel Green's function
corresponding to the partition a~. M is a some-
what more complicated object." ' ""'

M, is the a -connected part of the operator
Equivalently, M~ is the sum of a,ll

FIG. 2. Connectedness of My GpM & for n pd3.
The three clusters of ds consist of one N —0 particle
cluster' (cross hatched lines) and two single-particle
clusters {horizontal solid lines). The two cross hatched
lines on the left represent the two clusters of n and the
dotted vertical line refers to Gp, The slanting lines
emanating from the N —2 cluster of 43 refer to a typical
pair within that cluster and to their destination within
the two clusters of n.
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into the form

(K2&BR&)' =A s K2&BR&+B S,
where

A =Sf Go ~i G, +KBR T, G

(4.20}

(4.218)

(4.21b)B=(MG, -KBR) U, G, ,

and we note that T, = 3T, 3[cf. Eqs. (3.6}]. While
it is obvious from (4.20) and (4.21) that (K,&s„&)'
is a connected operator, it is somewhat less ap-
parent that Eq. (4.20) also implies that Eq. (3.5)
in the BR case, namely,

K,(») is not an appropriate way of characterizing
the cancella. tions implicit in Eq. (4.20).

As in the KLT ease the inhomogeneous term .

of (4.25) can be simplified using (4.7b). Cor-
responding to Eq. (4.8) we have, half on shell,

(&2&BR&)2, I& '(&)& =(vsR -&&)2,

(4.28)

Further simplification requires the use of the
sum rule"

BR ~ BR't

(4 ) (+)
U2(BR)+@2 BR)G1~2

where

(4.228)
Then if we call

&8 =[1+MG,(D' S)]g„,„,,

2(BR) ~2&BR) &( + ) 1 t (4.aab}
I

is minimally coupled.
The proof of the last assertion is carried out

in a manner similar to the V, =—0 case considered
in Ref. 1S and is facilitated by the introduction
of the resolvent kernel, S,(»), corresponding to
K2(BR)

we see that

e =[g,&,„,-MG, (D' s) 1&,], (4.27)

Ix(+)(&}}& pcs' g ceca

so that half on shell the inhomogeneous term of
Eq. (4.25) is

2(BR) '2(BR) + 2(BR) 2(BR) 0

so that

T, = (1+$2&BR))Q2(BR) .

(4.23)

(4.24)

ggM, , G, 5(yIb, ) u","
=s (&p)

(4.28)

Let us multiply Eq. (4.23) on the left by K,&BR&.

Using (4.20) we obtain the expression

2(BR. ) 2(BR) (A + ) s 2(BR) +

which inserted back into (4.23) transforms the
latter into the minimally coupled equation

2(BR& 2(BR) + ~ + ( + }S 2(BR& '

Equation (4.24) then implies that

T2', =[1i(K, (BR) -A S)] 62(s„)+(A+B) S T,".
(4.25)

The kernel of this minimally coupled integral
equation simplifies only when Q, is diagonal and
in this instance we obtain using Eqs. (4.12) and
(4.18)

T [1+ M GO(D $)] '5
&BR&

~ [MG2 y (M Go —1) V, G,] S T,". (4.25')

We note that the structural form of the inhom-
ogeneous term of (4.25) reduces to that of the
corresponding term of Eq. (4.25') whether or not
(4.12) is valid.

We remark that Eqs. (4.1) do not lend themselves
to a facile description of the reduction of Eq.
(4.22a) to Eqs. (4.25). This is because the projec-
tor (3) complement (1 —s) split of the kernel

It follows then that T,"is half-on-shell equivalent
to an operator which satisfies (4.25) with its
inhomogeneous term replaced by as given by
(4.27). We note that 'Qss'R~= Vs and U ~ =0 if
c is not a two-cluster partition.

If N ~ 4 the "Born" approximation,

(xs '(n') I&&j&, .Ix."(n)&,
defined by Eqs. (4.25) and (4.28) contains in the
various ~» terms contributions from trans-
ition operators corresponding to subsystems of
the N particles. These operators possess a degree
of disconnectedness ranging from three to N —1
clusters. Each of these terms represents the

- scattering by the distorting potential in the entrance
channel followed by a quasi-final-state inter-
action of the particles within the clusters ap-
propriate to an allowed partition b~. Any pair
of particles which subsequently emanates from
one of these clusters splits up so that each particle
ends up in a distinct cluster of particles in the
exit channel P. Finally, there is an elastic inter-
action in the exit channel represented by (ys( ' I.
Diagrammatic illustrations of a few of these
terms for %=4 are given in Fig. 3.

The generalization of the DWBA afforded by
Eq. (4.28) involves the knowledge of the connected
transition operators corresponding to subsystems
of from two to N —2 particles. For N =4 only the
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(a)

II I I I
2

/ // ////

The exact calculation of the 0=N —1 and 0=N —2
terms is feasible. For k&N - 2 the systematic
approximation of the off-shell, multiparticle,
subsystem amplitudes by their pole terms sug-
gests itself as a practical possibility. ""

Next let us develop integral equations for T».
From Eq. (4.25) we find

(b)

I /////
2

T"(d"' = co"+Z P T"(o"
2 + BR 2

where

dt -=e G,(1+5)G,-'

and

Ks„=[M G, + (M G, —1) Q, G,

+Ks„(T,G —Q, G, )] 3.

(4.29)

(4.30a)

(4.30b)

I I II ) I I I~

(c)

I
1

I

I

I

I I I I

4

off-shell two-particle transition operators enter
into (4.28), but for % =5 the completely off-shell
connected three-particle amplitudes enter in as
well. When N is large the calculation of all of
the terms in the sum over k in (4.28) is nearly
as difficult as the solution of the full N-particle
sca, ttering problem. Indeed, it is easily shown
t at»

g +5(y~h, )M, , =V„'(1+G„V„)
0"-3 (b))'

the evaluation of which is an (N —2)-body problem.

FIG. 3. Representation of (y ~ ~MGO'U, ~y
' ) terms

for two-cluster to two-cluster transitions and N = 4. The
bound states, particle lines, Green's functions, and elas-
tic scattering transition operators are denoted as in Figs.
1 and 2. The dark circles indicate bound-state vertices,
while the open circles refer to the two-particle transi-
tion amplitudes which correspond to M in this case. The
distorted elastic interaction (y ~ ~

~
is pictured within

the brackets. The action of 'Uq~ y ~) appears as an
initial elastic scattering.

Because of the indirect relationship of Q, to
w' '~, in general, one does not obtain an equation
closed with respect to T» from (4.29) analogous
to Eq. (4.11). Therefore, let us confine ourselves
for the reD)ainder of this section to the case when

X), is diagonal as per Eq. (4.12).
If Eq. (4.12) is valid, K» simplifies to [cf. Eq.

(4.25')]

TD% 3 + + M~0 3 TD% (4.32)

The general remarks made in connection with
Eq. (4.14) apply to the last equation as well. In
particular, we note the absence of the distorting
potential in the kernel of (4.32). Of course, the
inhomogeneous terms of Eqs. (4.14) and (4.32)
differ in detail. However, the asymmetry noted
in Eqs. (4.15) appears here as well. We have in
fact [cf. Eqs. (4.15)]

which allows one to rewrite (4.29) in a form sim-
ilar to Eq. (4.13):

[(1—S)+(o' "]r,"(u"' =I(u" + MG, S rn„.
(4.sl)

An equation closed with respect to T» follows
from (4.31) upon multiplica, tion by S on the left,
ViZ. ,

S-j,
Vt.' V~O, .— m, , C, a n b, V; X& & q

0 3 (bp&

(4.33a)

which should be contrasted to the "Born approximation" following from (4.28) under the same constraint
(4.12) on the distorting potential:

g-y
y~ @ac, M, , GOn b, y+

4=3 (bp

(4.3Sb)
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Since Eqs. (4.14) and (4.29) possess the same
kernels as the undistorted two-cluster integral
equations some of the approximation methods
proposed for the KLT'" and BR""'"equations
ean be applied without essential modification.

V. COUPLED-CHANNEL EQUATIONS FOR DISTORTED-.

WAVE OPERATORS

Perhaps the most interesting results of Sec. IV
consist in Eqs. (4.14) and (4.29), which are closed
equations for the distorted-wave operators TD„.
These equations are derived for either the QKL~
or » channel-coupling arrays, with '0, con-
strained to be diagonal. For a general g, but
with ~, still diagonal we have

~o, =uo[(1- s)+~&-&t]

so that (3.5) becomes

[(1 —S)~~&-&t]r&'&=6, +V G[(1 S)+~&-&']r& &.

This implies the relationship
I

Tow = 8 '0, &u
&'& + 3 'U 6 (1 —8 ) T,&d

&' + 3 U 3 6 Tow,

which, in general, is not closed with respect to
TD„and so does not constitute an integral equation
for that quantity. Evidently other methods must
be sought to obtain suitable integral equations for
TD„ for general U, . One such procedure is de-
veloped in this section.

Two circumstances suggest a means of con-
structing such equations. First, the most common
choices for distorting potentials are related to,
although not necessarily identical to, the optical
potentials in the two-cluster entrance and exit
channels. Second, a reasonable lowest-order
approximation to the kernel term in Eq. (4.14)
or Eq. (4.29) involves, in effect, the truncation
of the intermediate propagator to include only
the various two-cluster bound states with arbitrary
relative momentum between the (bound) clus-
ters. ',

"""'"As a consequence of such an ap-
proximation these many-particle equations can
be reduced to a set of coupled two-particle integral
equations for the matrix elements of T». The
same projectors are involved in the definition of
this truncation of Eqs. (4.14) and (4.29) as in the
definition of the optical potential operators. This
indicates that a unified projection operator treat-
ment of Eq. (3.5) in the case when the distorting
potentials are defined on the same subspaces as
the corresponding opt:ical potentials may provide
a technique for developing integral equations for
T» for arbitrary U, .

Let P denote a projector matrix in the partition
indices whose elements

)&»..W &'&» ~m (5.1a)

are proportional to the projection operators onto
the two-cluster bound states, so that if n is a
stable partition

P (s) — {s) (5.1b)

The index s enumerates the possible pairs of
bound states (ground plus excited) of the two clus-
ters represented by n; s =0 corresponds to the
ground states of both clusters. The symbol g
refers to any other pertinent indices and these
include the momentum of the centers of mass of
each of the clusters relative to one another. If
a is not a stable cluster, P =—0.

The complement of P, na, mely Q =I -P, is the
diagonal matrix

(5.2a)

Q =I —P~ 5

The projector Q» differs from the identity op-
erator only when b~ is a stable two-cluster par-
tition, but its detailed structure is taken to be
that of a resolution of the identity with respect
to some basis. %'e now illustrate this. Let
~P, (&i)) denote an m-cluster bound state; i.e.,
a j.s a stable partition and all of the particles
in each of their clusters are bound. Then

~&&&&, (&i)) is an eigenstate of the channel Ham-
iltonian H and so are the scattering states

1 G, V~g

(5.2b)

For each partition a the collection of m-cluster
bound states ( ~

Q (&i ))j along with the scattering
states ( ~

P&'. &(a„,qP)] form a complete orthonormal
set on the entire N-particle Hilbert space. There-
fore,

and for m&2

x (P& & (n; s, &) )
i
5 (&&&

i b~), (5.2c)

(5.2d)

where the excitation index has been absorbed into
Qo
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and

C, P =P G, =g~(-" (5.5a)

G, Q=QG, =QG,
A

where we recall that g =PG.
The constraints (5.4) will certainly be satisfied

for arrays which generate V, = Vpppf where the
latter operator has the form (3.8). The general
type of distorting potential which we have in mind
has the characteristic connected structure por-
trayed in Fig. 1 along with a restriction to P
space. Specifically, such a V, has the form of
a sum of operators each of which consists of an
operator representing an interaction between
two clusters sandwiched between two appropriate
P projectors. Each of the operators in the sum
is connected. Another example is given by the
decomposition

In a circumstance where one is solely concerned
with the inelastic scattering within a given two-
cluster channel +„e.g. , a convenient choice for
P is

P~ o'=(P, , 5, &~, ). (5.3)

The complement of P~ o', namely Q' 0'=1 —P' 0',
then contains the sum of the bound states of the
other stable hvo-cluster partitions in contrast
to the situation in Eqs. (5.2). An example of
considerable interest is a proton induced reaction
A(P, P')A*, whereA* is an excited state of the
nucleus whose ground state is represented by A.

We now assume that the distorting potentials
Vj correspond to a not neces sari ly d iagona l array

whic h satisf ies

M, Q =QU, =0.

This, along with the constraints of Sec. III, implies
that

r~'=r G, (1+5)G,-'+I'G, Pr,'), (5.9a)

where r is defined as the solution of the integral
equation

(5.9b)I' ='0, + 'U G Q I' .
Pa

Whether or not 'UGQ is a connected kernel is a
structural circumstance which should be inde-
pendent of the strength of the interparticle inter-
actions. We can imagine the latter being so weak
that Q =I. However, by assumption ('UG) is a
connected operator for some p ~ i. We conclude,
therefore, that ('UGQ)s is connected for arbitrary
interaction strengths and thus U G Q is a con-
nected kernel. For r as defined the kernel of
(5.9a) will be a connected operator. Therefore,
we can regard the subtraction technique yielding
Eqs. (5.9) as being well defined.

Equation (5.5a) allows one to derive a closed
integral equation for T» from Eq. (5.9a):

T =(u~ 1 G,(1+5)G, '&o~' +tot I'gT

(5.10)

The Lippmann identity (4.7b) implies that T»
is equivalent on-shell to the operator E which
satisfies

where W
&

is an element of a channel-coupling
array. The choice 8",z = & ~ yields a diagonal
„while taking W 8 to be a channel permuting
array corresponds to the nondiagonal case. This
last does not vanish in the Born approximation
for the rearrangement amplitudes (P We).

The decomposition

G, =P G (o' 't+Q G,

which follows from Eqs. (5.5), suggests a sub-
traction technique" in connection with Eq. (3.5)
with the reiult

V) —Q Pn(s) tie Po(s) ~

S
(5.5) z =z«)+~gs,

where

(5.11a)

where P «& is the projector on the bound-state
configuration of the two clusters represented
by s. We note that

Z"'=-P~(-" r~( &P

and'

(5.11b)

Pe(s) ~ (5.7) ~ =-P~(-"rP. (5.11c)

1 CR(S) ~ e(S) Of g 0 (5.8)

corresponds to an interaction between the two
clusters represented by n and it may or may not
have the same content as the operator defined by
Eq. (3.10). That is, tt is not necessarily the full
optical potential operator. Equation (5.6) is com-
patible with either a diagonal or a nondiagonal
array'0, . An example of both is given by

We note that EQ =QE = 0 while TD„(1—Z)
= (1 Z) r,„=o.

Equation (5.11a) represents a set of coupled-
channel two-particle I.ippmann-Schwinger integral
equations for the off-shell two-cluster to two-
cluster rearrangement amplitudes. It is very
informative to explicate the structure of these
equations. To this end we require a more detailed
characterization of the information symbolized
by the states

~ Q~ )()7)).
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For each stable a the internal states of each of
the bound clusters, i =1,2, appropriate to this
channel can be specified by a collection of discrete
quantum numbers (c,(o.)J which include the internal
energy, e, (n), of cluster i The internal states
of both clusters are then completely defined by
a pair, (c,(n), c,(o.)), of the collections c,(n) and

c,(n) For the sake of notational simplicity we
assign a distinct value of a single discrete index
s to each of these pairs of collections of quantum
numbers. The only additional variable then needed
to completely characterize the two-cluster bound
state ~Q"'(g)) is the relative momentum p
between the centers of mass of the two clusters.
The total energy of such a state is

E,(S, pe) = t, ('S, Q ) + E,(S, 0) +
2pe

where p, is the reduced mass of the two clus-
ters.

With the preceding notational connections the
matrix elements of E, for example, can be denoted
by Ez (p&, s' ~p, s). In addition to the momentum
dependence, these amplitudes possess a discrete
matrix structure with respect to the channel and
internal state indices. If we consider scattering
from the ground state, s =0, in the entrance chan-
nel n with a total energy E, Eq. (5.11a) then
becomes in explicit form

(5.12)( s stl p) F(o)( z sil p)+ ~ V l d n 8, v(PB&

y s" (y) ~

If we choose the projector (5.3) appropriate to inelastic scattering, we obtain instead of (5.12) the set of
coupled equations

/ t gt j tt gtt)E ( tt gtt I

g~r i l~ py F(0& I i i I 0) d ii n, n(pe~ 'pe~ ' n. e(pe~
s E E (s" p")+ip

(5.13)

While Eqs. (5.12) and (5.13) are manifestly a
set of coupled two-particle integral equations,
their solution is far from trivial except possibly
when I' is approximated by p, in E"' and ~. This
is because the input functions E"' and K possess,
in general, singularities which greatly complicate
the integration procedure. However, by far the
most difficult problem connected with the use
of Eqs. (5.11)-(5.13) is the determination of I'
and thereby E"' and K; we take up this question
in the next section.

VI. I" EQUATIONS: STRUCTURE AND APPROXIMATIONS

The input to be inserted into the coupled chan-
nel Eqs. (5.11)-(5.13) ultimately consists in a
statement concerning the operator I' defined by
Eq. (5.9b). This integral equation will inevitably
be solved only after considerable approximation
unless the number of particles is very small. In
this section we explore some aspects of the struc-
ture of the I" integral equations attendant to the
formulation of approximations. Some examples
of the latter are also considered.

From Eqs. (5.11) it is clear that only 3 'I' 3 is
needed as input into the coupled-channel equations.
It then suffices to consider

(6.1)

rather than (5.9b) as the basic I' equation. Evi-
dently whether or not (6.1) is minimally coupled
is also of some relevance.

The operator F depends on the choices of the
arrays 0 and '0,. Even if Eqs. (5.9b) and (6.1)
were solved exactly different arrays would yield
different I' operators. The array '0, appears
only in the inhomogeneous terms of Eqs. (5.9b)
and (6.1) and so is essentially irrelevant to the
approximation of the kernel terms in these equa-
tions. -This is obviously not the case with U and
the ease of formulating and applying approxi-
mation methods as well as the question of their
accuracy can be expected to be dependent upon
the choice of channel-coupling scheme.

Different exact 1 operators resulting from
distinct choices for & na/dro'9, yield the same
values for the on-shell E amplitudes. However,
this will not remain true once approximations
are introduced into the I" integral equations. One
consequence is that the same approximation pres-
cription, e.g. the second Born approximation,
will yield different scattering amplitudes for dif-
ferent choices of arrays. This is t.rue even if
only is being varied.

For any array. which satisfies

(6.2)

Eq. (6.1) becomes minimally coupled and we find
that

(6.3)

The sum over intermediate states in the kernel
of Eq. (6.3) is given by the relatively simple two-
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cluster q operator of Eq. (5.2c}. Equation (6.3)
yields a closed integral equation for qerP, name-
ly,

q3 r p=qi v, p+qa uGqs r p. (6.4)

P I P —P 2{KLT)P (6.6)

is s imilar to the bound- s tate approximation pro-
posed in Ref. 6.

Our work in Sec. IV indicates that a more com-
plex example will be provided by the BB channel-
coupling scheme. We next analyze Eq. (6.1) when
the kernel is Ka„—=Kaa q.

The square of this h,st quantity is
I

(z„)2=(MG, -ff,'„P) sz„, (6.7)

which, by the arguments of Sec. IV and the fact
that P has connectivity n, is a connected oper-
ator. Equation (6.7) implies that the resolvent
kernel@» corresponding to K» satisfies

A A A

8, a„=Ka„ i (M Go —'U a„g)8 8, a„.
Since r & = (1+@a„)&,&aa & I, Eq. (6.8) allows us
to reduce (6.1) to a minimally coupled integral
equation for 8 l P, viz. ,

(6.6}

s r p = s [g,&,„, M G,(a' 3)~,]p

+ s(MG, v, „g)(s rP). (6.9}

The inhomogeneous term of (6.9) is typical of
the minimal BR equations derived in Sec. IV. The
kernel, a component of which is

(6.10)&l, u=-Ma, a Gp- ~eg~ ~

8

is a bit different. The V g term in (6.10) in
effect subtracts off the Q. -cluster bound-state cut
from Mg ~ ~ Gp However, it is important to note
that

Kg P 00.
Therefore, part of the price of reducing Eq. (6.1)
to the minimal form (6.9) is to lose the closure
with respect to q I'P possessed by (6.1). The
remainder of the price is the comparatively com-
plicated inhomogeneous term in Eq. (6.9).

The form (6.10) of the kernel (6.9) allowS us to
identify Kz as being precisely the kernel of a

The solution of (6.4) can be used with (6.3) to pro-
vide a determination of P FP "by quadrature":

prp=J z, p+p~Gqi rp. (6.5)

The array %)„» satisfies (6.2) and therefore
Eqs. (6.3)-(6.5) apply to this case. The highly
asymmetric character of the KLT coupling scheme
must be taken into account in the course of de-
termining approximation solutions of Eqs. (6.4)
and (6.5). The simplest of these, namely

subsidiary integral equa, tion similar to (6.9) in-
troduced by Redish. "" In point of fact, if we let
'U, —= 0, the present E/r complex of equations re-
duces to the U/U"' set of Ref. 5. In this limit the
I" operators take over the role of the distorting
potent. ials.

The preceding observation has the important
implication that the program of systematic ap-
proximations introduced by Redish' can be applied
to Eq. (6.9). For example, as the next step Eq.
(6.9) can be reduced to an integral equation whose
kernel has a three-body structure and which in-
volves as input the solution of another integral
equation whose kernel possesses no two- and
three-cluster cuts. This is a continuation of the
process initiated in Sec. V where Eq. (3.5) is
reduced to an integra, l equation (5.10) whose kernel
has a two-body structure and which involves as
input the solution of an integral equation (6.9) whose
kernel does not possess the two-cluster cuts.

In practice corresponding simplifications of the
inhomogeneous term of (6.9).are evidently nec-
essary. These were discussed in Sec. IV. In
lowest order, of course,

where

p{p) pg ply e
ByCL Q 1

For instance, if channel a represents the two-
cluster partition (p, n)(A), where p, n, andA
refer to a proton, a neutron, and the remaining
N —2 particles, respectively, and P corresponds
to the channel (P) (nA}, then the on-shell matrix
elements of PB ~z 'tr~"' to"P [cf. Eqs. (5.11)]
can be related to the stripping reactionA(d, P)A'.
If we choose 'U", =V', 6„,we have, since
v'. = v„„

(6.11)

which is the DWBA amplitude for this process.
Here i}t~'gi is the incoming distorted wave gen-
erated by the elastic scattering of the deuteron
(d) and the bound nucleus A while (X~ „',

i
is the

outgoing distorted wave corresponding to the
elastic scattering of P' and the nucleus A. '. Of
course, in order to obtain (Q~ „, iF& i/~ ~) one
requires the counterparts of (6.11) for all P as
the inhomogeneous terms in the two-body integral
equations (5.12).

A possible alternative to the use of (6.9) is the
direct exploitation of Eq. (6.1) in the form

r p = (v,„~,) p+ ~,„Gq r p.
Thus
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and so

p Fp = p(pan —Q, )p+ p'Pn„G(q I'p)

very much like what is obtained in the KLT case.
However, considerable care must be exercised
in formulating approximations to the kernel terms

of these equations since the connected-kernel
aspect may thereby be lost.
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