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A relativistic nuclear Hamiltonian is constructed, from which the relativistic Hartree and Hartree-Fock equa-
tions are derived. Then the Hartree equations are applied to 0 and Ca nuclei taking as input different rela-
tivistic one-boson-exchange potentials as well as the effective interaction of Vfalecka, introduced in his theory
of highly condensed matter. Single-particle energies turn out to be of the correct magnitude. In particular, it
is possible to explain the magnitude of the spin-orbit splitting without any free parameter.

i6 40NUCLEAR STRUCTURE 0, Ca; calculated single-particle binding energies.
Relativistic Hartree-Pock method.

I. INTRODUCTION

This paper presents an approach to a relativis-
tic description of bound nuclei. The strong inter-
action between the nucleons is generated by the
exchange of mesons. For the description of nu-
cleon-nucleon scattering one-boson-exchange po-
tentials (OBEP) have turned out to be very useful.
Recently developed relativistic boson exchange
potentials' are used successfully to reproduce the
experimental nucleon-nucleon scatter ing phase
shifts. A survey on the situation in the nucleon-
nucleon scattering ean be found, for example, in
the review article by Erkelenz. '

While there exist many calculations with OBEP
for the two-nucleon problem and nuclear matter,
there are only a few such calculations for finite
nuclei. ' In this series of papers Miller has set
up the relativistic Hamiltonian for an A-body sys-
tem with two-body interactions, which are given
by the r-space OBEP derived in the review article
of Green and Sawada. The variational approach was
used to obtain from this Hamiltonian the relativis-
tic Hartree-Fock (RHF) equations. Then Miller
solved the Hartree and, within certain approxima-
tions, also the Hartree-Fock equations numeri-
cally.

In the present paper the relativistic Hamilton
operator for bound nucleons, which interact
strongly through meson exchange, is rederived in
a simple manner; it is shown, in particular, how

to include derivative coupling and retardation ef-
fects. (The Hartree equations derived in this way
differ from Miller's Hartree equations only by a
self-energy term, which is not subtracted in
Miller's approach. ) In his derivation of the RHF

equations, Miller uses a, specific (spherical coor-
dinate) representation of y matrices right from
the beginning, while in this work a. somewhat sim-
pler approach has been used which leads to practi-
cal simplifieations in setting up the RHF equations.
These equations are then solved to explore the ex-
tent to which a relativistic description of the nu-
cleus is relevant for low-energy properties of nu-
clei, as Miller has already pointed out. For ex-
ample, the spin-orbit interaction is usually treated
in apurely phenomenologie31 way in a nonrelativis-
tic theory, whereas it should emerge naturally in
a relativistic description. In addition, it is cer-
tainly desirable to obtain relativistic single-nu-
cleon wave functions, in order to describe typical
medium-energy processes such as (P, m') etc.'
We shall proceed as follows: In Sec. II the field
theoretical Hamiltonien will be .set up for nucleons
bound in a nucleus. The relativistic Hartree and
Hartree-Fock equations for closed shell nuclei
are given in Sec. III& In Sqc. EV the results of the
Hartree calculations are discussed for nucleons
in oxygen and calcium, respectively. A conclusion
is then presented in Sec. V.

II., RELATIVISTIC HAMILTONIAN FOR A SYSTEM
OF MANY NUCLEONS

We start with an exposition of the basic meson
theoretic ingredients of the free nucleon-nucleon
interaction. For our purposes the relativistic
OBEP of Ger sten, Thompson, and Green (GTG)'
or the more refined one of Erkelenz, Holinde,
and Machleidt (EHM)' are most useful. The phys-
ical properties of the exchanged mesons are dis-
played in Table I. We now proceed to construct
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TABLE I. The meson 'parameters for the OBEP of Gersten, Thompson, and Green (GTG)8
and Erkelenz, Holinde, and Machleidt (EHM) . The definition of the renormalized coupling
constants for the OBEP of EHM is given by Eq. (37) of Sec. G.

m
Meson T J (Me V)

GTG
g
4g

A m g
(Me V) (Me V) 4

EHM

g (MeV) 4j'

1
0
0
1
1
0
0

0 138.7
0 548.5
0+ 570.
0 960.
1 763.
1 782.8
1 ~ ~ ~

14.19
3.09
6,97
0.33
0.43 6.38
9.92

1414
1414
1414
1414
1414
1414

138
548.5
550
960
712
782.8

1020

14.4
6

8.67
2.88
0.77

23
5

1265 14. 06
1530 4. 56
1530 6. 57
1530 1.059

6.6 1530 0. 37
1530 9. 25
1530 0. 86

the Hamiltonian for nuclei consisting of A nucle-
ons, which for simplicity we assume to interact
only by the exchange of cr, n, p, and ~ mesons.
We start with. the following effective Lagrangian:

g q free+ p free+p free+ Q free+/ free
g fr & p M

+ ~ PNff + ~ NNa +~ NN P
+ ~ NN fd ~

where Q'~e are the free Lagrangian densities

g'»"' = ——,'q(x)[(-iy" &„+M)

+(i s„y" +M)] p(x),

g ', ' = ——,'[m,'y'(x) - s„y(x)s"p(x)], (3)

g &~ = --,'[m„'y'(x) s„y(x-)s~y(x)], (4)

P p"e =' ——,
' G„„(x)G""(x) +-,' mp'p„(x) p'(x), (5a)

G„,(x) =- s p, (x) —S„p„(x), (5b)

6 ~«~ = —,'E„„(x)E""—(x)+-,' m ' (u„(x)(u'(x) (6a)

(6b)E„„(x)-=&„(u„(x)-s, «},(x).

M, m„m„, mp, m are the rest masses of the nu-
cleons and of the corresponding mesons. [g(x) de-
notes the nucleon field operator and P its adjoint,
i.e., P =P y'.] q(x), y(x), p "(x), (o"(x) are the o-,
x-, p-, and u- meson field operators. Note that

P and p" are vectors in isospin space. The ar-
rows on top of the 8& operators indicate the direc-
tion of action of these operators. For P. 'we
choose the following local interaction Lagrangians
(the effect of form factors will be dealt with later):

+ ~ P(x)o""F„„(x)P(x). (10)

T are the Pauli isospin matrices. (The notation of
the y matrices and the Pauli matrices is that of
Bjorken and Drell. ') We now wish to construct
the Hamilton operator in nucleon space starting
with the Lagrangian (1), i.e. , eliminate the meson
fields.

g, p
"(x-}ry, 4(x)

+
4M

o""v G,„(x)$(x)

—g„~ "(x)y.((x)

[f is small, so the corresponding term in Eq. (11)
has been neglected. ] ft should be noted that the
nucleon current satisfies the continuity equation

s,[y(x)y~y(x)] =o.

The meson field equations are given by

(CI+m, ')y(x) =g, P(x)P(x),

(2 + m, ')$(x) =i g„P(x)v y, P(x),

s~6„„(x)+m.,' p„(x) =g, p (x)vy, g(x)

(12}

(13)

(14)

(15)

First Q is varied with respect to P and B„P to ob-
tain the Euler-Lagrange equation, which is the

' usual Dirac equation with source terms:

(- iy" s +M)$(x) =g, y(x)p(x) +ig, j(x)vy, p(x)

e «». =g. g(x)@(x)P(x),

6»»'„=i g„g(x)Q (x)v y, P(x},

&»», = g, 4(x)p'(x)v-y. 4(x)

+ ' s "[p(x)v.o„„p(x)],

s"E„,gx)+m„,'«l, (x) =g p(x)y„p(x). (16)

+
4

' P(x)o""v.G„„(x)P(x),

g „'"„' = -g„g(x)e"(x)y, g(x)

Equations (13) and (14} are both inhomogeneous
Klein-Gordon equations, while the other equations
(15) and (16) are Proca equations with source
terms. Taking into account that the nucleon cur-
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rent is conserved [Eq. (12)j Eqs. (15}and (16) are
equivalent to Klein-Gordon equations with source
terms:

( +m, ')p„(x) =g,T((x)ry. y(x)

t»„(») g=f,n(», s-) s(s)Y s(„)sd y' (22)

D, (z.} is the retarded propagator of the Klein-Gor-
don equation

+
2

' S"
I 0(x.)To„.k(x))

(g+m ')(g„(x) =g P(x)y„P(x). (18)

D (z) = —e(z)b(z z)')
2w

"„}„,e(z)Z,()n,.(@z)')'~'}.
W Zp8

Equations (13, (14}, (1'7), and (18) can be solved
for the meson field operators: Here e(z) is the unit step function defined by

4(x) =g. D.(x-y)7b)tb)d'X, (19)
0, so& 0.

(20)

)T(, (x) =g, D, (x y)4(y-)~y. 4(y)d'3)

Dp(x- y)&"Q(yPo„.4(y)ld'y,

(21)

$(x) =ig, D, (x-y)g(y)7y, g(y)d'y, J, (z) is the Bessel function of integer order,
while es, defines the mass of the propagating
meson.

With the aid of the explicit expression of the
meson field operators (19) to (22) it is possible to
eliminate the meson fields in the Dirac equation
(11):

(-its, +M))I)(x,) =g ' D (x, —x )g( x) (I)( x)d~ xp( x) - g Tt 7, D„( ,x- )xIC( ))xy, II( ))xd 4yx,2p( x)

gp'r, ~-7, g(x, -x, ) 1)(x(,)y'P(x, )d'x, y„g(x,)

g~ Dfd Xl +2 2 ~ 2 d X2+p Xl ~ (28)

Additional pieces from tensor couplings have been omitted here for simplicity. This Dirac equation leads
to the Hamiltonian in nucleon space

1O. =t = const
(1)(x,)(-iy ~ V, +M) P(x, )d'x,

=. Os I', . Pn QP

gm (g ~ y )ri g(x,)g(x, )I', (1, 2)D, (x, —x,)P(x,)P(x,)d'x,d'x, .
5I

= t = const
(24)

T, =0, 1 indicates the isospin of the mesons, while the I'& denote Dirac matrices

I', (l, 2) = -1,
r, (1,2) =y, (1)y,(2),

(26)

(26)

7)I' (1, 2) =y„(l)y"(2}. (2

The g(x) and p (x) are expanded in a complete set of functions. The stationary solutions for the nucleon
fields can then be written:

g(x) = Q f„(x)e 'zc( 'b„+ Qg (x)e'z~-'dt, (28}

g (x) =g f~~(x)e'z"-'bt+ g gt (x)e 'z~gd (29)

f„(x)and g„(x) are complete sets of Dirac spinors in coordinate space. b and b„are annihilation and
creation operators for nucleons in the s;ate e, , respectively. d and d are annihilation and creation op-
erators for antinucleons in the state z, respectively.

Now the expansions (28, (29) and the retarded propagator are inserted into the Hamilton operator (24)
and we obtain
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ft (x)( i-y'y'V +y M)f„(x}d'x' b~ 5.
I

CX~ A

f ~ (x,)f~a(x,)V„„(~x,-x, ~)f~(x,)f (x,)d'x, d'x, g, g y~ y„,

V„„,(~ x, —x~~) =- V„„(r)= g -(r, ~ r, ) 'yo(l)y, (2) I"; (1, 2) expj -r[rn,.'-(Z„—Z„.)']'~') . (3l)
i~ o,.x, p, ,m r

Terms with antiparticle annihilation or creation operators have been omitted since they are of no interest
in this work. Furthermore, it is noted that the potentials are energy dependent (state dependent), which
is a consequence of retardation. If meson-nucleon vertex form factors of the type

l/a
+(('q) Aa 2 ~ i o~+~p~&

Ai. —q
(32)

are introduced, the Hamiltonian in coordinate space is of the same form as Eq. (30), but with a modified

potential:

2

V, . (r)=g 4' p. (r, r.) "y.(I)y.(2)1';(I 2)
i = a,.m, p, v 4g A -mi

ex -r m] —E~-F~ —ex -r A —F.„-E„
r r

(33}

The potentials of GTG and EHM involve different
meson-nucleon form factors. The form factors
of GTG are of the form

(37)
A

+((I) =A,A'+ q'

where A is the cutoff mass. The fact that

F(q =0) =1

(34)
The connection between E,.(q) of Eq. (32) and the
form factors used in the OBEP is easily made by
expanding in powers of q' /A' for q'«A'.

is convenient for nuclear physics purposes, since
normally q is small compared to A, so that the
effect of the form factor is small.

EHM use different form factors for the various
mesons. Their form factors have the following
structure:

(36)

normalized at the meson poles q' = m~', with n
= 1 for a= 7(, q, g, 5 and n= —,

' for a =p, (d, P. In
order to compare the OBEP of GTG and EHM we
introduce "renor malized" EHM coupling constants
defined by

III. RELATIVISTIC HARTREE-FOCK METHOD

FOR NUCLEI VATH CLOSED SHELLS

In. order to obtain. approximate solutions for the
Hamilton operator (30), the Hartree-Fock approach
will be discussed in this section. First the expec-
tation value of the ground state energy is calcu-
lated for nuclei with an equal number of neutrons
an.d protons. As the approximate state vector for
the A. nucleons we take

f~)=f'.P'. " i'.„lo), (38)

where Q.„.. ., n~ denote the single-particle orbits
and ~0) is the vacuum. Single-particle energies
and wave functions are then generated by minimi-
zation of the ground state energy in the Hartree-
Fock approximation. %e start from
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I= &eieie&

f,'(x)(-jy'y ry'Xd)f, (x)d'x r —,
' g f', (x)f', .(x)y. ..((x, —x() ,f, (x lf, .(x)d'xd'x,

Ol ~ (R = 1

A f', (x,)f'(x,) V .(Ix, —x, I) f (x~)f .(x,)d'~, d'~„
Op O

(39)

where the spinors f (r) are given by' ator stationary:

with

iG„„.(r)
(~)

'$1f2, 4 j

0' r

5(4' I)P l4')+ &6N= 0. (43)

The resulting Hartree-Fock equations for closed
shell X= Z nuclei are

dF, (r,)
= G, (r, )[M —E, + Y; (r,) + Y," (r, ) + Y,' (r, )]

1

fp, j (r)= Q(lm, 2 p, urn)Y, (r")g, f, ,
m)~ P

(41)
+ F, (r, ) —'+ Y' (r,)+ Y" (r, )+ Y' (r, )

j.

Here $,f, and y, f, are the isospin and spin wave
functions, respectively. Explicit calculation of
the expectation value of Eq. (39) is given in Ap-
pendix A. Single-particle wave functions and en-
ergies are obtained by requiring that independent
variation of F (r) and G (r) under the restriction

N= ~ r rd'r

G 'r +F 'r dr-1

leaves the expectation value of the Hamilton oper-

+ 7«'. (G, r, ) + r«,d(F, r, ) + P"."'
(G, r, )

+ T«d (G, r, ) + &&y,"(F, r, )+ T&", (F, r, ), (44)

dG„(r, )-- = F, (r, )[M+ E, + Y; (r, ) —Y", (r, ) Y,' (r,)]

-G, (r, ) —'+ Y; (r,)+ Y," (r, )+ Y, (rd, )

+ W,' (F, r, ) W; (G, r, ) W,"(F,r, )

—1P,' (F, r~) —V," (G, r~) —Vd (G, r~), (45)

( 2

YE(r,)= +fj)„~ g(l- T )2(2j, + l)&r, (r, ) —(2T +1)(2j,+1) g I'~ ' ' I,
2 $2 —2

(46)

i, (r,)=f dr, j (im r,)))x'(im r,)
0

x [G.'(r, ) +F.'(r, )], K= o, p, ~. (4&)

Here a, and a, denote the quantum numbers nlj,
while T~ and no~ are the isospins and masses of
the corresponding mesons. The different signs in

Eqs. (46) and (47) refer to the g and (p or ~) me-
son, in that order. j0 and h0" are the usual spher-

ical Bessel and Hankel functions and r& (r&) is the
smaller (larger) value of either r, or r, . The other
ingredients Y, 8', etc. of the Hartree-Pock equa-
tions are given in Appendix B. We note that re-
tardation effects leading to the state dependence ofV, are absent in. the Hartree approximation and
lead to corrections of at most 10/o (for the lightest
meson) in the Fock terms.

In this work we would like to concentrate on the
Hartree approximation only and leave the more
complicated Fock terms to a forthcoming paper.
To obtain the Hartree equation, we start with the
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expectation value without exchange term:
A

I= x -iyy ~ &+y M xd x

where

r,"(r,) f drj, (imr)a'r'((m r,)
0

+ f x, ~" ' x, x, d 'x, , x [G.'(r, ) + F.'(r, )]. (55)

with

V""'(x,) = Q f ', (x,) V( I x, —x, I )
e'-1

&&f, , (x,)d 'x, . (49)

A
V"'"'(x,) = f ', (x,) V( lx, —x, l)f„(x,)d'x,

e =1

The Hartree potential is obtained by first summoning
unrestrictedly over n' and then subtracting for n
= n' a term which is averaged over angular mo-
mentum projections of the orbit n,

The same notation is used as for the Hartree- Fock
equations. We note that the w meson in lowest or-
der does not contribute at all, which we can under-
stand from Eq. (AB) and the remarks beyond (A9).
The p meson contributes very little, (A14), and
(A15). This does not change, if derivative coupling
is in.eluded, since it involves spin structures of
similar type as the m exchange. We note for later
purposes that the vector meson contributions enter
with different sign in Eqs. (51) and (52).

The method for numerical solution. of the Dirac-
Hartree equation is presented in Appendix C.

P ff', (x,)(r(lx, —x, l)f, (x,)d'x, .
m

(50)

dF„(r)
= [M Z. + U,

( &(r,)]G. (r, )
1

+ —'F (r),d) 1
1

(51)

= [I+E + II' '(r )]F (r )

(52)

with

U( &(r,) = g ' (r, ) ~ (W,"(r, ) + W' (r,) ) (53)

2

Ts'", (r, ) = +m„" ~g(1 —Tz)2(2j, + 1)I", (r, ) -I",(r,),
4n

i

(k =o, p, &u), (54)

The second term of the potential represents a self-
energy term averaged over spins. Since the full
Hartree- Fock equations automatically treat this
term correctly, we have chosen to subtract this
term in the restricted Hartree framework. This
turns out to be a small correction to the dominant
term (except for the binding energy per nucleon to
be discussed later); Miller' has neglected this
term altogether. The resultant coupled equations
for the large and small components are

IV. RESULTS AND DISCUSSION

OF THE HARTREE CALCULATION FOR NUCLEI

We present first the results of the Hartree calcu-
lation. s for "0 and "Ca nuclei using the nucleon-
nucleon interactions of EHM and GTG. In Table
II single-particle energies, root mean square
radii, and the binding energies per nucleon' are
given for "0 and "Ca. Experimental data" are
also shown as a guideline. Although in. the Hartree
approximation the Pauli principle and higher order
terms of the type described in Brueckner theory
are neglected, the single-particle energies, root
mean square radii, and the binding energies per
nucleon of the lowest order relativistic Hartree
calculations are in qualitative agreement with ex-
perimental values, at least in the EHM model.
Note that the GTG potential ususally gives under-
binding, while this is not so much the case for the
EHM potential. We also remark that, by excluding
the self-energy term of Eq. (50), F. ~/d4 is raised
considerably (by 15%for "Ca and 60%for "P in the
case of EHM, and 20%for 40Ca and a factor more than
3 for "Pin the case of GTG), while single-particle
energies and rms radii are only moderately affected
(less than about 15%). The relativistic model repro
duces the correct magnitude of the spin-orbit split-
ting both in the p and d shell without any free parame-
ter. Although Miller'" has already discussed that
adequately adjusted relativistic OBEP lead to the
correct magnitude of the spin. -orbit splitting, me
find it appropriate to elaborate on this fact from a
somewhat different point of view. We transform
the two Hartree equations (51) and (52) to a second
order equation (of Schrodinger type). With the no-
tation of Appendix C we obtain
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TABLE EI. Single-particle energies (e~ =E, —M), root mean square radii, and binding energies per nucleon of ~6Q and
4 Ca. The experimental data in the last two rows are taken from Ref. 11.

AGO

16O

4'Ca
"Ca
i (&Q

"Ca

-40.8
-30.2
-58.2
—47.4
—43+ 9
-50+ 8

-19.2
-12.1
-41.
-31.4
-19+ 2

-12.1
7+7

-35.7
-27.3
-12+ 1

-34+ 5

-22.
—14,9

~ ~ ~

-14+ 2

~ ~ ~

-11.8
9,4

~ ~ ~

-10+ 1

is(3/2) 6+(&/2~ Cy(~/2~ 6 +( g/2~ E @(&/2
Element (Me V) (Me V) (Me V) (Me V) (Me V)

~ ~ ~ 2e 3
~ ~ ~ 2. 6

-13.0 3, 0
—8.6 3. 2

2.73
-7+1 3. 5

3.2
0.5
6.1
2.8
8.0
8.5

e ~(,/, ) r~s
(Me V) [f~ ] (MeV) OBEI' .

EHM (Ref. 7)
GTG~(Ref. 6)
ZHM'(Ref. 7)
GTG'(Ref. 6)

D-(r) 3 D"(r) D~(r) ~

2D(r) 4 D'(r) D(r)

+ D(r)H(r) +, g(r),
l(l+ 1)

where

D(r) =2M+ g, + U,' '(r), H(r) = q, + U,"(r), (56)

is the single-particle energy.
%e obtain the following equivalent Schrodinger

mt ion:

g "(r)=,— + 2M(V, (r) + V,"(r) —e,) g(r)
l(l+ 1)

pared to the 0 and cu meson that they cannot be il-
lustrated in that figure. One consequence of the
considerable magnitude and the different signs of
the cr and (d meson is that the potential U,' '(r) has
the en.ormous strength of 700 MeV. The conse-
quence of this is that the relativistic effects as-
sociated with U' ' are large. In Figs. 3-5 the dif-
ference between U, (r) and U,"'(r) is shown and
compared with the Woods-Saxon potential for "Q.
It is striking that U, (r) is nearly state independent
and similar to the Woods-Saxon potential, whereas
the state dependence of the Dirac single-particle
potential U,"(r) is considerable U, (r) .and U,"(r)
differ from each other by between 10 and 30 MeV.
This shows that relativistic corrections for the
single-particle potential are in general not neglig-
ible.

V, (r) = U,"(r)+ n. U.('&(r),

(, &
(Ua '(r)+ &a) (U(.&(r) ~ )

2M

D'(r) 1 D"(r) 1 3D"(r)
2MD(r) r 4MD(r) 2M 4D'(r)

(58)

(59)

V(r)
[NeY3

-30

-20

-30

2 3 0 5 7 r[fm)

(d/dr) U,' '(r) I c
2M(M+E + U,' '(r)) r (60) -40

The last three terms in Eq. (59) are negligible.
(They are smaller than 4 MeV. ) Figure 1 shows
the potential U((

&, &»(r) in comparison with the
',Voods-Saxon potential for "0. U,

'
&, &»(r) is some-

- "-".' narrower (0.5 fm) and deeper (40 MeV). The
two main components of this potential are an at-
tractive part, which originates in the 0-meson ex-
change and has a depth of 400 MeV, and a repulsive
piece of 300 MeV strength from the ~-meson ex-
change (Fig. 2). The contributions of the other me-
sons to the Hartree potential are so small com-

-50

-60

Moods-Saxon

at tree

-70

-eo

FIG. 1. Comparison between the Woods-Saxon poten-
tial and the self-consistent Hartree potential [U((,'(Jlt&(r))
of the 1s(1/2) state for ~ G. The parameters of the 1VN

interaction are taken from EHM (Ref. 7, Table I), while
the Woods-Saxon parameters are given in Eq. (C4).
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V(r)

fNeV)

200

V(r)
[Mev]

-10

-20

1 2 3 4 6 7 r[fm]I—

100 -30

-100-

5 6 rffm]

-50'

-60

-70

Dirac

Schr od.
~Hartree (~)

y Woods-
(&)Saxon

-200- —V "(r)
——V'(rI

.-80

-90

-300— FIG. 4. The same as Fig. 3 for the lp(3/2) level.

-400

FIG. 2. Contributions of the g and u meson to the self-
consistent Hartree potential U„+II~» (r) for the lsd/2)
state of '6Q. The contributions of the other mesons (e.g.
p meson) are so small that they cannot be illustrated in
this figure. The parameters of the NN interactiori are
taken from EHM (Ref. 7, Table I) again.

Since U ', '(r) has a strength of 700 MeV, the
spin-orbit potential is sizable, too, even though
the nucleon mass enters twice in the denomin. ator.
In the case of the Dirac equation with a%'oods-Sax-
on potential V„s(r) [compare Eqs. (Cl) and (C2)]
the potential U,' '(~) has to be replaced by V»(r),
which is weaker by more than a factor of 10. The
spin-orbit splitting reduces to only about 0.2 MeV.
Note also that the spin-orbit force is confined to
the nuclear surface, as it should be, and that in

V(r)
[NeV]

-10

1 2 3 4 5 6 7 r[fm]
I I I I

V(r)
[NeV]

-10

1 2 3 4 5 6 7 r[fm]

-30
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~ Ha~rt'e' (I )

qWoods-
( )Saxon

-20

-30

-40

-50

-60

1p 1/2)

Hart r ee (")

q Schrod.
(&)

q Woods-
(&)Saxon

-80

FIG. 3: Comparison between the Schrodinger poten-
tial VHs'"„(r) —= P, (r) and the Dirac single-particle
potential &8„'t'„, (r) =—V,+ (r) for the l.s(1/2) level of

O. The parameters of theNN interaction are taken
from EHM (Ref. 7, Table I).

-80

-90

FIG. 5. The same as Fig. 3 for th.e 1P(1/2) level.
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mentum K„=1.42 fm ' for nuclear matter. The re-
sult is

0.6

cs = 266.9 and c„'= 195.7.

If we choose

(62)

0.4

mz = m, = 550 MeV and m~= m„= 780 MeV (63)

and so identify the effective vector boson with the
v meson and the effective scalar boson with the 0
meson, although there is no particular reason to
do so, we obtain

0.3
g 2

=7.3 and " =10.8.4v 4n (64)

0.2

0.1

-0.1-

Fj:G. 6. Hadial dependence of the relativistic Hartree
wave functions after converg'ence of the procedure.
EHM constants of Table I are taken for 1;his calculation.

These coupling constants are remarkably close to
those used in relativistic free OBEP. Since the
masses of the effective scalar and vector meson
in Walecka's model are a priori not given, the re-
sults of the Hartree calculations for "0are pre-
sented as functions of m~ (Fig. 7) and mv (Fig. 8)
with fixed ratios g~'/m~' and g~'/m~'. The single-
particle energies depend relatively strongly on the
scalar boson mass, "while the results are nearly
independent of the vector boson mass. But the bas-
ic conclusions about the single-particle energies,
which we discussed above, remain unchanged.

the limit E, -M, U', '«M, Eq. (60) reduces to
the usual interaction of the Thomas type.

Figure 6 illustrates the wave functions (spinors)
for "0obtained in the relativistic Hartree model.

Up to now free one-boson-exchange interactions
were used as input in a Hartree scheme to describe
the relativistic single-particle motion in nuclei.
But a realistic description will have to go beyond
lowest order OBEP and has to include higher or-
der ladder summations (e.g. , in the sense of Bru-
eckner Hartree-Pock theoryj. In the context of
this paper, we shall not touch these problems, but
rather make contact, as in Ref. 14, with an effec-
tive relativistic boson-exchange interaction intro-
duced by +alecka", who used a relativistic Har-
tree model of nucleons interacting via exchange of
(isoscalar) effective scalar and vector bosons
(without form factors) to reproduce the properties
of nuclear matter. The coupling strength of the
effective scalar and vector bosons is introduced
by two parameters

~61~cs =ps and cv =g
s

where M is the nucleon mass, while ms and mv are
the scalar and vector boson masses, respectively.
These parameters are adjusted to reproduce the
binding energy Ee/A = 15.75 MeV and Fermi mo-

3.0

&e/A

twev]= -2

2.5
— -10

8 fAv IFA Tf

-30

[VeVj

FIG. 7. Single-particle. energies g.ower section), root
mean square radius, and binding energy per nucleon
(upper section} of 0 as function of the mass ms of the
effective scalar boson mass, calculated in a Hartree-
Dirac model. Scalar and vector boson exchange para-
meters have been fixed according to %alecka (Ref. 13)
as in Eqs. (61) and (62). For the vector boson mass,
mv =783 MeV was used. . This figure is taken from Ref.
]4.
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&r0
ffm]

3.0

2.5

2.0-
3.5

I

4.0 45 m, /m„

-10

-50

lMeV]

FIG. 8. Single-particle energies gower section),
root mean square radius and binding energy per nucleon
(upper section) of '0 as a function of the mass m~ of
the effective vector boson. Again the parameters have
been fixed according to Walecka (Ref. 13} l see Eqs. {61}
and (62)]. A scalar boson mass of 550 Mev was used.

V. CONCLUSION

In this paper a relativistic Hamiltonian for nu-
clei has been developed, and the Hartree and Har-

Finally let us mention that the Hartree and Har-
tree-Fock procedures of Sec. III converge without
form factor. This is an important property, which
most of the nonrelativistic Hartree- Fock calcu-
lations do not have. In order to get an idea of the
effect of form factors in our Hartree scheme we
introduced form factors of Eq. (34) for both the
scalar and vector boson. Variation of the cutoff
parameter A between 500 and 1000 MeV lowers
the single-particle energies less than 10%. So the
results of the Hartree calculations are very insen-
sitive to form factors, if the cutoff parameters
are not too small.

tree- Fock equations have been. derived. The Har-
tree equations were applied to "O and "Ca nu-
clei. As input the coupling constants and masses
of relativistic (free) QBEP were taken. We were
able —surprising enough —to reproduce with this
very simple model the single-particle energies
and root mean square radii for "Q and Ca includ-:

ing the spin-orbit splitting reasonably well without
any free parameter. Form factors turned out to
be unimportant in this Hartree scheme.

Such Hart. ee calculations were also performed
by Miller, ' who fitted the coupling constants and
partly the masses of the mesons to reproduce the
binding energies and root mean square radii of
several nuclei as well as possible.

Finally we took the effective interaction of Wal-
ecka's theory of highly condensed matter. The
parameters of this interaction are again quite
close to the corresponding ones in the free NN in-
teraction. Therefore we obtained with this effec-
tive interaction similar results as with the OBEP.
On the basis of these results, namely the qualitat-
ive reproduction of single-particle energies al-
ready in the Hartree approximation, it might be
indicative that there should be a tendecy of cancel-
lation between higher order ladder sums and Fock
terms, if relativistic OBEP are used as a starting
point. The fact that such a one-boson-exchange
potential binds the nucleus already in the simplest
Hartree picture is quite surprising (see also Ref.
3); usually "strong core" interactions (such as
Reid s soft core potential) do not give binding in
lowest order. Such aspects are currently being
investigated.
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APPENDIX A: EXPECTATION VALUE OF THE HAMILTON OPERATOR

The expectation value of the kinetic energy for the Hamilton operator (30) yields'

dF. (r,)(T)=~2j,' dr, G, (r, ) MG, (r,)— + —"E.(r,)

i dG, ,(r,)
+F, (r,)

' + —' G„(r,) MJ. (r,)-
Ch,

(A1)
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with

j&, :=+(j,+ 2) for j,= l, + ~2 j

a, :.= (n, l)j,),

(A2)

(A3)

Yh expectation value of the potential energy, which originates from the direct term of the o-meson ex-
change, is given by

(V,&=2 —'m P g j 'j, ' JChCFU(im, „rr)[G, , (r ) F, '(r )][G, '(r)——F, '(r)].
a~ a2

(A4)

a2 is defined analogously to a„ furthermore,

Uz(im, r&, r&) —=jz(imr&)hz" (imr&),

where j~ and ]'2~" are the usual spherical Bessel and Hankel functions and r& (r&) is the smaller (larger) val-
ue of either x, or r2.
For the exchange term we obtain

2

(VE) +(j
4m

2
MG G". 2" 2 "2]/21 22

1 2

even

with

x [G, (r,)G, (r, ) —F, (r,)F, (r,) J (A6)

In an analogous way the contribution of the n meson is

(v,') = 0,

(A7)

(A8)

(VE) 3j-h Q g Q M ( 2 ~ 212(j1

lg+ l2+ I
Qdd

drds2U~il'. ,..r&, r& G, r, F, r, +G, r, F, r,

x [G, (r,)F, (r,) + G, (r,)F, (r, ) J.

One reason for the vanishing of the direct matrix element is that after summation over the angular momen-
tum projection quantum numbers m„or m„ the matrix element (A8) is zero. Another reason is the iso-
spin 1 of the m meson, since the isospin matrix element of the direct term yields

($1/2, jj. $1 2, jh/2 1 r2 $1/2h (h1~1/2, )h2) (A10)

For calculating the expectation values of the p- and co-meson exchange the interaction is divided into two
parts:

v'" (r)= v'" (r)+ v' (r)aj. a2 a~2 a2

with

(A11)
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2

V; ", (r) = ' (r, ~ T,) ", V,(1)r,(2)V,(1)r,(2) ——

2 exp —M' " ~ r
1)~,(2)~,(1)~'(2) —— "-'" — ~ = 1 (A13)

%ith this notation we get for the expectation values

(A14)

(A15)

These expectation values are zero because the p meson has isospin one. The second expectation value
(A15) is already zero after summation over one of the angular momentum projection quantum numbers m,
or m, . Therefore we conclude that

The remaining direct matrix element yields

(VD)=2- " m„g g j,'j,' dr, dr, Uo(im„, r&, r&) [G, '(r, )+F, '(r, )][G, '(r, )+F, '(r,)].
Qy C2

Furthermore, we obtain for the remaining exchange terms (k = p, w)

(V~)= —(2T~+ 1)—— Q g P M", j, ', I.'

l&+ l&+ L

eveQ

x [G. (r,)G, (r,)+ F, (r,)F, (r,)],

lg+ l2+ L

odd

x j' ~'
~

~" dr, dr, II,(iM.', ,r„r,)G, (r, )F', (r„)G. (r,)F, (r, )
2 —2

(~a —~a o

"G.,(" )&;,(" )F., (&.)G.,(" )I.

APPENDIX 8: INGREDIENTS OF THE HARTREE-POCK EQUATIONS

The expressions appearing in Eqs. (44) and (45) are given by

P,' (r, ) = -6m, j,' g I.' ' " dr, U~(im„r&, r&)G, (r,)F, (r,),
L odd

2 2 0

I". (~ )= 2( T, +i)m2, j,' Q i.'(-
L odd yQ Q Q
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W" &r, &!= +(2Tq +1)Q Q M j L
a2 L 2 -2

l1+ l2+ L
even

(r, ) dr, UI (i M,", , r&, r& }[G, (r,)G, (r,) + F, (r,)F, (r,) ]
E, (r,)

(k= o, (u, p) . (B3}

The minus sign is referred to as the o. meson. The prime on the summation sign denotes that the summa-
tion over a, excludes the value a, :

W;! '&, r~ = 3Q
g2 L

l1+ l2+ L
odd

j2 L '}

--.' of

x '2 ' dr, U~(iM;, , r&, r& ) [G, (r,)F, (r,) yE, (r,)G, (r,)],G, (r }

F, (r, )
4

W~ (E, , r,}= (2T~+1)-P g M,",j,'I-'E, (r, )
a2 L

l1+l2+L
Odd

(B4)

dr, U (iM~, , r, r,)F, (r,)G, (r,)

+ (I, I, X,y t'j, j, I, 'y-

(0 0 of E2 -2 0

&',UL iM. ,. .r&, X& I", Z, G, X, k=Z, P, (»)

V,' (G, , r, ) = -(2T,+1) g g M,' „j,'L'G, (r, )
Cp L

l +l2+L1 2
odd

p

APPENDIX C: NUMERICAL SOLUTION

OF THE RELATIVISTIC HARTREE EQUATIONS

In order to solve the Hartree Eqs. (51) and (52)
we have to use trial wave functions as a starting
point. "Woods-Saxon spinors" have been chosen
for that purpose. They are the solution of the fol-

lowing Dirac equation

dF, (r, ) +G, (r,)[-M —V (r,)+&, ]
1

K
F, (r ) =0, (Cl)
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-dG, (r,) +F', (r,)[M+ V (r,)+E.]
1

x-cV„(r)= V, 1+exp t (C3)

Here c is the root mean square radius of the
atomic nucleus, while t is the skin thickness of the
nucleus and V, denotes the strength of the poten-.
tial. The following parameters of the Woods-
Saxon potential for "0and "Ca (in parentheses)
are taken:

V, = —60 MeV (-85 MeV), c = 3 fm (4.41 fm),

f = 0.66 fm (0.6 fm) . (C4)

We shall now describe the numerical procedure
used to solve Eqs. (C1) and (C2). For this we in-
troduce the following abbreviations:

F'(r) = H(r) G(r) + —F(r), (C5)

G'(r) = D(r)F(r) ——G(r), (C6)

with

——G, (r, ) = 0, (C2)
1

where we have written to the mass a Woods-Saxon
potential:

&~, (~(2) = -36.0 MeV,

&j~(3]2) = -19.7 MeV,

~„(,(,)
—-19.4 Mev.

(C12)

The small spin-orbit splitting is of pure relativis-
tic origin.

At first the solution of the Hartree equations re-
quires a calculation of the Hartree potentials
W"""(r)with "Woods-Saxon spinors" as trial
functions. W"""(r) are integral functions of the
general form

F(x) = )'(x,) +f )'.(() d(.
0

They have to be calculated at the equally spaced
points x=x„=x,+nb (n=1, 2 ~ N). The calcula-
tion of the integral functions at the positions x„
for n= 2, . . . , N is performed at best by using the
Simpson rule. At the position x, the Simpson rule
is not applicable. Here a combination of the 8

rule and the Simpson rule is suitable":

(C13)

transformations:

G(r) = [D(r) ]"'g(r),
G'(r) + (K/r) G(r)

D(r)

With the Woods-Saxon parameters (C4) the follow-
ing single-particle energies for "0were obtained:

H(r) = M —E, + Vve(r),

D(r) = M + E, + Vv~ (r) .

(C7)

(CB)
I'(x,) = I'(x,) + 46 [17y(x,) + 42y(x, ) —16y(x,)

The two differential equations of first order are
equivalent to one differential equation of second
order,

+ — — D(r)H(r) — — G(r) = 0.D'(r) z l(l + 1)
Dr r

In order to eliminate the first derivative of G(r),
we transform

(C14)+ 6y(x, ) -y(x4)] .
Now we introduce the following abbreviations:

U"'= w; ~(w,"+w:).a (C15)

If the potentials U,"and U', ' are calculated, we
can solve the Hartree equations. (51}and (52} with
the same method that we used for the solution of
the Dirac equation with Woods-Saxon potential.
There is only one difference in the definition of
the quantities H(r) and D(r) For the so.lution of
the Hartree equations we define

G(r) -=[D(r) ]'~'g(r) (C10)

and obtain the following differential equation for
g(r}:

H(r) =M E+ V'&(r),

D(r) =M+E+ U~ '(r)

instead of

(C16)

g"(r) =
D (r) 3 D"(r) D'(r) x
2D(r) 4 D'(r) D(r) r

+ D(r)H(r) + ~ g(r) .l(l + 1) (C11)

This differential equation has been solved with the
method of Noumerov. ' From g(r) we obtain the
solutions of the Dirac equation by the following

H(r) =M —E+ Vvs(r),

D(r) =M+ E+ Vvs. (r)
(C17)

as we defined for calculating the solution of the
Dirac equation with Woods-Saxon potential. Then
the Hartree equations (51) and (52) are solved with
the method of Noumerov in successive steps.

This procedure converges in about ten iterations.
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Then the difference between the sums of the single-
particle energies for successive iterations is
smaller than 0.01 MeV for "0and 0.1 MeV for
'Ca, respectively. Furthermore, it is noted that

the results of the Hartree calculations are indepen-
dent of the trial wave functions. This was tested
by first taking "Woods-Saxon spinors" for "0
as trial wave functions. Another time the 1s(2 ),
lp(2 ), and lp(~ ) "Woods-Saxon spinors" for "Ca
were taken as trail functions. In both cases me
obtained the same results for the Hartree equa-
tions. Furthermore, we mention that it has been
possible to test the complicated program for the
numerical solution of the Hartree equations, since
there exists a relativistic Hartree calculation of
Miller. ' Miller has fitted the coupling constants
and partly the masses of the mesons in order to
reproduce the binding energies per nucleon, the

root mean square radii, and the single-particle
energies of several nuclei as well as possible. He
solved the relativistic Hartree equations with the
procedure of Hunge-Kutta while in this work the
method of Noumerov was used. Moreover, the
integral functions

+(&)=+(&)+f n"))«)c)8)
Xo

were calculated with different methods. Never-
theless Miller's results have been reproduced with
the methods described in this work. This supports
the correctness of both numerical procedures and
both computer programs.

Finally it is mentioned that the described numer-
ical method can be easily generalized to provide a
procedure to solve the Hartree-Fock equations.
This will be discussed in a forthcoming paper.

*Work based in part on R. Brockmann, thesis, Univers-
ity of Erlangen, 1977.
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