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A tractable method is presented for the study of the adiabaticity of a given time-dependent Hartree-Pock
solution. In terms of the Baranger-Veneroni approach, this amounts to extracting the two operators po and

y, for which rather simple expressions are derived. These explicit formulas are exploited to illustrate some
implications of the adiabatic approximation itself and several related approximations. In particular, the
incompatibility of two current'hypotheses for the y operator (locality and absence of particle-particle, hole-
hole matrix elements) is pointed out. Finally, the whole discussion is exempbfied by the simple case of
uniform translational motion.

NUCLEAR STRUCTURE Discussion of adiabatic limit of TDHF approximation,
derivation of practical method of study adiabaticity of collective motion from

TDHF solutions.

I. INTRODUCTION

Long after Dirac' introduced the time-dependent
Hartree-Fock (TDHF) approximation, its adia-
batic limit (ATDHF) was extensively studied in
the context of nuclear collective motion, even
though TDHF solutions in the most general case
were not yet available. Since the TDHF equations
have been recently solved numerically, ' it is now
possible to check within the TDHF framework the
validity of the adiabatic and related assumptions
in any physical situation where they are invoked.
In this paper, we present an explicit formalism
to implement this program in ar. easy practical
way.

It is important to bear in mind that by no means
do we intend to discuss the validity of the TDHF
approximation versus the exact time-dependent
Schrddinger equation. Therefore when we examine
the validity of the ATDHF equations of motion,
we mean its validity with regard to the TDHF
equations of motion.

The organization of this paper is as follows.
An introductory discussion of the approximations
to be tested is given in Sec. II. The derivation
of relevant formulas is performed in Sec. III
for the most general case. In Sec. IV, we ex-
plicitly take into account the spin degree of free-
dom to demonstrate some properties of the op-
erators p, and y. In addition, we study important
limiting cases. corresponding to extreme sit-
uations. A methodological survey on how to check
the relevant approximations is given in Sec. V,
whereas Sec. VI is devoted to the discussion of a

si.mple illustrative 'example. 'Appendix A is con-
cerned with a proof of existence for the decom-
posi. tion of a density matrix. In Appendix 8, we
work out this decomposition while taking into ac-
count the spin degree of freedom. .Finally, Ap-
pendix C provides a detailed derivation of the
adiabatic collective kinetic energy.

II. SURVEY OF THE ATDHF APPROXjMATIONS

The TDHF approxi, mation provides a simplified
yet relevant framework within which the inter-
play between collective and single-particle de-
grees of freedom in a nucleus can be studied. If
adiabaticity is assumed, one is led to specific
equations of motion which have recently been the
subject of many detailed studies. ' ' For sim-
plicity, two further assumptions are usually made
as follows. :

(i) The dynamical evolution of the nuclear sys-
tem is governed by a few collective variables.

(ii) These variables are known a priori.

Under these circumstances, one. may derive from
the ATDHF equations of motion rather tractable
expressi. ons for the adiabatic mass parameter. '
A non-self-consistent version of such a formal-
ism is known as the Inglis cranking formula. '
Corrections to the Inglis cranking mass param-
eters arise from the change in the self-consistent
Hartree-Fock field due to the nonstatic part of
the ATDHF solutions. They have been exhibited
first in the particular case of collective rotation
by Thouless and Palatin" and were recently
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studied for more general modes. ' Furthermore,
the ATDHF formalism is capable of describing
another interesting limiting case of TDHF equa-
tions, the random phase approximation (RPA).""
Fully self-consistent RPA calculations are now

available, where both Hartree- Fock single-par-
ticle states and coherent particle-hole excitations
are determined from the same nucleon-nucleon
effective interactions. "" The ATDHF formalism
has therefore proven to be a useful tool in a va-
riety of physical processes.

Obviously, the relevance of all these studies
is contingent upon the smallness of the collective
velocities with respect to the single-particle mo-
tion. This is expected to be so for low energy
collective motions and is particularly supported
by the considerable sucess of phenomenological
descriptions of such motion (as those described
in Ref. 16), which are implicitly based upon some
type of adiabatic, mean-field assumption.

For the low energy fission process (spontaneous
or neutron-induced fission) the question of how
adiabatic is the descent from saddle to scission
remains rather open. The comparison of ex-
perimental fission-fragment kinetic energies with
the results of various liquid drop calculations has
led to the conclusion that some internal excita-
tion may take place before scission"'" and there-
fore invalidate a purely adiabatic description of
the fission process to the scission point. How-
ever, this amount of internal excitation would
imply a transition away from a superfluid phase,
which in turn would make an explanation of the
odd-even effect" difficult in the fission fragment
kinetic energy. It is therefore desirable to study
in great detail how the available energy is shared
between a few collective degrees of freedom and
the internal motion. Finally, in the collision be-
tween two heavy ions, it is not yet completely
clear how far one may describe the physical pro-
cess as an adiabatic one.

In all these situations, a double study needs to
be carefully undertaken. First, we want to know
when the adiabatic assumption is no longer valid.
Then, when this is the case, we want to know
how fast nonadiabatic effects develop and how
important they are. For these purposes, it is
useful to work within the expansion framework
developed by Baranger and Veneroni. ' They have
proved (under a restrictive condition discussed
below), that given a one-body reduced density
matrix p, one can find a set of two Hermitian
time-even operators (P„X) such that

p e&x p e-4x

Since the operator p, satisfies the projector iden-
tity p, '= po, it can also be viewed as the one-body

reduced density matrix of an independent particle
system. We will refer to eigenstates of p, with
eigenvalue 1 as occupied or hole states, whereas
those with eigenvalue 0 will be called unoccupied
or particle states. The proof of the existence and
uniqueness of the set (P»X) relies only upon the
assumption that the eigenvalues of y lie within
the open interval ] —m/4, m/4[ (see Appendix A).
In this case, the operator X has neither particle-
particle (p-p) nor hole-hole (h-h) matrix ele-
ments. In their proof of these results, the au-
thors of Ref. V have explicitly discarded the "am-
biguous" case where at least one eigenvalue of y
is equa. l to +w/4, as being too far from adia-
baticity. We believe, however, that this case
deserves a detailed study (see Sec. IV).

The expansion of the right-hand side of Eq. (1)
in powers of X yields

(2)

where p, is given by the q-fold commutator

(i)'
Pq =

) [Xy [Xy ' ' ' [Xt Po] ' ' ' ll '
q1

(3)

We may insert this expansion in the TDHF equa, —

tion for the density matrix p:

ih p=[h, p], (4)

where the dot denotes time derivative and h is
the Hartree- Foek one-body Hamiltonian associated
with p. The truncation of Eq. (4) to second order
in y provides the so-called ATDHF set of two

coupled equations. " Similarly, the corresponding
truncated expansion of the TDHF energy, written
as a functional of 'p, E[p], leads to

E[p] =E[p,]+K+O(X'), (5)

where the energies E[p,] and K are identified as
the adiabatic potential and collective kinetic en-
ergy, respectively. Due to time-reversal sym-
metry, there are no odd terms in X in the ex-
pansion (5), and K is therefore quadratic in X.
From the ATDHF equations, one can derive the
explicit expression for K (Ref. 8):

K=-'hTr (XP.).
Since po is linear in X, K is indeed quadratic in

The identification of E[p,] and K as potential
and kinetic energy is further confirmed by the
fact that the ATDHF equations have been shown
to be of the canonical Hamiltonian form; the ma-
trix elements of p, and X play the role of coor-
dinates and momenta, respectively. ' Testing the
adiabaticity of a TDHF solution then amounts to
exhibiting the smallness of y, for instance through
its eigenvalues. The difference between the TDHF
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energy, which is a conserved quantity, and the
sum E[p,]+K may also be used as a measure of
the rate at which adiabaticity is violated by ex-
hibiting the contributions of higher order terms
in X to the energy.

All practical calculations performed so far
within the adiabatic limit of the TDHF approxi-
mation assume in one way or another that the
dynamical evolution of the whole system can be
expressed in terms of a limited set of collective
variables, and that the corresponding operators
are known a priori. The most common "guess"
for these in the literature has been the standard
multipole operators. Under the condition X small,
the extraction of p, then provides a direct test of
these assumptions.

The method we present in this paper is capable
of answering all the above-raised questions. To-
gether with a check of adiabaticity, it provides
a direct and easy way to extract the adiabatic path
(when adiabaticity turns out to be a good approxi-
mation) as well as a measure of the rate at which
nonadiabatic effects build up.

%e will also discuss the limiting case where

X is a local operator, for it has been demonstrated
that the TDHF equations then reduce to a set of
hydrodynamical equations. " However, w'e will
see that the two assumptions: X local and having

p —h matrix elements only, are exclusive.

HI CONSTRUCTION OF po AND X

Baranger and Peneroni have shown' that one
may always define (see Appendix A) a time-even
operator X by

e""=(2p-1)(2 p- 1),
where p is the time reversal of p. From this
expression, the method we will follow is straight-
forward. Vfe first diagonalize e '", then extract
X under the assumption that all the eigenvalues
X" of X belong to [-v/4, w/4], paying special at-
tentiontothecase lg" I= v/4. Whenthelatterdoes
not occur, Baranger and Vdneroni have proven
that p, can be constructed by inverting Eq. (1)
and that X has only particle-hole matrix elements,
namely,

X pa+ POX=X ~

This method is by far more explicit and useful
for practical calculations than that proposed by
Ring and Schuck" using Thouless' theorem.

In this section we exclude the cases X~=0 and
y~=+ v/4, postponing their analysis to the fol-
lowing one.

Let us call S the subspace onto which p is a
projector and {p}the orthonormal basis which

(AA')~~= +&~i I A&1" I »& =&~~ I pl »&

The matrix AA is thus Hermitian, positive de-
finite and with eigenvalues between 0 and 1. We
will denote its orthonormalized eigenstates by

I 1» and corresponding eigenvalues by cos'y„,
where p„ is contained in the interval [0,v/2]:

AAt
I 1» =cos'y„l1». (11)

Upon left multiplying Eq. (11) by At, we imme-
diately solve the diagonalization problem for A.tA:

AtA I2» =cos'y„l2x&, (12)

where the orthonormalized states I2» corre-
spond to the same eigenvalues cos'y~ and are
related to the previous ones by the following
transformation between components:

(Pfl ) os''Z. U&»

Note that the state I1A& (I2X&) is completely de-
fined in the space S (S) by its components on the
set {p} ({p}). This new bi-orthogonal basis ({1A}
+{2k})is such that

(1A. I2x ) cospAgg (14)

as can be shown from Eqs. (11) and (13).
Let us define for each value of X two stat;es

Ia» and IP» as

diagonalizes p in S with eigenvalues i. The choice
of this basis is quite natural for practical appli-
cations since actual TDHF calculations provide
directly the time evolution of such states, rather
than the matrix elements of p in some arbitrary
basis. The orthonormal set Pp}, corresponding
to the tine-reversed determinant, diagopalizes
p with eigenvalues 1 and spans the subspace S
onto which p is a projector. The complete basis
({p}+{@))in the space S+S is bi-orthogonal, since
the two sets {p} and Q}are separately ortho-
normal, but not between themselves. Thi.s bi-
orthogonal basis plays an important role, since
in the complement of S+S, e"" is the unit oper-
ator and X is therefore zero. Consequently, we
only have to diagonalize e '" within the subspace
S+S. For this purpose, we first orthonormalize
the basis ({p}+{@}),using the method developed
by Gogny' for bi-orthogonal bases.

The overlap matrix A between the basis states
of S and S is defined as

A;y=&pg Py& ~

The matrix elements of AA. describe the restric-
tion onto S of the projector on S,
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(15b)

(I»&+ 12»» (15a)
2 cos(gpss)

2 sin(-,' y, }
'This notation anticipates the fact that these states
will turn out to be hole and particle states for
p, . The set (fhX)+ gX)) constitutes an orthonormal
basis spanning the subspace S +8, in which e4ix

can now be expressed. The unitary transformation
which diagonalizes AA in S changes the density
matrix p

Upon evaluating the matrix elements of p and re-
expressing the states

I +» in terms of Ih» and

Ip» through Eqs. (20), p, takes the simple form

p, = A,x hx, (26)

y =g-,' iy, (lh»&px I
—Ip»&hx ),

which shows that the states Ih» (IPh&) are nothing
but the hole (particle) states for p, . The procedure
we have followed thus provides directly with the
basis diagonalizing p, . In this basis, X is

p=ZI p;&&p;I,

into

p= 1X 1X

Similarly we have

(16) which clearly exhibits its lack of p-p and h-h
matrix elements.

States very close to the particle states IP» have
already been considered in Ref. 23. Indeed, the
states Iqk& in Sec. 7 of that reference are the
states ~pA&, apart for a factor -', &ps,

r = g I»& &» I. (16)

I+» = (Ih» alp»),
2

» = —'(I~», f IP»},
(2O)

associated with eigenvalues

This yields the following eigenvalues for X

(21)

(22)

Using the spectral decomposition theorem, we
then get

it=+-,'q, (l+»&+xI I »& yI). (23}

From Eq. (1), p, is given by

p e"ix peix (24)

and can be expressed in terms of the eigenstates
of g:

p = 2 (I+»&+&I&+&lpl+»+ I-»&-&I&-&lpl-»
+e'"~

I »&+ ~ I&-~ I p I +»
ye '

I
+»&-A. I&/A. I p I

-») . (25

Therefore, upon inverting Eqs. (15), the operator
e''x reduces to a simple (2 && 2) block diagonal
form. Each block B~ corresponds to a single .

eigenvalue y„and reads

(cos2+g —stn2+))

( stn2q, cos2p, )
The eigenstates of B~ are

IV. PROPERTIES OF po AND x, LIMITING CASES

Hermiticity and time-reversal properties

In the previous section, we have described a
simple method to diagonalize the operators p, and

X and given their representation in the particle-
hole basis. Although we know a Priori that they
are both Hermitian and time-even from general
considerations, ' we will show from their explicit
forms that they indeed have these two properties.
Hermiticity is directly seen from their expressions
(26} and (27). On the other hand, their time-even
character is less transparent and requires taking
into account the spin degrees of freedom.

As a result of the analysis of the time-even be-
havior of p, and X, we will learn how to generalize
ATDHF to odd-even nuclei and how to treat cor-
rectly the extreme nonadiaQatic ease where some

y~ is equal to +v/2 (i.e., some eigenvalues of

y equal to +v/4).
From now on, we shall limit ourselves to the

consideration of TDHF single particle states
fp;f which are eigenstates of the third component,
s„of the spin operator. A similar discussion
can be carried out when the TDHF single particle
states are eigenvalues of j,. The set(p, ,f is com-
posed of n, spin-up states (eigenvalue +-,') and n
spin-down states (eigenvalue ——,). We show in
Appendix B that if n, and n are not equal, at
least ln, -n

I
eigenvalues of AAt vanish, i.e.,

are such that y~=v/21. When this is not the case,
we also show that, to solve the eigenproblem for
AA~, one needs only to diagonalize the restriction
MM~ of this matrix to either one of the spin-up-
or spin-down subspaee. To each eigensolution
characterized by y~, I 1», and

I 2» in a given
spin subspace, there corresponds in the other
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Due to the time-reversal properties for fermions,
we also have

Ir~&= I2»,
(29)

I2'x& =-
I
I».

Consequently, the states Ih» and P» built from
I» and I2» by Eqs. (15) are related to the states
I'» and Ip'» built from Il'»»d I2'», by

lax&= la», la
—
» = a»,

IP& =- lp "»,
It immediately follows from Eqs. (26) and (27)
that po and X are indeed time-even operators.
In addition, we have found that for each non-
vanishing eigenvalue cos'y~ (p„ov/2) of MM~

(or AA~), there are two orthogonal eigenstates
I I» and

I
lA. '& in the subspace S. The same thing

occurs in S where both 2» and I2X'& are eigen-
states of A~A with eigenvalue cos'y~. This is to
be related to the following result of Ref. 7: If a
state Ia& is an eigenstate of x, the state (2p-1}Ia&

is also an eigenstate with the same eigenvalue.
Indeed, the two eigenstates of X, I+», constructed
from p» and Ih» by means of Eq. (20), are
related to each other through

(2p —1)
I
+» =8"'

I
7- » . (31)

(30)

one an eigensolution characterized by the same
eigenvalue p, and by the eigenvectors

I
I'X& and

I2'» related to the previous ones by time-reversal
conjugation:

(26)
I2'» = Il~&.

state of 8""with eigenvalue 1 and an eigenstate
of X with eigenvalue 0. It contributes neither to

X nor to any dynamical quantity (like EC) and, ac-
cording to Eq. (24), is a,n occupied state of po.
According to Eq. (33), the twofold degeneracy
discussed above still applies and there exists
a second eigenstate which is nothing but the time
reversal of Ia&, so that the total contribution to

p, is time-even: Ia&(a I
~ la}(a I.

On the other hand, cos'y~=0 (y~=n/2) means
that some eigenvalues of the projector-like oper-
ator AA~ vanishes. This implies that there exists
a subspace 6 of 8 orthogonal to S. Let us call
f&o] a set of orthonormalized vectors spanning 8.
The time-reversed space 6 spanned by the set
(&~u is orthogonal to S, and thus:

(2p —1) (d)
I

(d& (2p 1)
I

(d&
I
(0)

(

Therefore, again from Eq. (7), both I&& and I&~a

are eigenstates of e""with eigenvalues -1, i.e.,
4X=+m, which is indeed the ambiguous case quoted
in Ref. 7. Let us decide that the corresponding
eigenvalue y„of y is +v/4, the phases 4x„are
then contained within the semi', open interval
]-v, +v]. We also denote the restriction of oper-
ators to the subspace 8+8 by P, y, . . . . It is
clear that the sum 7'y+y r does not vanish any
more. Thus, we cannot define from the expres-
sion (7) of e'+, a time-even Hermitian operator
P, such that Eq. (1) is fulfilled (cf. Appendix A).
However, as a formal extension of the choice
made in Ref. 7, it is natural to make use of Eq.
(24) to define an Hermitian operator j5, from p
and g as

Finally, we note the time-reversal properties
of the eigenstates of X:

(32)
I~a& = I+'»,

where the states )+'X& are constructed from Ih'X)
and Ip'X) according to Eq. (20).

v. =v= pl~)(~ I.

Clearly, 1), is not time-even. The states le&
diagonalizing P, with ei„envalues 1 are hole
states and the states lug& particle states. The
operator X may be written

(35)

Limiting cases

In both cases, y„=0 and y„=w/2, we have to go
back to the basic definition of e""'[Eq. (7)] and

p, [Eq. (24}]; the method derived in Sec. III fails
because of the denominators in Eqs. (13) and (15b).

%e first deal with the case q~=O. %hen p„
vanishes, the corresponding eigenvalue of AA',
cos'p» is equal to 1. Due to the projector char-
acter of AA~ [Eq. (10)], the corresponding eigen-
state la& belongs to both S and S, thus

(2p-1) I&& =(2p-1)l~& = I~& (33)

Therefore, as seen in Eq. (7), Ia& is an eigen-

&=e" 8+8 "~ e=g(e" 'l(d&(col+8 "~'l(u&((u I)

(36)

Contrary to the previous case, y has only p —p and
h —h matrix matrix elements. There is no con-
tradiction with Ref. 7 where the assumption made
about the eigenvalues of y jmplied the vanishing
of those p- p and h- h matrix elements for X.
In fact, we have simply proposed a possible gen-
eralization of the decomposition (1) to cases
(y = v/4) which were not explicitly taken into ac-
count. Such cases may be encountered in two
different instances: first for systems such that
n, en (as is the case for odd nuclei), second,
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whether or not n, =n, there may be accidental
zero eigenvalues of the matrix AA .

It would be rather inconvenient if the adiabatic
collective energy were to depend on the choice
of phase for the eigenvalues of X. actually, this
is not the case, the potential energy part depends
only upon p, whose restriction to 8 y 8, P„ is
independent of the choice of phase, as seen in
Eq. (35). On the contrary, the kinetic energy
part K does depend upon X [cf. Eq. (6)]; however,
the contribution to E arising from X vanishes for
it involves only p-p and h-h matrix elements
of j50 which are known to be zero in the most gen-
eral case. As a result, the collective adiabatic
energy is not affected at all by the phase choice
for the y„eigenvalues.

The expansion of the TDHF energy in terms of
p provides an additional justification for our
choice of po.

Z(p}=Z(p- P)+ Tr Tr[(p P) I't~]+Z(p). (37)

In Eq. (37), the first term can be approximated
in the adiabatic limit according to standard tech-
niques. ' The second one is the coupling energy
between l&u& and the other states p&, whereas
the third is a correction term arising only from
the subspace 8. Our choice of t), and X is there-
fore consistent with a restriction of the adiabatic
approximation to the (S —8) subspace. In addition,
it provides a framework for further approxi-
mations in the dynamical treatment of the states
I(u& and their coupling to the other states

Practical derivation; Summary

Unless p is built from states which already
diagonalize s„we follow the method given in
Sec. III. %hen the overlap matrix A is built
and AA~ diagonalized, we have to classify its
eigenvalue s:

(i} cos'y~ = 1, eigenstates la&, then

x(~)=x= P(s'""l~&&~l+e'*"'I~&&~l), (42)

p.(~) =t).=P l~&&~l. (43)

There is no contribution to K.
Only po(a} and p, (Ph} are time-even, whereas

X is time-even in any case. The final expressions
for p, and y are

p. = p.(~}+p.V») + p.(~),

x = o+x(p»}+x(~) . (45)

Adiabaticity of the motion

Let us first reexpress the adiabatic collective
kinetic energy, as given by Eq. (5) in the basis
which diagonalizes p, . Using Eq. (27) we get

z= —g q, {(px I p, Ihx& -(hx
I p, Ipx&), (46)

which can be rewritten as

IC = —gy„ im(h x lpx&, (47)

V. TEST OF THE VALIDITY OF SOME.CURRENT

ASSUMPTIONS

At the end of Sec. II, three different questions
concerning the motion represented by a TDHF
solution have been listed:

(i) Is the motion adiabatic?
(ii) If so, what is the adiabatic path'?
(iii) Is X local' ?
In this section, we will further develop some

implications of the formulas which have been
derived in the two previous sections, in the con-
text of these three questions. For the sake of
simplicity, we assume that none of the eigenvalues
of e""correspond to the limiting eases studied
in the previous section an& we adopt the notation
of Sec. III.

X(s}=0,

p, (a) = g I
a&(a I

.

(33)

(39)
where lfix& stands for the time derivative of lb'&.
In terms of the states IIX& and I2X&, K reads a,s

There is no contribution to K.
(ii) 0&cos'y, &l, eigenstates llx&. We have to

construct the states I2X& through Eq. (13), and

IPX& and lb'& according to Eq. (15), then

K = —2 ~ Im ((lx
I
»&+(2x I»&)4 ~ sing~

Note that there is no p~ dependence in this ex-
pression. According to Appendix C, we have

(48}

x(pk) = g -,' iy, (lb'&(px I Ipx&(hx I), (40) (&» II I»&+&» II I»&)4 ~ sing~

p, (pI }=Q IIx&(Ixl.

(iii) cos'y, =0, eigenstates la&&:

(&2x II +I
I »&+ &ul a+5 I2x&) .

(49)

where h is the time-reverse HF Hamiltonian. The
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time derivative of the eigenvalues of X are given
by

&». I[p, (I +a)] I
1~&.

2 2h sin2y~
(50)

~,

(51)

and

We can also calculate the qth term p, in the
expansion of p in terms of y [cf. Eq. (3)]. First
we notice that all p, operators are diagonal in
terms of 2 x 2 blocks correspond. ing to a given

We restrict ourselves to such a block, and
evaluate the contribution p~ to p, coming from X.
The full. p will be simply the sum over X of each
of the p~. From Eq. (3) we derive the recursion
relations:

allow a direct study of the adiabaticity of any given
TDHF solution. Moreover, by simple inspection
of the time derivative of the eigenvalues of X [cf.
Eq. (50)], one can tell at any time how nonadia-
batic effects may develop.

Adiabatic path

The knowledge of p, is in principle sufficient
to characterize the adiabatic path. However,
for practical purposes one needs to analyze i.t
through the time behavior of the expectation values
of a sufficient set of operators such as multipole
moments, total Hamiltonian, ete. For instance,
the expectation value of a one-body operator Q
is given by

(&» IQ I»)+&» IQ I»)
4 p cos gp)

2

P =
4q(q 1)[+ Ã P -2]] (52)

+&»IQI»&+&2~IQI»&) .
(57)

where

-2iX= (53)

The solution of Eq. (52) for odd values of q is

p,'„„= +', (Iax&&pal+ lpx&&n~l), (54)

with n ~ 0. Using the recursion relation (51) once,
we obtain for even value of q:

p', „= +,', (ll ~&&a~
I lpga~ I) (55)

with n ~ 1. In the above expressions, it is easy
to check the p-h characte~ of p, =Z,.p~, and
the p-p, h-h character of p,„= ~p,"„. Also, from
Eq. (30) we immediately see that the even terms

p,„are time-even and the odd ones p, , are time-
odd under time-reversal conjugation.

Moreover, Eqs. (51) and (52) provide an ex-,
plicit measure of the convergence of the expansion
(2) for p. These expressions could have also been
obtained in another way. Indeed p canbe directly
expressed in terms of particle and hole states:

p= p, + P-.' sing, (la»&t~ I+ lpx&&a~ I)

J

+ p —'(1 cosy )( Ipx&(px I
—lb'&&hx I) (56)

which is also readily obtained by resumming p
from Eqs. (51) and (52).

We have thus given explicit and rather simple
expressions for both the operator p and the adia-
batic kinetic collective energy K. Such expressions

In the particular case where Q is invariant under
time-reversal conjugation and where the original
TDHF set (p] diagonalizes the operator s„ it is
readily seen from Eq. (29) that the summation in

Eq. (5V) can be done only on spin-up states, upon
replacing the factor 4 by 2, since contributions
from spin-up and spin-down states are equal.

It is also possible to evaluate the HF Hamil-
tonian h, constructed from the reduced density
matrix p, . This defines the external field U,„,
necessary to constrain the system to be described
by the Slater determinant corresponding to p, .
The equation

[h. p.l = -[U..~, p.] (58)

U,„„=-X(t) Q. (59)

However, even if it turns out that this approxi-
mation is justified, it still remains to determine
the operator Q precisely. On the other hand,

Eq. (59) may very well be not valid. This may be
the case in a large amplitude motion if the adia-
batic path experiences a sudden turn in the multi-
dimensional space whose coordinates are ex-
pectation values of a set of operators (Q;]. Such
a drastic change in the constraining field has
been advocated for instance in connection with
the fission process, where during the descent
from the saddle point to the scission point, the
elongation motion seems to transform suddenly

provides the p-h matrix elements of the external
field V,„,. From this equation, one may easily
check the current hypothesis' stating that the adia-
batic path is given by a series of HF calculations
under a constraint on a single time-independent
operator Q, or in other words, whether or not
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into a necking motion. '"'

At last, it is also worthwhile to study the dif-
ferences between the expectation values of some
operators for the reduced density matrices p and

p, . If the considered operators are Hermitian and
time-even, their trace with a, time-odd operator
like p,„„is zero. ' For a one-body operator, this
implies that its expectation value will only in-
volve its p-p and h-h matrix elements. Further-
more, for such an operator Q, the difference
Tr[Q(p- p, )] is at least of second order in y. This
is in particular true for the total energy E(p] which
can be written as

Elp]=E[p.] T, l.' ~, (60)

From Eq. (2V}, we have

X Ipx) = 2 ir//i Ihx) (62)

x Iax) = —,'iy„Ipx&. (63)

Upon left multiplying Eq. (62) by X and using Eq.

where T, and V, are the second order terms in
the expansion of the kinetic and potential en-
ergies, respectively. The sum T, +V, is the adia-
batic collective kinetic energy K defined in Eq. (6)
and E[p,] the potential energy. "

Locahty of the operator X

Let us assume that p may be formally written
as in Eq. (1) with an operator X local and in-
dependent of spin and isospin. If in addition, the
effective nucleon-nucleon potential is gauge in-
variant under the unitary transformation e+, then
it has been demonstrated", that the TDHF equa-
tions of motion can be transformed into an equa-
tion of state for the nuclear medium, supplemented
by a continuity equation and a: Euler's equation
corresponding to an irrotational flow.

An application of this, in a rather restricted
case, has been made within the ATDHF framework
by assuming a particular form for the adiabatic
path and is often referred to as the scaling approx-
imation 9 23 gs

It is particularly important to notice that the
demonstration made in Ref. 20 does not at all
postulate that the operator )( appearing in Eq. (1)
should have only p-h matrix elements (restriction
referred to as the "na,tural choice" for X in Ref.
V), We show below that, with this choice for y,
the additional condition of locality implies its
vanishing.

Let us then assume that y is given by Eq. (2V)
which clearly assesses its "natural" character,
and postulate its locality, namely,

(r }t Ir') =x(r)5(r-r'). (61)

YI. UNIFORM TRANSLATION

Consider a set of N static single-particle ortho-
normalized wave functions fQ/(r)] defining a static
density matrix p, by

p, (r, r') =(rIp, Ir') = Q p/(r)py(r'), (64)

and- let these wave functions satisfy the following
set of static Hartree-Fock equations

h, y, (r) =e,y/(r}, (66)

where A, is the Hartree-Fock Hamiltonian asso-
ciated with the density matrix p,.

We define the translated wave functions cor-
responding to a translational velocity v (or to a
momentum per nucleon k=m v/ft), by

g ( r t) e ie/4/tl e-I -h/ t/2m eti r
Q ( r vt) (66)

a.nd correspondingly a translated density matrix
p, by

p(r, r', t) = Q p/(r, t) g/e(r', t)

=e"' "'p,(r-vt, r' —vt). (6V)

This definition of translated states is natural due
to -Galilean invariance, since the wave functions
g/ satisfy the following set of TDHF equations"

i')/(r, t}=hg/(r, t), (66)

where h is the Hartree-Fock Hamiltonian asso-
ciated with the density matrix p [cf. Eq. (6V)].
The Slater determinant 4 constructed from the
single-particle states P/ simply represents the
uniformly translated Slater determinant 4'e (with
velocity v} constructed from the Q/'s.

We multiply the states |t/ by the time-indepen-
dent phase factor exp[i(e//tf -k v/2)t] thus de-
fining the new set of wave functions 8/(r, t)

(63), we readily see that X is a constant oper-
ator. Then projecting Eq. (63) on Ih&), the van-
ishing of X follows from the orthogonality of the
states hX) and Iph). Therefore the assumption
X local makes sense only if we abandon the "nat-
ural" choice for X.

Indeed, in the calculations using the scaling
approximation, the local operator X was "non-
natural": for the study of monopole vibrations, "
X was chosen to be proportional to r' while it was
proportional to (2z'-x'-y') for quadrupole vi-
brat;ions. 9' "

Note that there is a case where one knows the
exact TDHF solution in the form of Eq. (1) with
a non natural operator. This is the uniform trans-
lation of a 3later determinant which will be studied
in some detail in the next section.
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8~(r, t) =8&(s)=e'"' P~(s),

where g = r —vt. The density matrix p can be
reexpressed as

p( r, r', t) = P 8~( s}8f( s') . (vo)

the eigenvectors 1X} and ~2a} which diagonalize
AAt and AtA:

(v2)X",=(8,
~
1x}e r", = (8, ~2x) .

According to Eq. (13), we have (from now on, we
exclude the case y„=v/2)

The states 8& diagonalize p and can be taken as
the starting states p, &. We may further assume that
they also diagonalize s„which implies that 8& con-
tains implicitly abra in the spin space. The matrix
elements of A are

1Y)t X)t, (V
cos+)t,

These X's and Y's do not depend upon time due
to the time independence of AAt and AtA. From
Eq. (15a), we obtain the hole wave functions

x„=&e,. ~e) fee =e.*"'e;(I)e,(e). (vl)
l "(r,f)=, +[X",e,(s)+r",e,(s)]2cos ~ +g g

(v4)

Neither A, nor At, depends upon time. As a
consequence, all cosy~ are time-independent.

Let us define X~ and Y", as the components of

and a similar equation for the particle states.
From the right-hand side of Eq. (V4), it can be
seen that h~ depends upon time oddly through the
vector s = r —vt.

The density matrix p, is given by

p.(s, s') = g 2(1 [X',X',*e,(s) ey(. s')+X", r)*e,(s) ey(s')
I

+ cos+)f,

+ r",x',*e,(s) ey(s')+r', r,'*Ã,(s) ey(s')]. (vs)

As shown in Sec. IV, the assumption that no y,
are equal to v/2 implies the vanishing of half the
X~» and Y~ for any given X, in such a way that

p, (s, s ) does not exhibit any spin vector com-
ponent. Similarly, X(s, s') reads as

We will assume even parity of Qe which is natural
for an e particle. Therefore, the phase e van-
ishes. Since [cf. Eq. (11)]

AAtX = cos'yX,

(s ~&e) ~x p[p%Xkee f (~s)ey(ge)
SlDQ)„

X", r",*-e,(s) 8y(s')],
(vs)

where the second term in the sum over i and j
is nothing but the complex conjugate of the first
one, except for an implicit spin operator.

and [cf. Eq. (13)]

At
Y= " X,cosp

we get for each spin-isospin state

X=1, Y=1.
Therefore

(so)

n particle

To illustrate in a simple manner the properties
of X and p, for translational motion, we now re-
strict the discussion to the case of a spin-isospin
symmetric e particle, assuming the single wave
function Q to be reaL The matrix M [see Eq.
(Bl)] is the following 2 by 2 matrix

~(~) cos(k' s) ~(~)
cos(-,'p)

(~) . Sin(k'. s) ~(~)
sin(-,' y}

(s2)

where the spin-isospin dependence is implicit for
each of the four states. The density matrix po
is given in terms of p, by

t'a 0)M=
I«&

where a is given by

e
a= s e ds=cosye

(VV)

(vs)

p,(s, s') =
1+cosy ( cos [k ~ (s —s')]

+ cos[ k ( s+ s')])p, (s, s')

(ss)

and the operator y is
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}((s,s') = . sin[k ~ (s+s')]p, (s, s').
sing

(84) }((s)p(s).= —(k s)'h(s), (90)

Taking advantage of the time independence of p,
the expression (4V} for the adiabatic collective
kinetic energy reduces to

@=4 .~ —,'m/v/'.
sing ' (85)

Discussion

In the case of collective translation, the time-
dependent density (67) may be written in the form
of Eq. (I}with

(87)

4p — k's s ds. (88)

The p-h- matrix elements of X and y are equal
at the same order. ' Therefore, the operators
X and X, in the subspace S+S, are identical in
the adiabatic limit.

Apparently, y is local and at the same time has
only p-h matrix elements; therefore, according
to the discussion of Sec.V, it seems that it should be
identically zero. However, this result was proven
for X only when the relevant particle and hole states
werethose correspondingto p, . Inother words, X
would be identically zero if the states h (s) and P (s)
altogether with X were to fulfill Eqs. (62) and (63),
which is not the case:

j(s)h(s) = --,' imp(s),

corresponds to Eq. (63), but

(89)

( r
~ p, ~

r') = p, ( s, s'), (86)

( r (y (
r') =k r 6(r —r') .

Such a- choice for p, and y is not "natural" ac-
cording to the Baranger and Veneroni notation, '
since X has nonvanishing p-p and h-h matrix el-
ements. Moreover, this new decompositon of p
provides a local operator y.

We now compare the two sets of operators
(p»y) and (p„x) in the adiabatic limit. If ~%~ is
small, y is small, as seen from Eq. (78), and
therefore X is also small, which is indeed the
adiabatic limit. From Eq. (83), p, then approaches
p„ i.e., p„as k

~

goes to zero, and the adiabatic
translation energy given in Eq. (85) is equal to
the exact translational energy, up to second order
in y.

The comparison between y and X is slightly more
complicated since it implies a comparison be-
tween matrix elements. Owing to parity sym-
metry, the p-p and h-h matrix elements of X are
identically zero. In the adiabatic limit (

~

k
~

- 0),
Eq. (V8) provides the leading term in cp' as

differs from Eq. (62).
We have therefore shown explicitly in the n

particle case that the ATDHF formalism specified
by the "natural" choice for X is capable of de-
scribing exactly uniform translational collective
motion in the limit of small velocities. However,
this "natural" decomposition of p is not quite ap-
propriate for translation where one would rather
use the decomposition given by Eqs. (86) and (8V).

Conversely, one may take advantage of this
situation to eliminate in a simple way the overall
center-of-mass motion of a nucleus to be studied.
Let us assume that an excited nucleus is in uni-
form translation. Its center of mass is moving
with a constant velocity v(=kk/m) defined by

1v= —— j(r)dr,
m N

(9l)

where N is the total number of particles and j
the usual current. Provided the effective Ham-
iltonian is Galilean invariant, we define a new
set of wave functions P/ by means of the gauge
transformation

(~r f) e Nk~t/2m e-f% ry (~r '~vf) (92)

While the evolution of the nucleus was known by
the corresponding time evolution of the 4& states,
this transformation allows us to study its behavior
in its rest frame, the overall translational kinetic
energy being exactly removed.

VII. CONCLUSION

We have proposed a tractable method to obtain
the operators p, and X of the ATDHF method from
a numerical TDHF solution. One of the formal
aspects of our derivation is the fact that we have
been able to express all relevant quantities in the
particle-hole basis associated with p, which plays
an important role in the ATDHF formalism. More-
over, such an explicit formulation has allowed us
not only to illustrate some of the general state-
ments of Refs. 7 and 8 but also to give further
insight into the ATDHF approximations. For in-
stance, we have given simple closed expressions
for all the terms of the expansion of p in terms
of X as well as for the adiabatic collective kinetic
energy. Furthermore, we have been able to clar-
ify the discussion about the locality of y and prove
its incompatibility with the natural choice for y.

More generally, we have extended the discussion
of the authors of Ref. 7 to cases discarded therein.
Indeed, the case where some eigenvalues of y are
equal to av/4 have been found to be of practical.
importance in the study of collective motion of
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odd nuclei. A natural formal extension of the
standard formalism has provided a working frame-
work for such studies. Another limiting case
(vanishing part of the spectrum of X) has also
been studied. It corresponds to a situation where
the dynamical treatment can be restricted to a
subgroup of nucleons, the others then stand as
spectators.

The whole formalism has been illustrated in the
particularly simple case of uniform translation.
In such cases, the exact TDHF solution is known
and the validity of the ATDHF solution has been
explicitly demonstrated in the limit of a small
velocity. A practical method has been proposed
to extract the adiabatic vibrational collective
motion from possibly highly nonadiabatic trans-
lational motion, as may be encountered in final
stages of heavy ion collisions.

pote that in practical calculations, if N is the
number of single-particle wave functions evolved
by the TDHF equations of motion, the dimen-
sionality of the matrix e"" to be diagonalized is
a priori 2¹We have shown that one has to di-
agonalize the N by X matrix AAt and then to make
rather trivial linear algebra manipulations. ~r-
thermore, the dimension will be reduced to about

,'N (matrix —MMt) when the TDHF single-particle
states are eigenstates of the spin operator s,.
This is the case when there is no spin-orbit term
in the effective Hamiltonian and when dealing with
even nuclei. As a matter of fact, most of the
available TDHF calculations" are such. In ad-
dition, they impose an isospin degeneracy and the
dimensionality is therefore reduced to +N. Any
further symmetry (parity, axial symmetry, . . . )
implying a conservation of quantum numbers will
result in the splitting of the MM~ matrix into a
block diagonal form. These considerations pro-
vide further simplifications to practical calcu-
lations since they involve mainly the diagonaliza-
tion of the matrix MM .

P ractical applications addressing themselves
to the problem of low energy vibrations are under
progress.
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by the National Science Foundation [PHY76-
83685] at Caitech, and by the U. S. Department
of Energy [W-V450-ENG-36] at Los Alamos.

APPENDIX A: PROOF OF EXISTENCE FOR THE

DECOMPOSlTION OF A DENSITY MATRIX

In the same way, the time-reversed operator 7 is
also Hermitian and unitary, so that the operator
y7 is unitary and may be written as

7 V=e

where X is an Hermitian operator. The adjoint of
gT ls

Vv=e x

and its time reverse is

iT =e

(A4)

(A5)

It immediately follows that y is time-even (y =y).
Left multiplying Eq. (A4) by r yields

Under a specific restriction discussed below,
Haranger and Veneroni (Ref. 7) have given a proof
of the existence and uniqueness of two Hermitian
time-even operators p, and y, satisfying Eq. (1):

p -e&xp e"&x

given a one-body density matrix p. To substan-
tiate the discussion of some important points of
our present work, we reproduce and discuss in
this Appendix the main steps of their proof.

Defining the Hermitian operator g as

(A1)

the projector identity for p implies that v is also
unitary:

(A2)
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So far, no assumptions have been made about g.
At this point, Baranger and Veneroni introduce
an assumption which defines, in their words, the
"natura1 choice" for X. Specifica11y, they fix the

phase 4y~. of each eigenvalue of g 7 to lie within
one of the two semiopen intervals ]-s, +s],[-s,+s[.
Since their main concern was the study of smaQ

X values, they have discarded the ambiguous case
where )y~( =n/4. This limiting case is discussed
in Sec. IV. In this Appendix, we assume that X"
lies strictly between -n/4 and +w/4 for any X.
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From the consideration of the matrix elements
of e '"y -7-e '" and yv +yx, the vanishing of the
former implies the vanishing of the latter, i.e.,

X~+~X, =0

or, in terms of p:

xp+px=x

(A7)

(AS)

This expression implies that X has neither p-p nor
h-h matrix elements, where particle and hole re-
fer to unoccupied and occupied states of p. As a
consequence of Eq. (A7), one has, for any complex
number Ot:

This set is composed of n+ spin-up states and n
spin-down states. The spin-up states will be
written as Iu&I+&, where Iu) and I+) are, respec-
tively, the space and spin parts of the state I p). In
the same way, the spin-down states will be de-
noted by Id)I-). The overlap matrixA, then has
zero matrix elements between different spin
states. Similarly, p, p, and therefore e '" do not
modify a given spin state. We can thus separate
S+S into the spin up subspace ((Iu&I+&} +&Id & I:&])
and the spin-down subspace (&Id}l-&& +flu&l+&) ).

First we consider the spin-up subspace, in
which theA and A+ matrices read as

e~~x~ -~e-~~x

Let us consider the operator

(A9) A =M&+I:),
A' =M«=I+&,

(al)

7'0=8 (A10)

Independently of the phase convention for e~'",
this operator can easily be proven to be time-
even and unitary. It is also Hermitian, as can be
seen from Eq. (A9) with n = —2. This latter pro-
perty is therefore a direct consequence of the
phase convention. Let us define a Hermitian time-
even operator p0 by

TP =2P0 —~ ~ (A11)

Note that po satisfies the projector identity and
therefore defines a time-even independent-par-
ticle state. In addition 70 satisfies an equation
similar to Eq. (A7):

70X+X&0=0

which shows that g has neither p-p nor h-h matrix
elements, where now p and h refer to unoccupied
and occupied states of po. From Eqs. (A9) and

(A10), one has

since, irrespective of the phase convention for
the time-reversed state I =),

I+& &+ I
=

I =) &=I .
Defining ID.& as

Iu. & =Ix~&I+&,

(as)

(a4)

the reduction of Eq. (11) to the spin-up subspace
ls

MMtIxx& =cos'p~IxA. & . (a5)

We have thus obtained n+ eigenvectors Ixk& as'so-
ciated to eigenvalues cos' y& which diagonalize the
z Xn matrix MMt. Multiplying Eq. (a5) by Mt,
we get

where M is the overlap matrix &uId). The dimen-
sions of theA andA matrices are n, xn and n
x n+, respectively. From Eq. (a1), the n+xn+
square matrix AA~ becomes

(a2)

~ -e&x~ e-&x
0

and finally

(A13)
M'M(Mt Ixz&) =cos' q, (MtIxX&) . (a6)

p =e'"p0e '" (A14)

Since the operators p0 and g are both Hermitian
and time-even and since, in addition, p0 is idem-
potent, this provides a proof of existence of the
set (po, y) under the only condition that the eigen-
values of y lie within the open interval ]-m/4,
+w/4 [. This condition implies the natural choice
for yIcf. Eq. (AB}].

The proof of uniqueness is not essential for our
purpose, and we do not derive it here, it can be
found in Ref. V.

APPENDIX 8: DIAGONALIZATION OF THE AA+ MATRIX
O'HEN BUILT FROM KIGKNSTATES OF s,

Let us consider a set(p, ] of TDHF solutions
which are eigenstates of the spin-operator s,.

Therefore the n states MtIxX& diagonalize the
n xn matrix M~M. If n+ &n this implies that
some of the states MtIxX& which are orthogonal:

&x'IMMtlx& =cos' y&x'Ix& =0 (a7)

have a zero norm, i.e., MtIxk& =0. So, at least
n+ -n vectors MtIx) must have a norm 0. Since
their norm is nothing but cos'y„, it means that
n+ -n eigenvakues cos'yz must vanish. In the
situation where n & n a similar demonstration in
the spin-down subspace shows that n -n+ eigen-
values are 0. Therefore if n+en, at least In+-n I

eigenvalues cos p~ must be zero (i.e., y~ =m/2).
From now on, we assume that there are no ei-

genvalues cos~ yz of MM~ equal to zero (and there-
fore n+ =n ). The normalized states
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(as)

In the spin-down subspace, the same demonstra-
tion can be carried out, and we have

Z =(Mt)*&+~-&, (B10)

therefore

)yX& = M'(xX&
cos p&

diagonalize M~M with eigenvalue cos' @~. Accord-
ing to Eq. (13), the states ~2A. & are

i»& =ly»l+). (»)

laps in Eq. (C1) as

is&if»& =-Q x„"*&p)hip'&x„'
p pt

+ is Px~~* x„",

iS&2~I2X) = -Z y'p~ &u I hl p') Yp".

+ iSg y'i. + jik
P

(C3)

(B11)

By comparing Eq. (B11) to Eq. (B2), we imme-
diately see that the states )2'X& which diagonalize
AtA can be deduced from the states ~1A, & by

I»'& = lz~*&l -&. (B12)

(B13)

The comparison of Eqs. (B4) and (B12) implies

The transformation (13) of ~»& in (2A& via Mt be-
comes in the spin-down subspace the transforma-
tion of ~1'X& in ~2'1& via (Mt), and then

ll » =ly*&l+&.

where h is the time-reverse HF Hamiltonian. The
energy E becomes thus

X=- Q . [&»Ihl»&+&2&Ihl2&&]4 g Sinpg

sing
(c4)

Jn order to derive a more convenient expression
for the second term of the right-hand side of Eq.
(C4), we write explicitly the eigenvalue problem
for which the X's are solutions, namely [cf. Eqs.
(10) ~d (11)]:

Similarly, from Eqs. (89) and (B13)

lu& =ll'».

(B14)

(B15)

Q &p)p& &p~ p, '}x~~ =cos'y~X~i. (c5)
ptp

Upon multiplying Eq. (C5) by iS' and taking its time
derivative, we get

APPENDIX C: DERIVATION OF THE ADIABATIC

COLLECTIVE KINETIC ENERGY
I

The adiabatic collective kinetic energy K is
given in Eq. (48) by

Im [&IXI») +&2~Ii~&], (Cl)4 x s~npx

In this Appendix, we express the overlaps &»(1g
and &2A. (2A. & in terms of quantities which do not in-
volve explicit time derivatives. For this purpose,
we introduce the expansion of the states ~»& and
[2X& in the spaces S and S

(lx& =Q x~
[ Ii&,

(c2)
I»& =XI"l~p, &

pt

~hen taking the time'derivatives of Eqs. (C2), one
introduces the time derivatives of the states [g)
and (p& which are known from the TDHF equations
(68). The time derivatives of the components

X&~, F~. are also introduced and remain to be eval-
uated. These components generally vary in time,
except in very particular cases such as transla-
tions (see Sec. VI).

From Eqs. (C2), we may express the two over-

Z&p l[p, h+h]ld '&xp +Z&~~ pl p'&isxp
pt pt

=-ia'j~X„"sin2y~+iSX„"cos'yi . (Cs)

The time derivative of q~ can be evaluated by

multiplying the latter expression by X&~ and sum-
ming over p, , to obtain

&»l[p, h+h]l»&+2 x~ &vl-.&&-.lv &isxg'
gatv

= —iSq&i sin2y'g +iS+xp Xp cos y)„~ (C I)

which, due to Eq. (C5), reduces to

iSPi sin2y„=&»I[h +h, p]l»& . (Cs)

yx — Xx.
cospg

(c9)

Replacing jz in Eq. (C6) by its value from Eq.
(CS) would give a set of linear equations for X„".
However, as we shall see below, the solution to
such equations is not needed for the evaluation of
K.

Assuming the X&~ known, the time derivatives
F& are obtained by differentiating Eq. (13), written
as



l904 P. BONCHE AND P. QUENTIN 18

ifiI p =iag7g Yp tancpg + Q &p I (a +a)IP&Xp
coscpg

where we have used Eqs. (C2), (C5), and (C9).
The bnear combination of X& and Y~ in Eg. (C4)
ls

+
" g&&l.&x:.

cospy
(C10) ikg (Y~~ Y~~ +Xp~ Xp~) =if'~ tancp),

In Eqs. (C9) ahd (C10) we have assumed that yz
is not equal to w/2. This restriction is perfectly
justified since, as seen in Sec. IV, the corres-
ponding states I ah) and Ipg are such that their
contribution to K is identically zero.

As we do not need all the F&~ individually, but
rather the linear combination appearing in Eg.
(C4), we multiply Eq. (C10) by Y~ and sum over
p. to obtain

if +Y~*Y~ =iay„ tang~+, &»I p(a +a)l»&

+; &»I p(a+a)l»&,cos pg

(X„" X„'+X„'*X~)=0. (C12)

(C12)

where we have taken advantage of the fact that the
states I1X& are normalized to unity at all times,
namely,

+ ckgx~*d~, (C11)
If we now replace j~ in Eq. (C12) by the expres-
sion (C8), we obtain

in'(Yp'*Yp" +xp'*xp') =, [&»lp(a+a)l»&+&»I(a+a)pl»&]

[&nl(a +a) I») +&»I(a + a)I2~&],
2 cosq7g

and finally for If' [see Eq. (C4)]

(&»la I»&+&»Ial2&) -- Q . [&»I(a +a)I»&+&»I(a +a)l»&1.
4 g slng7y x, sin2%x

This expresses the adiabatic collective kinetic energy K in a form directly calculable from the
states I»& and ID.&, without having to extract explicitly their time derivatives. In addition, we
have obtained a simple expression for the time derivatives of the eigenvalue —,'y„of the operator X.

(C14)

(C15)
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