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Previous studies of isospin mixing in reactions have been restricted to the case of overlapping levels, and

have produced a variety of cross-section formula. We point out that, despite some diA'erences, these formulas

are in essential agreement; further that, by comparison with results in the case of isolated levels, one can
naturally establish a general formula that is expected to be valid for all situations. .

NUCLEAR REACTIONS Isospin mixing in nuclear reactions.

The subject of isospin mixing effects in com-
pound nucleus reactions has been discussed in at
least six papers, ' all specialized to the case of
overlapping resonances (for each isospin involved).
The reason for this specialization was probably
that the relevant data had this feature. For ex-
ample, some papers concentrate on explaining the
departure from unity of the ratio o'(p, p')&(n, o. ')/
o(p, e')o(n, p'), where all four processes involve
the same compound nucleus at about 20 MeV ex-
citation; for the targets used (masses 50 to 120),
this excitation implies overlapping resonances for
both isospin sequences.

Isospin mixing effects are certainly not limited
in practice to the case of overlapping compound
levels. In fact, recently' ' the subject has been
raised in connection with (P, y) reactions for pro-
ton energies ( 5 MeV and target masses 20 to 60,
where compound levels are usually nonoverlapping
(for given spin, isospin, and parity). This situa-
tion (of discrete levels) is one for which the com-
pound nucleus cross section can be evaluated. It
turns out, not surprisingly, that the result differs
from what one gets if one blindly applies the
formulas derived in the case of overlapping levels.
However, there are striking similarities in the
structure of the formula, s which encourage one to
search for a bridging formula to cover all cases.
This is the main subject of the present work. An
incidental subject is to compare the previous
papers with each other. It turns out that despite
initial indications to the contrary, all papers give

essentially the same result.
We begin by surveying previous formulas for .

overlapping levels; afterwards the case of dis-
crete levels will be treated, and comparison made
with the overlapping case to establish a general
formula.

We will restrict the discussion to the case of
two isospins, the smaller isospin T& for the dense
background states and the larger one T& for the
analog states. The original paper' gave the follow-
ing form of cross section 0

& between channels
n, P:

(Tm+ &rn2)(Tsi+ &r82) (1 )
Ta2r82

T~ + P, T~ r

where

1 cxl 9

Here we follow convention and suppress the spin:-
statistical and kinematic factors in the cross sec-
tion. v ~ is the transmission function for channel
u and the levels of unmixed isospin 1'& while r 2

is the same for the T& levels. The assumption
of overlapping levels implies that the total trans-
missions r„v; are both» l. p. is a parameter .

reflecting isospin mixing, and will be discussed
below.

The most recent paper' gives a form which at
first sight is completely different, viz. ,
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&~8= 1 ——V

T fXl Tgg T
(~y T+2

EX y y j
1 2

where T, is defined as

T~ =—(1 —Xpi)r, +p,Xr, ,

(4)

(5)

and similarly for l 2 on reversing 1 and 2. Ty

is L,„T„,and p, is p, (p, + p2) ', where pi and p2
are level densities of levels 1 and 2. X is a mix-
ing parameter. Again one finds that form (4) is
equivalent to (2) [or (1)] if the mixing parameters

and v are related" in a certain way, viz. ,

['2'2+X(piri- pir2)(ri —r.) -X'(p. r, p, r.)']-v
= [(P2 ri+Pi r2) -(P2'ri+Pi'r2)X]Xri (6)

Thus aLL proposed forms (2), (2) and (4) of o'

are equivalent if the mixing parameters li, v, and
X are related appropriately, i.e. , by (3) and (6).
This is not surprising when one notes that form
(2) follows generally from the assumptions that

s (= &s „) is quadratic in transmissions of
channels e and P and that g&o & equals (r~+r, ).
The differences between the three classes of
theory lie not in the forms of 0 „& as a. function
of transmissions and mixing parameter, but in the
identity of the mixing parameter. Vfe now discuss
this.

First we note that the general condition that
&„8 is symmetrical in 1 and 2 imposes a condi-
tion on the mixing parameters, viz. y, r, ~ and
(r, p, '+r, ) are symmetric. This condition is
satisfied by the forms we now present. The forms
given in the cited references are

Li = I",(I', + F,) ', (L)

v=[(I',/I', ) +(r, /r, ) +1] ', (8)

x =(r", +r', )[r",+ r', +r', +r', ]-', (9)

where the new quantities are (m =1, 2)

I' =r (2vp ) ',
F.' =-2viI', ', ['p, p, /p. ,

(10)

+(r~irs2+r, rsi) + '(1 —v). (2)
1

However, it turns out, upon algebraic manipula-
tion, that forms (I) and (2) are identicaL pro-
vided that the parameters v and p. are related
thus:

1 —+—
V P T~

Other papers' "yield a formula which again
appears very different, viz. ,

where r=Pr and—the brackets denote energy
averaging over the fluctuations arising from the
energy dependence of the T's,

A'

where r~ and I'„have mean values I', and r, /
2'„respectively. If we assume that analogs 4
are uniformly spaced with uniform values of
F„and r~-„, one can evaluate ir„s in (11). The
remarkable thing is that Ne resuLting form of
o'~

& is exactly that of (2), but with

4v= 1+—
~

+ ' (e""2 2 —1) '
Tq) T~

(12)

(13)

and (H, '2 (2 is the mean square coupling matrix
element between levels of the two types.

When we check forms ('7) and (8) against relation
(3) we find that (3) is satisfied, thereby showing
that the first two approaches'~ are identical. When
checking (8) and (9) against (6), we find that (6)
is not satist'ied [except in the limit p2«pi or in
the limit (F, + F,) «(F, + I',)].

On comparing the three kinds of derivation lead-
ing to formulas (1), (2), and (4), we find that all
are to some extent intuitive except for the deriva, -
tion' leading to (2) with (8). This is based on the
exact solution of a certain statistical model whose
input assumptions are consistent with the other
approaches. Therefore we can assume this to be
correct, and can use it to judge the other ap-
proaches. Thus we conclude that (1) with (7) is
correct, but that (4) with (9) is not. The use of
(4) is correct only if X of (9) is replaced by X

taken from (6), with v from (8).
Finally, on this subject of three kinds of approach,

a. comment should be made on the ex~ t model
solution. Upon detailed inspection, one finds
that certain quantities differ from their counter-
parts in other papers, viz. , F, contains an extra
term not present in (10), and the transmissions
contain mixing effects. These differences arise
from external (Robson) mixing. This is not ap-
parent at first sight, because cert~in simplifying
assumptions have been made which obscure this
connection. When these assumptions are relaxed, "
it can be readily shown that the a,dditional term in
I", is precisely the familiar Hobson contribution,
and also that the transmissions are those corres-
ponding to Hobson external mixing (with no internal
mixing).

Now we turn to the situation of isolated levels.
In order to guarantee that all levels are isolated,
one requires v, (1, v;&1, a,nd F, &I',. In this
situation, we have
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Of course, the assumption of uniform values is
unnecessary when I', &D,. The fact that both ex-
tremes (large natural widths 7;, r, »1, small
natural widths r„r, «1) give the same structure
of & 8 is a strong indication that (2) is generally
valid. The only remaining question to settle is
the functional form of v, which can depend on
r„r„p„p„and (K,', ~' [or on any other choice
of five parameters equivalent to these through
(10)]. When we compare forms (8) and (13) for v,
the natural choice of a. bridging formula is

2

v= ~1+~+ '
(

+ '(e""'" -1) 'r I's l 4r~ ~r& yo

I'i )2

(14)

Note that v lies between the limits 0 and (1 + r, /
r,) ', achieved in the small and large mixing
limits (I', -0, ~), respectively. Since there are
no known systematic methods for evaluating com-
pound cross sections in general situations, the.
only way to check (14) is by computer experiments
of the type done by Moldauez" " in other contexts

where systematic methods do not exist. The pro-
gram for the present problem is quite clear: one
makes the computer construct an R matrix con-
taining two parts, R, and R,. The R-matrix ampli-
tudes yq~ are chosen from Gaussian distributions
of zero mean and given mean square value. Now
one specifies the mean square Coulomb matrix
element H,", between the two kinds of level, again
using a Gaussian distribution with zero mean.
Diagonalization gives a new set of R-matrix levels,
whence the computer can calculate o &. Thereby
one can check numerically whether & 8 really does
have the form (2) with v given by (14).
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