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The reaction *Zr(p,a) **Y is analyzed by applying a microscopic theory to the three-particle transfer
reaction. Good fits to the angular distributions are obtained for the transitions to the four low-lying states of
8%Y. Relative cross sections of all four transitions, calculated from wave functions given in the literature, are
strongly influenced by core-excited configurations. With their inclusion the calculations are in excellent
agreement with the experiment. It is thus shown that in the microscopic description the (p,a) reaction is a

sensitive tool for testing wave functions.

DWBA analysis; 92Zr, 89Y test of shell model wave functions.

[%IUCLEAR REACTIONS 92Zr(p, a); E=35 MeV, measured ¢ (6); microscopic ]

I. INTRODUCTION

At energies between 20 and 50 MeV the (p, @)
reaction predominantly consists of a direct three-
nucleon pickup.!”* The reaction has a number of
attractive features for nuclear structure studies,
e.g., the possibility to populate proton hole states
two neutrons away from the stability line, i.e.,
states which are not reached by single proton pick-
up, the coherence® in the single-particle states of
the three transferred nucleons, the ability to form
high spin final states and the well-known strong j
dependence of the angular distributions for /=1
transitions. In spite of these potentially useful
properties the (p, @) reaction has scarcely been
used for spectroscopic studies. The reason may
be that a microscopic description of the reaction is
needed if quantitative results are to be obtained.
As explained below, the microscopic approach in
general does not allow one to deduce wave functions
of the target and the final nuclei from experimental
(p, @) results in a straightforward manner. How-
ever, it provides a very sensitive test of wave
functions obtained from other sources.

An account of recent experimental and theoretical
work on the (p, @) reaction has been given by Falk®
and Smits.” In many cases the reaction mechanism
was assumed to be the pickup of a triton cluster.
The form factor is then computed by binding a tri-
ton with proper cluster quantum numbers at the

experimental separation energy-in a Woods-Saxon
well. While this simple model is adequate for the
extraction of transferred [ values or even j values
in some cases,?? it does not permit quantitative
analyses of data such as extraction of spectro-
scopic strengths.

More quantitative analyses of the (p, a) reaction
have been performed by using semimicroscopic
models. Smits and Siemssen!® successfully com-
bined a semimicroscopic model with a weak-coupl-
ing model in the Sn region. The proton and neutron
structure amplitudes are factored out from the
DWBA matrix element and the dineutron structure
amplitude is taken from a (p, ¢) experiment, In
this treatment the microscopie form factor is ap-
proximated by a cluster form factor utilizing to
some extent the merits of the microscopic de-
scription. Suck and Coker'! suggested a semi-
microscopic model for the (p, @) reaction in the
Zr region which was able to fit the angular distri-
butions, but it was not successful in the case of
%Mo (p, @)*>Nb investigated by Park et al.*? In this
model a form factor is used consisting of a product
of a single-particle proton state with a micro-
scopic two-neutron form factor. However, in this
approach it is assumed that the transferred proton
is always localized at the center of mass of the two
transferred neutrons, thus the motion of the proton
relative to the dineutron system is neglected.

For a fully microscopic treatment of the (p, @)
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reaction a theory analogous to the microscopic
two-nucleon transfer theory has been developed
and applied to the *?Ca(p, )**K and ?C(a, p)**N re-
actions by Falk.®'* With these investigations some
progress has been made towards establishing the
(p, @) reaction as a quantitative spectroscopic tool.
Nevertheless, more studies of this kind seem nec-
essary. We therefore have undertaken a series of
(p, @) experiments in the mass 90 region.*

In this paper we present an analysis of the
27 r(p, @)Y reaction which lends itself well to a
microscopic description since wave functions of the
initial and final nuclei have been given in the liter-
ature.

Former work on the Zr isotopes includes investi-
gations by Peterson and Rudoiph!® who have studied
the (p, @) reaction at 22.8 MeV with the simple
cluster pickup model. For the *°Zr(p, a@)*'Y re-
action Fulmer and Ball® assumed a simple radial
form factor consisting of a product of three single-
particle harmonic oscillator wave functions. The
observed strong energy dependence of the angular
distributions at 20.2 and 22.9 MeV indicates that
compound nucleus formation may not be negligible.
In order to minimize such contributions we have
chosen E, =35 MeV for our measurements. A pre-
liminary account of the present work has been
given in Ref. 16.

. EXPERIMENTAL METHOD

The injector cyclotron of the Swiss Institute of
Nuclear Research (SIN) provided a 35 MeV proton
beam of 12 keV resolution. With beam currents of
80-300 nA dead time corrections in the detecting
system were below 10%. Self-supporting targets
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with a thickness of 500 g/cm?, enriched to 96% of
92Zr, were used.

Three 1 mm Ortec silicon surface-barrier de-
tectors registered the a particles. Two of the de-
tectors at different angles but fixed relative to one
another were located on one side of the beam and
the third on the other side. The angle relative to
the beam of the two systems could be varied inde-
pendently. Due to the low energy loss in the detec-
tor or large negative @ values, peaks from other
reaction products appeared well below the a peaks
in the spectra. No particle identification was
therefore necessary. In order to reduce pulse
pileup from the high flux of elastically scattered
protons, veto detectors positioned behind the « de-
tectors rejected the signals from penetrating par-
ticles. -

A spectrum taken at §,,,=30 is shown in Fig. 1.
The overall energy resolution, determined mainly
by the target thickness, was about 100 keV. The
angular resolution of the detecting system was
1.5°,

III. ANALYSIS
A.‘ DWBA calculation

The distorted wave Born approximation (DWBA)
analysis was performed with the code DWUCK.'"
The details of the microscopic calculation are
given in the Appendix. Equation (A15) shows that
several amplitudes may contribute coherently to
any given matrix element. From (p, @) reactions
alone it is therefore in general not possible to de-
duce unambiguous wave functions of the target and
residual nuclei. Taking them from other sources
(Sec. IITE ), we calculate the spectroscopic ampli-
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FIG. 1. a-particle spectrum of the reaction 2Zr(p, a)”Y at E,=35 MeV and for 6,,,=30°.
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TABLE I. Optical model and bound-state potential parameters.

V, 7y ay w 7 a; Vso 7so aso
Reaction (MeV) (fm) (fm) (MeV) (fm) (fm) (MeV) (fm) (fm)
,0) 44.26 1.232 0.627 10.92 1.275 0.536 7.0 1.232  0.627
(a, @) 180.0 1.373  0.582 33.18 1.373  0.582
Boundstate
P 59.0 1.25 0.65 6.35 1.25 0.65
n 52.0 1.25 0.65 6.35 1.25

0.65

tudes S ;Y2 defined in Eq. (A2) and (A3) with meth-
ods which Glendenning'® and Towner and Hardy™®
applied to two-nucleon transfer processes. Our
results will show that in such an approach the
(p, @) reaction provides a sensitive test of pro-
posed wave functions. :
We relate the experimental to the theoretical
cross section as follows:

doy _ o
(@)™ (@) o

The zero range approximation which is used in
our calculation introduces a normalizing factor.
It is chosen in such a way that the enhancement
factor € is unity for the transition to the ground
state of Y. The enhancement factors € for the
excited states will then be a measure of how well
the experimental data are described by the theory.
‘Within the limits of the DWBA description, a value
€ =1 would indicate an ideal choice of wave func-
tions.

B. Optical-model parameters

The optical-model and bound-state parameters
used in our calculation are listed in Table I. The
proton parameters reproduce the elastic scattering
cross section data of ®Zr(p, p) at E,=40 MeV .2°

The ambiguities in the @ optical potentials de-
duced from elastic scattering are well known. The
shape of the angular distribution for (p, @) reac-
tions, on the other hand, is very sensitive to the «
potential used. We selected the parameters from
a family of 16 potentials, having well depths be-
tween 40 and 210 MeV which all reproduce the «
elastic scattering data on ®?Zr at 34.4 MeV.?! Only
the deep potential well with parameters as listed
in Table I gives the correct slope of the (p, @)
angular distribution. The same preference for a
well depth of 170 MeV, which is 15% lower than
the simple assumption V, ~4V, =200 MeV, is also
found by microscopic analyses in the folding mod-
el.?2

The bound nucleon wave functions are calculated

for Woods-Saxon potentials with parameters re-
producing the neutron and proton separation energy
of Zr and the level splittings of the d;, and dy/,
single-particle states.

C. Three-nucleon form factor

The three-nucleon form factor FJ* of Eq. (A16)
was calculated with a code written by Falk.® Due
to the difference between the sum of the separation
energies of the three nucleons in their respective
single-particle states and the separation energy
for a triton, the microscopic form factor does not
have the correct asymptotic behavior. As usual we
replace it in the external region by the tail of the
triton cluster form factor which is calculated for
the required separation energy, L transfer, and
number of nodes. Assuming an s state for the in-
ternal motion of the triton cluster one obtains the
number of nodes?®

N=(n+ny+ny—2)+3(L+L+1,~L).

The geometrical parameters of the triton bound-
state potential were chosen in such a way that the
triton form factor could be joined smoothly to the
microscopic form factor at the nuclear surface.

D. Importance of nuclear interior and finite range

It has been argued'® that the (p, @) reaction is a
surface reaction as the « particle is a strongly ab-
sorbed particle. Nevertheless, due to the large
angular momentum mismatch in (p, @) reactions,
we expect the nuclear interior to play an important
role in the evaluation of the DWBA integral.?* In
order to investigate its effect in our case we per-
formed DWBA calculations with lower cutoff radii
up to 4.7 fm. The results given in Fig, 2 show that
the angular distributions are in fact very sensitive
to the cutoff radius. The angle-integrated cross
section varies by more than a factor of 2 for differ-
ent cutoff radii. An equally strong influence of the
nuclear interior was found by Falk' in the *C(a, p)
reaction. The use of a simple triton cluster form
factor is thus necessarily a crude approximation.
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FIG. 2. Calculated angular distributions showing the
dependence of the cross section on the inner cutoff
radius used in the evaluation of the DWBA radial inte-
gral. Curve (a) has been normalized to the data points
by introducing a normalization factor into the DWBA
calculation. The same normalization factor has then
been used for the calculation of the curves (b) and (c).

The success of cluster calculations in predicting
the shapes of the experimental angular distributions
may well be due to a rather arbitrary choice of
Woods-Saxon well geometry for the calculations of
the triton form factor.?

Our calculations were done in the zero range ap-
proximation because an exact finite range formal-
ism for the microscopic description of the three-
nucleon transfer process is at present not avail-
able. This may seem unsatisfactory since finite
range corrections can be appreciable for reactions
with a large momentum transfer. However, in the
two-particle transfer (¢, p) process a careful in-
vestigation®® showed that finite range corrections
have little effect on the relative cross sections and
the angular distributions. To what extent this con-
clusion holds for (p, @) reactions can only be de-
cided when calculations have been performed.

E. Wave functions

In many shell-model treatments of the Zr nuclei,
88Sr, is considered to be an inert closed-shell
core. With this assumptionwe write for the ground
state of $2Zr,, ’

lszzr> gs. =7T[ao(2p1/2)2 +bo(1g9/2)2]o"’ .
X V[d(2d5/2)2 +‘3(2‘13/2)2 +f(331/2)2]0+ .

The magnitude of g, =-0.66andb,=0.75is taken
from the (°He, d)-stripping results (Table XIII of
Cates et al.?®), the relative sign from Bayman®’
and Vervier.?® :

The neutron pair is coupled to L’=0 with the
amplitudes d=0.92, ¢=0.19, and f=0.21 as ob-
tained by Flynn et al.?° from *°Zr(¢, p)*?Zr data. In
the reverse (p, t) reaction, 2* states of *Zr are
only weakly excited.*® We therefore neglect com-
ponents of the kind

[7(1g5/2) %+ 4+ V(2dss)%+ 4t]o
in the ®2Zr ground state. As the neutrons in the
low-lying levels of Y which we study in our ex-
periment form a closed shell, it is only the L’'=0
coupled pair which is picked up in the transfer pro-
cess. The proton wave functions of Y have been
calculated by Vergados and Kuo.®! The 3~ ground
state and the -§-+ first excited state are nearly pure
single-particle 2p,/, and 1g,,, states, respectively.
The £  second and §~ third excited state are 2p-1h
states given as

[%9Y )g/p- =0.TTT4[(2p,/5)%; (2p5/5) "]

- 0.5962[(1g9/2)20; (Zpa/z)_l] ,
|3%Y )g/s- =0.9136[(2p,/5)%; (1fy/e) ']

- 0.3168[(1g,/,)%0; (1f572)71] .

These wave functions are somewhat restricted as
evidenced by the fact that their normalization is
less than unity. The authors themselves suggest
that the missing amplitudes contain 3p-2h and 4p-
3h excitations. In fact several authors have found
that admixtures of (2p,/,) ?-core excitations im-
prove theoretical fits to experimental results for

" the Zr nuclei, as, e.g., Cates et al.?® in the

(®*He, d) reaction and Preedom et al.*2 in the (d,*He)
pickup. Courtney and Fortune®® show that such con-
figurations in *Zr and Y remove the previous dis-
crepancy between the measured and calculated
lifetime of the excited 0* state in ®Zr. The same
degree of 2p,,, core excitation has been found by
Hughes® in the ®8Sr nucleus. The results of the
analysis of the reaction ®Sr(°He, d)**Y studied by
Picard and Bassani®® show that in the ®*Sr ground
state the fullness of the 2p,/, orbital is ~90%.

From the analysis of the reaction ®Sr(d, »)**Y Hor-



1630 H. GUYER et al.
TABLE II. %Y proton wave functions relative to 8Sr.
JT Proton wave functions
T 0.94(2p;,9)-0.35[(2p, 5) (1259 X2p3/9) ]
37 0.95(1g4,,) +0.32[(1gy/9)(2p19)%(2p3/5) 2 ,
3 0.7802p4/9) %2y 0) T1-0.601(1 g/ (2p5/9) T1+0.20((2p3/5) 2Py /)2 (1g0s9)]
& 0.91[(2p,/9)%(1f 5/ ™11-0.32[(1gy, )% (1F 5/9) "11-0.25[(2p3/9)"XU2py /) H1g gy ) (1S 5/2) ']
ton and Hollandsworth®® have found a 14%, and e e —
Harrison and Hiebert®” from their study of the re- )
action #®Sr(d, *He)*’Rb and %®Sr(*He, d)*Y a 20% 270 (0.00)89Y
(2p4/,)72 proton configuration in the ground state of w0'l rip.a ‘
8Sr. In order to investigate the sensitivity of the L Ep =35MeV
(p, @) reaction to such an admixture we include the L
(2p4p)" 2 configurations in the proton wave functions -
as follows: Ry
0
[*Zr) gs. =00(2p1/2)° +b,(18y/5)® % 10
+ Cc[(z.ba/z).-z(zf)x/z)2(1g9/2)2] . RS
° [
The amplitudes are calculated from the (*He, d)- )
spectroscopic strengths (Table IX of Cates et ql.2%) %
to give
1
a,=-0.39, b,=0.73, ¢,=0.56. 10 5
The sign of the admixture c, is treated as a free -
parameter. We add similar core-excited configu-
TABLE IIL Three-nucleon spectroscopic amplitudes\ 10’ B
st/ 2[y, LSJ]. The numbers given in the table include the
coefficients required for the transformation from jj to [
LS coupling. ) '
Angular
momentum Configuration of
E, transfer the transferred 10 |
By (Mev) L S J nucleons st/2fy, LsJ] :
7r2p‘/2; V(2d5/2)20+ -0.57
+0000 1 % T m2pyuv(2ds)ir ~0.10
2Py /9; V(38179 %0+ -0.17 10
T1gg, 95 V(2d59) %+ -0.88 i
0909 4 F §F mlgyyv(2ds )t -0.15 ]
Tlgy /2 V(3st/2)20+ —0.26
T2P3/9; v(2d5/2)20+ —-0.95 10° Ly
- 0] !
‘2%' 1.507 1 .2L ‘g' 7I'2p3/2; Vv(2d3/2)20*' —-0.16 0 20 30 40 S0 ?U 70 80 30 100
2Py )95 V(351 /9)%* —0.28 ‘ By deg)
TLf 5795 V(2d5/5)%¥ -1.27
A" 1 A . 2 FIG. 3. Experimental and theoretical angular distri-
1.745 3 1 s v(2d + -0.21
2 T 7 M VBl ‘ butions for the reaction %zZr(p, ®)’®Y at E,=35 MeV
T1f 5723 V(3s1/9) g+ —-0.38 leading to the ground and the first three excited states

in 8%y,
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rations to the final states in ®°Y (Table II). Their
amplitudes are determined by normalizing the wave
functions of Vergados®! to unity. The 12% admix-
ture of the core-excited configuration to the %°Y
ground state which we obtain thus is in good agree-
ment with the authors mentioned above.?*'3* Other
excitations, as, e.g., (f;/,) % configurations are not
included here since there is no evidence for =3
transitions in the (*He, d) data on *?Zr (Ref. 26) and
89Y (Ref. 38). The same is not true for the case of
%07 r considered below.

The spectroscopic amplitudes defined in the Ap-
pendix, Eq. (A3) calculated with wave functions in-
cluding core-excited conflguratlons are given in
Table III.

IV. RESULTS AND DISCUSSION

Figure 3 shows the experimental and theoretical
angular distributions for the reaction 2Zr(p, @)’y
at E,=35 MeV leading to the ground and the first
three excited states in #®Y. The microscopic mod-
el reproduces the data quite well. The character-
istic j dependence observed as well at 22.5 MeV *°
and at 28 MeV *° shows up very clearly in the L=1
transitions to the J=3 and J=32" states. The solid
lines in Fig. 3 are obtained with the restricted
wave functions discussed in Sec. IIIE. The inclu~
sion of core excitations does not change the angular
dependence, but the relative ‘magnitudes of the
cross sections are strongly affected as shown in
Table IV. The first and second columns give the
J" values and the excitation energies of the final
states. The ¢, values of the third column are the
enhancement factors as defined in Eq. (1) for the
restricted wave functions. For the transitions to
the first and second excited state they deviate
significantly from unity. Using the wave functions
which contain core-excitation components, we ob-
tain enhancement factors €, in much better agree-
ment with the expected value. The relative signs
of the wave function amplitudes strongly affect the
calculated cross sections. For the main compon-
ents of the wave functions we obtain them in agree-

TABLE 1V. Enhancement factors € without (€q) and
with (€;) (2p3,4) "%-core excitations.

JT E,

(®y) (MeV) € €
+ 0.000 12 12
3 0.909 1.60 0.88
3 1.507 0.56 0.97
i+ 1.745 0.97 1.07

? Normalized to unity.
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ment with the literature. The signs of the core-
excited components have, to our knowledge, not
been given before.

In order to test the sensitivity of the theory to the
wave functions we calculated the cross sections
with a different set of ®Zr amplitudes which we
calculated from the ®Zr(d, He) data of Preedom
et al.® (a=-0.66, b=0.55, ¢=0.51). These cal-
culations disagree with the experimental values and
thus clearly favor the amplitudes of Cates et al.2®
The fact that Preedom et al.*®* had to extract spec-
troscopic strengths from unresolved doublets in
their spectra may explain this discrepancy. A
repetition of their experiment with higher resolu-
tion would certainly be desirable.

Figure 1 shows that up to E, =4 MeV only the
four lowest states of %°Y are strongly populated in
the *2Zr(p, @) reaction. According to Vergados and
Kuo® there is one additional £~ state below 3 MeV
with one hole in the ®*Zr-J =0-coupled proton pair
configuration. With their wave functions we predict
a cross section which is approximately 10 times
smaller than that for the lowest §~ state in good
agreement with our experimental results.

All the other low-lying states given by Vergados
and Kuo®! require proton pairs in %Zr coupled to
J =2 or excitation of such pairs in the reaction. It
is again consistent with these wave functions that
such states are only weakly populated in the exper-
iment.

The fact that only L’=0 coupled neutron pau's
enter into our analysis is not due to the limitation
of the theory but to the particular choice of nuclei
participating in the reaction. Experimental data
for cases with more complicated configurations
are now being analyzed.

Both the 2Zr(p, @) and the 9°Zr(d 3He) reactlons
essentially consist of a proton pickup leading to the
same final states in ®*Y. A comparison between
these two reactions has been made by Suck and
Coker."! However, these authors have neglected
the difference of the proton configurations of the
two target nuclei ®Zr and ®2Zr. Due to this differ-
ence the two reactions are connected only through
the wave functions of the common final states in
SQY.

In order to check the consistency of our results
with those of the (d,°He) reaction we have to de-
termine the ground-state wave function of ®°Zr
which can be obtained from different sources. We
might again use the (°*He, d) data of Cates et ql.2®
However, one of their spin assignments in ®*Nb has
been put to doubt by a later experiment of Knopfle
et al.®® Their spectroscopic factor S,/,/S,, seems
to be reliable and we obtain from it the value of
b?/c* (see Table V) as 1.89. The ratio a?/c? can
be-calculated from the (d, 3He) reaction leading to



1632 H. GUYER et al. 18

TABLE V. Proton wave function amplitudes for ¥zr
and ®Zr relative to %Sr. '

a b c
Nz —0.75 0.54 0.39
%27y —0.39 0.73 0.56

the two lowest 3~ and & states in *Y for which the
ratio S,/,/S,/, =1.74 has been given by Preedom

et al.® in reasonable agreement with Kavalovski

et al*' With the ®Y wave functions of Vergados
and Kuo®! we then obtain a?/c%?=3.61. The result-
ing normalized amplitudes for *°Zr (Table V),
taken with the appropriate signs, are used, again
with the wave functions of Table II, to calculate the
spectroscopic factors S,/, and S;/, of the remaining
two states in #Y. As Table VI shows they agree
with the experimental results to within +10% which
is less than the uncertainties quoted by the authors.
The considerations above show that the wave func-
tions of Table II for Y and of Table V for the Zr
nuclei yield consistent results for the (d,*He) and
the (p, @) reaction leading to the same four final
states in %Y.

The *°Zr amplitudes of Table V differ from the
ones calculated from the same experimental data
by Courtney and Fortune®® and which yield a value
of the EO-transition strength in °°Zr in good agree-
ment with the experiment. Nevertheless we prefer
our values because these authors use absolute ra-
ther than relative spectroscopic factors from dif-
ferent experiments [(*He, d) and (d,°He)], a pro-
cedure which is certainly liable to larger errors.
Following their procedure to calculate the EO
strength, but using our wave functions, we obtain
a value twice as high as the experimental one.
However, shell model calculations?? as well as ex-
perimental data?®*° indicate that (f;/,)™® or (f,/,)™2
excitations may not be neglected in the low-lying
states of °°Zr. Their amplitudes are at present not
available from theory or experiment. It is there-
fore impossible to take this excitation into account.

V. SUMMARY

We have analyzed the °2Zr(p, @)®?Y reaction with
a fully microscopic theory using shell model wave
functions based on an inert ®8Sr core. The good
agreement of the theoretical angular distributions
with the experimental data shows that the micro-
scopic theory is able to describe the (p, @) reaction
satisfactorily. However, two of the resulting en-
hancement factors ¢, (Table IV) deviate significant-
ly from unity. Taking excitations of the ®Sr core
into account as described above we obtain enhance-

TABLE VI. (d, 3He)-spectroscopic factors.

8y Sexp ® Stn

i 1.91 1.91°
N

4 1.10 1.10°

i 4.25 3.91

3 7.8 7.43

2 From Preedom et al. (Ref. 32).
b Sy /2/ Sy/o normalized to experimental values.

ment factors ¢, close to unity for all four transi-
tions. The *2Zr-wave functions (Table V) used in
this calculation are obtained from the 2Zr(*He, d)
experiment of Cates et ¢l.2° The *Y-wave func-
tions calculated by Vergados and Kuo® had to be
supplemented by 3p-2h configurations (Table II).
These extended wave functions in conjunction with
the °°Zr functions of Table V are fully consistent
with the *°Zr(d, *He) and *Zr(*He, d) data of Refs.
26 and 32.

In conclusion this work shows, we believe, that
the (p, @) reaction, interpreted in a microscopic
three-nucleon pickup theory, is a useful spectro-
scopic tool.
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APPENDIX

In this Appendix the microscopic formalism de-
veloped by Falk®® for the (p, @) reaction is pre-
sented. We rewrite the theory in an antisymme-
trized form stating all normalization factors ex-
plicitly.

The transition matrix element for the reaction
p+A-~a+B

) 21/2Z1/2 N1/2
nae(3) () G)
1 1/ 2

x [ [ aBaixg* GaaX vutal VINy o) X7 Fpa)

(A1)
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FIG. 4. Representation of the relevant coordinates
in the description of the A (p, @)B reaction. Particles
1 and 2 refer to the two neutrons and particle 3 refers
to the proton.

The relevant coordinates are given in Fig. 4. The
integration has to be performed over the c.m. co-
ordinate of the three tfansferred nucleons R

=3 (¥, +T, +T,) and the relative coordinate of this
three-nucleon system with respect to the incident
proton r= r4 3 (r1 +r2 +r3) The optical model wave
functions x{. O”5) and x{* (T ,,) depend on the rela-
tive coordinates T,,=(mp/m,)-R+T and T,,=R
+(m,,/ ma)r in the entrance and exit channel, re-
spectively. The factor

OAHAWE

stems from the antisymmetrization of the entrance
and exit channel wave functions where Z and N are
the number of protons and neutrons in the target
nucleus. We thereby consider protons and neutrons
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as distinguishable particles and assume that the
wave functions y,, ¥ and y,, i,are already anti-
symmetrized.

The wave function zpﬁ:(g 4) of the target nucleus
can be expanded using the wave functions yj3(& )
of the residual nucleus and the three-nucleon wave
function yJ557(¢,, &,, &) written in the LS represen-
tation'®

lpf:('é,q):lpﬁgj(ﬁsy ‘517 52, Es)

= E Z Z I 48ly, LSINI gMpdM,|J,M )
Y.LSJ MJ JB B

XY BERW] T (6, By 6r) . (A2)

The internal coordinates of the target nucleus A
and the residual nucleus B are £, and £,, respec-
tively. The coordinates of the three nucleons bound
in the target nucleus are &, &,, £;,. The angular mo-
mentum quantum numbers of the three-nucleon sys-
tem are L, S,J and M, M, M,. The setvy
= [y, 7, 13, Iy, by, Ly 1 Jas Ja» L1z Stz ] Characterizes
the internal quantum numbers of the three-nucleon
system. Here the number of nodes, the orbital
angular momentum, and total angular momentum
quantum numbers of the three nucleons are given
by n,, 1,,7,, whereas L;, and S,, are the orbital
angular momentum and spin quantum numbers of
the subsystem consisting of the two neutrons.

The spectroscopic amplitude S¥2(y, L, S, J) is re-
lated to the expansion coeff1c1ent 950,L,S,J) in

q. (A2) by*

1/! /
SY2(y, LSJ):(Z> 2<N>1 zgm(y,LSJ). (A3)
N1/ \2

In the L-S representation the three-nucleon wave
function in Eq. (A2) is written in analogy to the two-
nucleon case*?

.wz:fs:(ﬁu 52, £3) =MZM: (LMSM IJMJ)(pLL(rl, rz’ rs) x)’ S(l 2 3) (A4)
Mg
where
X7 s(1 2,3)= Z (%msa s12]SM) Z (%mslémSZISmM X2 (l)x#/;z)x‘/z( ) (A5)

Mgy Msio ms pMsy

and

‘PLL(;u;z’;s):N(Y)( Z (lymy Ly, My, | LM) Z (hmylymy| Ly, 12)¢"31313(r3)

mzMyp LT

X [pmira(F,) ppgas2(T,) + (- 1)1+ 12" Liz* Sz ¢,"..;*2f2(F1)¢;i’1’1(52)]) .

The antisymmetrization factor

N(y) _{ z for (ny, 1, 1) =(ny, L, 5o
1/vV2 otherwise

(A6)
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and the single-particle wave functions are defined by

¢7"'t”‘( ) __"Ji‘i'(_)“y i(ﬁi’ (ﬂ‘) (A7)
l

In order to calculate the DWBA integral a transformation from the coordinates rl, rz, r3 of the three nu-
cleons to the c.m. coordinate R and the internal coordinates T, and Ty, of the three-nucleon wave function
has to be performed. The coordinate T, is the relative coordinate between particles 1 and 2. The coordin-
ate rm is the relative coordinate between the c.m. of particles 1 and 2 and the particle 3 (Fig. 4). To
utilize the Brody-Moshinsky transformation we expand the radial part of the single-particle wave function
(in our case the Saxon-Woods wave function) in spherical osecillator wave functions H,,‘,i (vr3)

nit 117 Z ayHy, (073). : (A8)

Performmg now two successive generallzed Brody-Moshinsky transformations* from the coordinates
(T, Ty, ) to the coordinates (R, Ty, T1p3) We get the following expression for the three-nucleon wave func-
tions:

oy (R r127r123 Z “plapzapN(Y) Z (llmllzmzuqz My, )iy Ly, My | LM)

by by b,
1° 2 3 S’M 2
x b L om i, 1 N, Ly M,
N12L12M1’2 N'hLl;nM' 12 m, n' 1 m'
n't’'m’
. ’ ’ 04
by By my| o [N LM
Ni; Lj, Mj, n 1 m
N'L'(R)tb (rms)[ " l’(r12)+(_ )”-512(17 ("?12)]-
(A9)
-

In this formula (p;, I;, m;) are the quantum num- Va(Ey, &y, &g, £4) = da(Ty, T, o, T,)x0220(1, 2,3, 4),
bers of the single-particle harmonic oscillator (A11)
wave functions, (Ny,, L{,, Mj,) and (n’,1’, m’) refer
to the c.m. and relative motion of the subsystem where
consisting of particles 1 and 2, and (n, l, m) refers 17 1/ / v

> 1,2,3,4)=3 2(1 2 V2(2)xY2,(1
to the relative motion of the ¢c.m. of particles 1 Xug=3(1,2, 3, 4) =3 [a/3(1)x¥ie(2) - A @)1 (1]
and 2 and the particle 3. Finally, (N’,L’, M’) are X [x¥2(3) X2, (4) - xH2(4) x¥2,(3)]

the quantum numbers for the c.m. motion of the
three-nucleon system.

The quantities (+« |p, u| ) and (- |, 2u ")
are the generalized Talmi-Moshinsky brackets de-
fined in Ref. 44. The harmonic oscillator wave
functions in the new coordinate system are

and
d)a(Fl’ sz ;3’ Ei) =Not exP(—le ‘Z r ifz>
<i

=Ny exp[-n2(3r2 +27,2 +27,,.2)] .

(A12)
oML (R)= EJL'L_'I_(?& Yo, @), The size parameter'® is n=0.233 fm™! and the nor-
malization factor is
mINE )= _n_l___l.z_)cy"','(a ), ' 3/4
1,2 1z 1 Wiz @ro N, =<_1;23§ 118) ]
and
It is convenient to separate the a-particle wave
H ‘(1;i U71a3 ) - function into two parts, the first one describing the
n(F1zs) = V103 Y7 Oras 912) - (A10) motion between the proton and the three-nucleon

system and the second one describing the internal
For the a-particle wave functions we write motion of the three-nucleon system
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" pa(T, Top, Trps) = OP(T) ¢B(Trp, Trgs) In order to simplify the evaluation of the six-
dimensional integral in the DWBA-matrix element
where X - C o
in Eq. (1) the zero range approximation is used
C, 2\3/4 - - -
dI(r) =<ﬂ"-> exp(~3n%r?) (A13) V(r)p&Ar) =D,6(r). (A14)

- Inserting now into the expression for the transi-
tion matrix Eq. (A1), the three-nucleon wave func-
tion (A9), and the a-particle wave function (A12),
we obtain in the zero range approximation

and

e)m 64 4 o/ 2 2, .8 2
&N T 5, Trpg) = 3721 exp[-n?(2r,* + 37123 ).

—J

7

T (Mg, My =0, My, M) =9, O (JaMadM,|J M) (LMS, = M,|IM,)S 52y, L, S, J)
Yy LJ

MMy
xfdﬁxg:)*(ﬁ)F;'L(R)‘y’{(e, qb)x}f’(%nf ﬁ), (A15)
) A
where the integration over the spin variables has been performed.
The radial form factor is \
l N, Ly, M,
FER)=2D,N0) 3. 3 Y a,.8,,0, (Lmym) LgMyg)lom, LMy Lo Pt 0 7|y (e T P
| ambmimama Migh . b m, n 0 0
12 n'n

oS bs I my NLM\ H![‘(R..?VRZ)‘
Ny, L, M, n 0 0

The integral over the internal coordinates of the three-nucleon system is

2u, 1 (A16)

B oy = o, > o . .
L.,= f‘b& (T2, T125) 05 O(Typ) 05 (T 124)dT AT 154

64 3/4 (2n'+1)ll 1/2 (v/2)3/4 i L 2r+1)11 1/2 (z_v)s/:x 2y "
= (—?3—774> {[ nrlzn' ] ;3/2 [1 ""i,'y:] [ nl2n ] 31—~3/2 [1 - ﬁ'] ’ (A17)
where y=2n% +43v and T =472 + 3v,
Using the generalized transformation brackets

m N L M
(nylymp Lo\ 1wy pl NLul:x =Z (Lymy by m | AM) (L Mim| aM){ ™ bom TR ) (A18)
mime n, L, m, n 1l m
defined in Ref. 44, we can write the radial form factor as follows:
FLL(R)=F7L(R)=2D0N(7) z: Z aplapzap3<t‘1llpzlz : Lyp| wp|NypLypn'0:Lyp )
PPy Nip ¥
n'n 3 2
H VR’
X { palsNypLip: L2, u| NLnO: L)1, Hy R . (A19)

R

This means that the radial form factor does not depend on the angular momentum projection quantum num-
bers.
The differential DWBA cross section is finally

do _ Mpgllap (k" 1 = 2
(dﬂ)nwm_ @i (k 2(2JA+1)M§BIT"°‘(M”’M°‘ 0 Mar M (420)

L

where the transition matrix element T,, is given by Eq. (A15).
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