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Search for Efimov states in ' C
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When ' C is treated as a bound system of three a particles interacting through the Ali-Bodmer a-u force,
as modified by Vallieres et al. , we find using the Faddeev technique no 0+ excited state below the two-body
threshold. When the a-a force is made more attractive, a 0+ excited state eventually appears. It is not an
Efimov state.

NUCLEAR STRUCTURE 2C, examining 0' excited state for Efimov character- '

I istics through e-a force.

When three boson systems are investigated for
the presence of Efimov states, ' a likely candidate
in the nuclear domain is '2C. This nucleus can be
treated as a bound system of three n particles
which may harbor an excited 0' bound state with
Efimov-state characteristics. Indeed, it is well
known that there exists an excited 0' state in "C
near the two-body threshold. Hence, the question
arises: Is it an Efimov state~ In this paper we
report the results of a study using the Faddeev
method which bears on this question.

The potential chosen for this analysis is
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By allowing p, to be very small, Eg. (2) becomes
an acceptable approximation to (4).

The momentum representation of the above po-
tentj. al j.s given bye, 6
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A. =4 & 1.4397 MeVfm=4e'

p. =0.01,
360 MeV, &, =0.7 fm

A, = -130 Me V, n, = 0.475 fm '.
This potential with the given parameters is the

realistic &-& potential used recently by Vallieres,
Coelho, and Das" in their work on "C. It should
be noted, though, that this potential does support
a bound state at -1.75 Mev whereas 'Be is not
stable.

The Coulomb interaction has been modified by a
shielding factor with a screening parameter p. .
Since we use the Faddeev method in momentum
space, this modification is chosen to avoid the
difficulties associated with the momentum trans-
form of
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The numerical analysis of the 0' bound states of
C using this potential follows the Faddeev-unitary

pole expansion (UPE) method of Lim, Duffy, and
Damert. "4" For the repulsive core strength, A,
=360 MeV, we found only one 0' bound state (-5.8
MeV) for the 3-c. system below the two-body
threshold (see Table I). This is a bit underbound
as compared with the Vallieres hyperspherical
calculation (-6.6 MeV) and with the experimental
value (-'7.2'I MeV). Our figure would be improved
by adding more terms to the UPE approximation
as well as l0 states. However, the essential
features of Efimov states can be determined by an
s-wave analysis and since that is the purpose of
this paper, we used the UPA (one-term UPE).

Hy lowering A, to 300 MeV we were also able
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TABLE I. Two- and three-body binding energies corresponding to various chosen potential
core strengths.

Potential
core strength A&

(Me V)

Two-body.
binding energy

(MeV)

Three-body binding energy
Ground
(Me V) Excited

200

250

300

330

350

360

380 '

400

420

460

480

490

-7.5
-5.5

3 Q2

-2.45

-1.95

-1.75

-1.35

-1.0

-0.7

-0.25

-0.1

-0.02

-26.5

-18
-10.5
-7.9

-6.4

-5.8

-4.7

3 ~ .7

-2.85

-1.5

-1.0

-0.75

-10.0 MeV

-5.85 MeV

-3.4 MeV

Above two-body
threshold

Above two-body
threshold

Above two-body
threshold

Above two-body
threshold

Above two-body
threshold

Above two-body
threshold

Above two-body
threshold

Above two-body
threshold

Above two-body
threshold

to produce a 3-n 0' excited state. Here the 2-p
system is bound by 3.2 MeV-quite a distance from
the resonance region. In light of this it is unlikely
that the 3-n excited state would be an Efimov
state.

The Efimov characteristics of this state can be
tested by deepening the potential well or, equiva-

. lently, by reducing the repulsive core height.
When this is done a true Efimov state will shortly
disappear into the continuum, whereas a normal
excited state will continue to increase in binding
energy. Indeed, for a two-body system near res-
onance, the number of Efimov states in the cor-
responding three-body system can be approxi-
mated by2

where a is the scattering length and rp is the ef-
fective range of the &-n system.

If the two-body system is bound, deepening the
potential well or reducing the core height de-
creases a which, then, decreases N. Eventually,
when N becomes much less than 1, all Efi.mov
states ~ill disappear whereas. a normal excited
state will remain.

Thus, we tested the behavior of the 0' excited
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FIG. 1. Plot of binding energy vs repulsive strength
& for the three-body ground (0) and 0' excited ( ) states
and the two-body threshold (6).

state by further reducing the height of the core.
Our 'results (Fig. i) show that this state is a nor-
mal excited state. Indeed, that the. two-body bound
state is not very close to the continuum (at /t,
=300 MeV) suggests that these results are as ex-
pected.
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TABLE II. Two-body scattering length, .effective
range, and estimate of Efimov states for given potential
core strengths.

Potential
core strength A&

(MeV)

300
360
420

4.2
4.9
6.0

2.06
2.44
2.77

0.227
0.222
0.246

We also tested Eq. (9). We calculated N by first
finding the scattering length, a, from the zero-
energy radial wave function. ' The value of ro
follows from

where &=A/(2M&)'~' and B is the binding energy
and M is (he reduced mass. As can be seen from
Table II the computed values of N agree with our
direct confirmation that the 0' excited state at
A, =300 MeV is not of the Efimov type.

One might expect the possibility of generating
Efimov states by increasing A„causing the two-
body binding energy to approach zero. However,
with the potential considered in this paper, the
Coulomb repulsion at large ~ far outweighs the
nuclear attraction, ' and overwhelms the long
range attractive effect in the three-body system
which manifests the Efimov states. We did in-
crease A„determined the corresponding two-
and three-body binding energies (Fig. 1) and, in-
deed, found no Efimov state.

1 1 1 +Q
+

y a 2y2 (lo) We wish to thank Sr. Kathleen Duffy for her aid
with computer programs for this analysis.

*Present address: Department of Chemistry and Phys-
ics, Beaver College, Glenside, Pennsylvania 19038.

T. K. Lim, Sr. K. Duffy, and W. C. Damert, Phys. Rev.
Lett. 38, 341 (1977).

V. Efimov, Phys. Lett. 33B, 563 (1970); Yad. Fiz 12,
1080 (1970) [Sov. J. Nucl. Phys. 12, 589 (1971)].

R. D. Amado and J. V. Noble, Phys. Lett. 35B, 25
(1975); Phys. Rev. D 5, 1992 (1972); S. K. Adhikari
and R. D. Amado, Phys. Rev. C 6, 484 (1972).

T. K. Lim, W. C. Damert, and Sr. K. Duffy, Chem.
Phys. Lett. 45, 377 (1977).

E. Harms, Phys. Rev. C 1, 1667 (1969).
I. S. Gradshteyn and I. M. Ryzhik, Table of InterI als,
Series, and Products (Academic, New York, 1965).

7K. T. R. Davies and M. Baranger, Nucl. Phys. A120,
254 (1968).

S. Ali and A. R. Bodmer, Nucl. Phys. 80, 99 (1966).
~M. 7allieres, H. T. Coelho, and T. K. Das, Nucl. Phys.

A271, 95 (1976).
J. M. Qlatt and V. F. Weisskopf, Theoretical Nuclear
Physics (Wiley, New York, 1962), pp. 56-65.


