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Expressions for electron scattering form factors for odd-A deformed nuclei are derived by projecting states
with definite angular momentum from an axially symmetric intrinsic wave function. Through an expansion of
the multipole matrix elements in terms of l/gJ „)both single-particle and collective contributions are
taken into account in a systematic way. Selection rules are discussed and some schematic calculations of
magnetic form factors are presented for "Mg and "'Ta.

' NUCLEAR REACTIONS Electromagnetic form factors of odd-A deformed nu- '

clei; projected Hartree- Pock approximation. Schematic calculations of trans-
verse foxm factors for ' 'Ta and 25Mg.

I. INTRODUCTION

Electron scattering is a powerful tool for the
study of electromagnetic charge and current dis-
tributions in nuclei. Recent measurements at the
new high resolution electron scattering facilities
of form factors for the O'-I' transitions within
the ground state rotational band in even-even
deformed nuclei have enabled the determination
of the intrinsic nuclear charge distributions with
high precision. This information has successful-
ly been interpreted in terms of Hartree-Fock theo-
ry. ' Extension of these experiments to larger
angles (or preferably 180'), where also electro-
magnetic current distributions can be probed, are
being planned and can be expected to contribute
to our understanding of nuclear rotational motion.
Up to now little is known about currents in de-
formed nuclei. In the long wavelength limit the
only easily accessible source of information on

the collective part of the convection current is
the value of the gyromagnetic ratio gn = (is,/I)
(for K=0). An analysis of magnetic dipole mo-
ments and transition rates indicates that its value
is close to but somewhat less than Z/A, which
corresponds to the value of a rigid-body rotation. '
Experimental data at higher q values could in
principle provide information about details of the
radial distribution of the collective convection
current density, which are expected to be sensi-
tive to the characteristics of the rotational motion.

Electron scattering experiments also enable one
to study higher multipole (X ~ 3) moments which
are very difficult to measure otherwise. An in-

.teresting question in this respect is whether there

exist large collective contributions to the M3 ma, -
trix elements. These could be expected on the
basis of the observation that in a collective model
the MS operator can be expressed, similarly to
the Ml operator, in terms of a quadratic function

[a, xa, ]"' of the collective quadrupole variables
For the same reason collective contributions

to the X = 5 and higher multipolarities are expected
to be smaller since they require at least cubic
functions of e, .

The aim of this paper is to discuss some aspects
of transverse electron scattering on odd-even axi-
ally symmetric nuclei in terms of a microscopic
theory. We focus our attention on transitions
within the ground state rotational band. The most
fundamental description of deformed nuclei that
is currently available is the projected Hartree-
Fock (PHF) approximation. This method is based
upon the fact that the overlap integral2. 2
Q e to~&~Q ) =e "I'+ ~s ' for an axially sym-
metric intrinsic state Q» ha.s an angular width
1/Q'„'), which serves as an expansion parameter. '
This approach has been shown' to give a rather
satisfactory description of elastic and inelastic
Coulomb electron scattering on even-even and
odd-even deformed nuclei already in zeroth order.

In Sec. II general expressions for the Coulomb
and transverse electromagnetic form factors are
presented and the resulting selection rules are
discussed. Since in practice the numerical as-
pects of the full projected Hartree-Pock method
are rather involved, it seems appropriate to see
to what extent qualitative results can be obtained
by simpler methods. To this end in Sec. III the
Nilsson model is considered to obtain some qual-
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itative predictions of the transverse scattering
cross sections for "Mg and '"Ta. The conclusions
of this work are discussed in the final section.

II. PROJECTED HARTREE-POCK APPROACH

At present the best approximation to the intrin-
sic ground state of an axially symmetric nucleus
is the density dependent Hartree-Pock approxima-
tion (DDHF). Since tbe Hartree-Fock wave func-
tion Q« is not an eigenstate of the angular momen-
tum operator, it is necessary to project Q» onto
eigenstates of good angular momentum. In this
section we derive a general expression for elec-
tromagnetic form factors following a projection
method proposed by Villars.

In general a projected HF wave function with
good angular momentum I and parity m can be ex-
pressed as (for KIO)

&j./2

gf «(x) = -~--dQ[D«~„(Q)N(Q)iji«(x)

+ (-1) «D'„„(Q)(R(Q)y'gx)],

(2.1)

where Nz~ is a normalization constant. Conventions
for the signer D functions and the rotation opera-
tor N, are the same as in Ref. 4. The wave func-
tion (2.1) has the normal behavior under time re-
versal

T4",,= (-1)™4",, (2 2)

The projection operator P«/„= J dQDz~~(Q)$(Q)
projects out from iji» a component with definite
I'=I(I+1) and I» =M. The reduced matrix elements
of an arbitrary tensor operator T~(x) that trans-
forms as T'„(Rx)=Z„T„"(x)D„'„(Q)can be expressed
in the form~

(2I'+1) i/~ 1 ~/2
0'zlil2'lizZ&= z, „f«««P-d-P P(roc «x«(s'xi-

x «»/, »(e) Re&a» IT." '""Ie»&+(-1)"d»-. .Re&a»-l~!~ '"~le «)). -

(2.3)

Kith the use of the many-body theorem'

e l~ I~&=&~ ~l~&. -p[&~(~I~&.], (2.4

where B is a unitary operator, and ()~ and ()c denote linked and connected diagrams, respectively; the
matrix elements that occur in the right-hand side of Eg. (2.3) can be rewritten as

&e IT+ '"~le, )=&@ IT."~ '"~le, &.exp(&e le ""le &.)

For strongly deformed nuclei the overlap integral (Q (e + ~ g«)c is large only for the values of P around
P=O (see Refs. 4 to 6). One can use the approximation'

(2.5)

exp(&4 (8 ""(4 &,)=exp( 2P'(J",-&), (2.6)

where Q'„') is the expectation value of the operator J,' with respect to tbe HF wave function Q» (upper
(lower) case letters denote particles (holes))

(2.V)
Aa

An expansion of the integrand in Eg. (2.3) around P =0 with expansion parameter 1/(J~') ((J~') = 2(Z„') 8 100)
is therefore expected to converge rapidly. Keeping denly the more significant terms up to first order in
1/(J', ') Eg. (2.3) can be rewritten as

(ij' ll T'(q)Ilia'& —= (2I+1)'"&"'
x (&I~O II'K)&e (To(e) I

e»&k(1+(-1)'")

+(-1) (I-K&2K(I'K)Q«(T," (q) I y )-,'(1+(-1)'»'o))

~Re&A» I Ti(e)J Iy &~(IK—1~1 (I -K&[(I+K)(I-K+1)]'/'(2I+ 1)1/2

+R&eeI«T' ,(e)J.I e«&.&IK+-» 1(I K& [(I-K)(I-+K+ 1)]'/2

—Re(qb»l Tt(q)2J„' Iy ),(IK~O II K)

Here p =0(l) for Coulomb (transverse multipoles). The normalization factor le'&», is given by
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IyI pK ( IK I'K). (2.9)

where

(I+K) t (I K-)t ~ (I —t) t (-1)"" (n+t) l

~I~0 (I+K-t)!(I-K- t) j(t!)' ~o nt(I- t-n) l ((j'~')) I (2.10)

N~ z, ~ has the value 1 for elastic scattering and in-
creases slowly for inelastic scattering with in-
creasing I':

The zeroth-order contributions that are obtained
from th'e first term in Eq. (2.8) by approximating
N~ ~, ~=1 correspond to the result of the classical
rotat;ional model in which coupling between rota-
tional and intrinsic degrees of freedom is neglec-
ted, i.e. , the total wave function factorizes. ' For
odd-even nuclei the HF problem is usually solved
in the "pair filling approximation" (i.e. , the con-
jugate orbitals are pairwise occupied). In this
case the wave function of the even-even core is
time reversal invariant and only the odd nucleon
contributes to the zeroth-order matrix elements
of the transverse electric and magnetic multipole
operators. There are several kinds of contribu-
tions that are first order in 1/(Z, '): the second
set of terms in Eq. (2.8) which receives contri-
butions from the core nucleons, and in addition
a contribution arising from the expansion of

N~ ~, ~, which gives rise to a q-independent scal-
ing of the zeroth-order terms for I'CI. It is
worth discussing briefly the various selection
rules for electron scattering on odd-A nuclei
that follow from Eq. (2.8) for the different multi-
pole transitions. For simplicity it will be as-
sumed that the Hartree-Fock intrinsic state QK
has been calculated in the pair filling approxima-
tion. We come back to this question at the end of
this section.

Coulomb rnultipoles C'. Only even multipoles
contribute that satisfy the condition

~

I' —I
~

«X «I+I'. Of the two zeroth-order terms the
4K=2K one does not contribute, whereas the
4K=0 one receives contributions from all pro-
tons. The effect of the first-order terms has
been investigated in Ref. 8 for the case of I= 0 -I'

transitions in even-even nuclei (K=0) in the rare
earth region. It was found that these terms yield
negligible corrections to the cross section for
small I' and an increase of up to 15% on 0' 6'
transitions.

Transverse magnetic multipoles M~: ~= odd
and ~I'-I j(X(I+I'. Both zeroth-order terms
contribute to M~, which receive only contributions
from the odd nucleon. The first two first-order
terms within the curly brackets represent import-
ant collective contributions from the core nucleons.
For magnetic dipole moments this contribution
(in the limit q-0) can be expressed as

I(I+1)-SP
I+1

with

(2.11)

Noting that

2

one recovers the well-known result gs -Z,«/A, «.
We note that Eq. (2.11) represents an average over
the excitation energy of the self-consistent crank-
ing formula' for the collective g factor.

Transverse electric multipoles E": ~ =even,
~I'-I

~

~ & ~I'+I and I'xj There is no. zeroth-
order contribution to the E'~ multipoles except
for the single-particle contribution (QK ~E,"K ~Q K)
for inelastic transitions with X& 2K+1. It is in-
teresting to note that in the case I=I' the three
first-order terms in Eq. (2.8) cancel each other,
and therefore one recovers the familiar result
(which follows from time reversal invariance)
that transverse electric multipoles do not con-
tribute to elastic scattering. In first order the
collective contribution to transverse electric
multipole operators is given by

x I+K I-K+1 ' — I'+K I'-K+1 ' . 2 12~ ~( I A. I' i 2
I' X I

(K- 1 1 -KJ EK- 1 1 -Kl
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(2.13)

with A p as given by Eqs. (2.11) and

g = (@,j M,' j y &/K. (2.14)

If the even-even core is time reversal invariant
only the odd nucleon contributes to g~. Therefore
the difference between the "true" g~ value and the
single particle value gives a "measure" of the
core polarization. Finally we point out that al-

(K'jT'„(q) jK&= g a» a» (fA —,'Z jIK&
r, t'

Ay Ae

In the pair filling approximation the polarization
of the core due to the spin of the odd nucleon is ig-
nored. If a more strict HF calculation for spin-
nonsaturated systems were to be performed this
effect would be reflected in the fact that the even-
even core would no longer be time reversal invari-
ant. This implies that the zeroth-order terms in
Eq. (2.8) for transverse multipoles would receive
also a contribution from the core nucleons. In
order to see that it is in these terms that this ef-
fect would show up more let us consider again the
static magnetic dipole moment. To first order in
1/(Z~') the magnetic moment for K 0 ~ is given by

though it is not apparent from Eq. (2.8), it can be
shown that the reduced matrix elements obey the
relation

(I 'K [i T (q) ii IK) = (-1)
, x (IKii Ti(q) iiI'K) . (2.15)

HI. APPLICATION OF DEFORMED HARMONIC

OSCILLATOR MODEL

Since full projected Hartree-Fock calculations
are rather complex and in order to obtain a qual-
itative idea about the merits of the projection
technique for the calculation of transverse form
factors, we have performed a schematic calcula-
tion, approximating the intrinsic state P» by a
Slater determinant consisting of deformed harmon-
ic oscillator wave functions. The intrinsic matrix
elements (K jT~ (q) j ~) that occur in the zeroth-
order terms of Eq. (2.8) can then be calculated
directly by replacing @» with a Nilsson single-
particle state [NnzAJK' By exp. anding the latter
in terms of spherical orbitals jNlj ) one finds

x (l'A' —,Z ' jj 'K')(2j '+1) ' '(j Kp jj 'K') 0j'' ll T'(q) ll fj) . (3.1)

It is instructive to compare the resulting multipole distributions in this strong coupling scheme

(I K [i T'(q) (]IK)= (2I+1)'~'((IK~O jI K)(Kj T,'(q) j K&6„„,+ (-1)'»(I- K~2K
j
I-~K)(K

j T,',(q) j-K)), (3.2)

with the result for a spherical nucleus. For the
important case I'=I = K and I not too small the geo-
metrical factors (II&0

j II) that multiply the &K= 0
term fall off rapidly with increasing ~. Thus one
predicts that in elastic magnetic scattering in the
strong coupling limit the intermediate rnultipoles
(&=3, . . . , 2I —2) are strongly suppressed com-
pared to the spherical single-particle-values,
whereas the highest multipole (& =2I) that re-
ceives a contribution from the 4K=2K term is
comparable to the single-particle value.

As a specific example we first consider xsiTa

motivated by a current experiment at Bates."
In the Nilsson model '"Ta is described by a
[404] ~' proton intrinsic state; assuming a deform-
ation 6=0.3 one has [404]2 =0.976 jN=4, /=4,
A=4, Z =-2)-0.218 jN=4, l =4, A=3, Z= 2). All
necessary matrix elements of the transverse mul-
tipole operators can be expressed as linear com-
binations of the matrix elements in the spherical
basis (n [[ T~(q) ([ P), where a, P =g, &, and g», .
For simplicity the radial wave functions are ap-
proximated by harmonic oscillator wave functions.

The calculated transverse form factor for elas-

tic scattering is shown in Fig. 1, together with the
prediction of the extreme single-particle model.
One sees that compared to the weak coupling case
there is an appreciable reduction of the cross
section for the intermediate q values, due to the
large quenching of the M' and M' multipoles. We
note that this effect enables one to experimentally
determine the lowest and the highest multipole
distributions oyer a larger q region than is poss-
ible in the weak coupling case. In the present
case with I=K large the collective M' contribution

pcoac 8'& 1
sP g I

is relatively unimportant, and has therefore been
neglected.

In the inelastic form factors within the K= &'

band that are also being measured the various
allowed multipole matrix elements (K j T"„(q) j

+K)
occur with different weighting for each I . A si-
multaneous measurement of a number of inelastic
I-I' transverse form factors within the ground
state rotational band would thus in principle enable
one to map out each nuclear current multipole
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FEG. 1. Transverse form factor squared (arbitrarily
normalized) calculated for elastic scattering on Ta
(I=X=

2 ). The various multipole distributions for the
spherical gvj 2 ([404$] Nilsson) case are represented by
dashed (dashed-dotted) curves.

separately. One easily sees that with increasing
I' the ~= 3 a.nd ~= 5 multipoles become more im-
portant. As an example we have shown in Fig. 2
the predicted &'-—',"transverse form factor. In
this case there are a,iso nonvanishing E' and M'
'multipole contributions that come from the j =

&

component in the Nilsson wave function. However,
these contributions are rather small, and, more-
over, have a q dependence very similar to that of
the M' multipole.

As a second illustration we consider "Mg. Al---

though in this case axial symmetry may be broken
(as suggested by structure calculations" on "Mg)
and the quantity 1/(8„') might not be a good ex-
pansion parameter, we have chosen this example
because recently elastic electron scattering for
this nucleus was measured" over a wide range
of momentum transfer. %ith I=E= —,'- and a~'j'
=1 the zeroth-order matrix elements are direct-
ly expressed in terms of (d», (( T~(q) [[d»,). As
a simple model to estimate the collective effect
we have considered a spherical "0core with 8
nucleons in the Nilsson orbitals [NnzA]Q'= [220] z'
and [211]2". If AN=2 mixing is neglected there
is no collective contribution to the M' distribution
since the matrix elements of the orbital part of
the M' operator vanish in this model space. There-
fore a q-independent scaling of the M' distribution

bq/4
FIG. 2. Transverse form factor squared calculated

in the ¹ilsson model for the 2'-
2
'

ground state band
transition in '8'Ta.

is predicted by a factor 0.55. For the M' form fac-
tor there is a small first-order contribution gen-
erally opposite in sign to the already small zeroth-
order contribution (which is 0.12 times the single
neutron value). Compared to the zeroth-order I'
multipole distribution the collective contribution
has the opposite sign and the first zero occurs at
higher q. (In coordinate space the convection cur-
rent distribution occurs further inside than the
spin magnetization distribution. ) The effect of
the inclusion of the collective contribution is to
shift the zero in the M' form factor from q =0.95
fm ' to 0.75 fm '. In Fig. 3 the cross section for
elastic magnetic scattering on "Mg calculated in
the present approach is compared to the experi-
mental data of Ref. 11. To this end we have applied
corrections for proton finite size and center-of-
mass effects. The effective q was taken to be

q, « =q(1+ 1.2Zakc/ER, ) and the harmonic oscilla-
tor range parameter b =1.83 fm. Also shown is
the result of a full size shell model calculation. "
Note that there is rather good mutual agreement
between both calculations and experiment. How-
ever, because of the large uncertainties in the low
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scattering in the strong coupling scheme have a
strength very different from the spherical case.
The collective contribution to the M' form factor
has a q dependence different from the zeroth-
order odd nucleon form factor. Therefore from
an accurate measurement of the transverse form
factor in the intermediate q region information
might be obtained about the collective convection
current distribution.

Finally we want to point out that although in the
present approach the charge and current densities
are derived in the same framework, a problem
arises due to the fact that the projected HF states
do not minimize the energy. Since the projected
Hartree-Fock states are not eigenstates of the
Ha, miltonian H the equation of continuity

IO

~ ~

s

t
J

I
'

1

0.5 I

~a+ ~ g

M3

I

2.5

(4.1)

is not exactly satisfied. As a consequence one
does not have a guarantee that Siegert's theorem
for q-O,

FIG. 3. Transverse form factor for the elastic elec-
tron scattering on 5Mg. The dashed-dotted curve is
the result for the extreme single-particle model. The
fuH. line is the sum of the three multipole distributions
calculated in the Nilsson model including the core con-
tribution. The exp rimental points are taken from Ref.
11. All the low q points {full circles) contain error bars
comparable to the one shown in the figure.

q data, it is not possible to make a quantitative
comparison between experiment and various mod-
els for the collective Ma form facto

IV. SUMMARY AND DISCUSSION

We have derived expressions for Coulomb and
transverse electron scattering form factors. for
odd-A. nuclei in the framework of the projected
Hartree-Fock approach. Through a systematic
expansion in terms of the quantity 1/&J'~'& both
single nucleon and collective contributions are
taken into Itccount. We have shown that the vari-
ous transverse multipole distributions for elastic

(4.2)

will be satisfied in this approach. Numerical
computations must be performed to find out
whether conditions (4.1) and (4.2) are approxi-.
mately fulfilled or badly violated. To obtain a
more rigorous determination of the collective
contribution to the current density and to satisfy
in a better approximation the continuity equation
the variation after projection Hartree-Fock ap-
proximation should be used.
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