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Truncated space calculations of "exact" bound-state energies
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A method is developed for correcting truncated harmonic oscillator basis calculations of one-body bound-
state energies for the omitted matrix elements of the kinetic energy operator. The method is only applicable
when the potential energy operator is accurately represented in the truncated space. As an example of the
method, the Hartree-Fock potential for the oxygen nucleus is considered with the Tabakin nucleon-nucleon

potential, In a very large space this potential has only one bound s state, though solving the Schrodinger
equation in coordinate space yields two. The method gives this second bound state's energy quite accurately.

NUCLEAB STHUCTUQE Approximate eigenvalues, infinite matrix, truncated
hasis.

In many types of calculations it is convenient to
use a representation of discrete basis states and
instead of solving integral equations, diagonalize
finite dimensional matrices. Naturally one only
obtains, in this way, an approximation to the ex-
act solutions. It will be shown here that, under
certain conditions, it is possible to obtain an ex-
tremely accurate estimate of the difference be-
tween the approximate and exact solutions without
resorting to the diagonalization of larger matrices.

The integrodifferentia1, equations to be solved
are typically of the form

2
V'g (F}+f d v U(rF)g (F )'= c g, '(r), '

2m

Here U is the one-body potential, possibly non-
local, which may be derived from some two-body
interaction, as in Hartree-rock calculations, or
simply postulated.

The unknown wave function g„(r) can be expanded
in the set of harmonic oscillator states p (r),

q, (r) = Q C„y.(r).

Here n represents the. quantum numbers nljm and
It will be assumed that g~(r) is a state of sharp

ljm and 7, , as could be the case for a spherically
symmetric nucleus in a Hartree-rock calculation,
although this is not essential. Still, in principle,
the sum should contain an infinite number of terms
but in practice some truncated space of N states
of each ljm and v, is considered.

The Schrodinger equation then becomes a set
of N by N matrix equations, for each relevant
Ljm and 7„ in the usual way:

p h 0. C~=&~C~D =1,N,
e=1

where

(n (I (P) =(n( f+V)P)
r2d3~ + r +2

+ d / d p' &+rUr, z'

Diagonalization of these matrices will yield sets
of N eigenvalues and eigenfunctions, some of which
will be bound (negative «) and some unbound. The
solutions of the fu1.1 integrodifferential equation
will also be divided into two classes, some finite
(usually) number of bound states and a continuum
of positive energy states. The problem considered '

here is that of finding the "exact" energies of these
bound state solutions without leaving the N-dimen-
sional spaces. In this way one may readily test
whether or not a large enough space has been ut-
ilized, by calculating the difference between the
bound state energies and the corresponding eigen-
values in the truncated space. Of particular impor-
tance in scattering calculations is a knowledge of
just the number of bound states in a potential, for
this determines the value of the phase shift at
zero energy, assuming it is zero at infinite ener-
gy. This may not coincide with the number of
negative & states in an N-dimensional calculation,
and an example where there is disagreement will
be given.

The complete set of harmonic oscillator wave
functions can be used to define two projection op-
erators P and Q.' The first projects onto com-
ponents in the N-dimensional space used in the
matrix problem, while Q projects onto all other
components:

P=
~

)n( (n, Q= Q (n)(n(,
o=N+j

P+Q=l PP=» QQ=Q.

18 1505



W. H. BASSICHIS AND M. R. STR, AYER

(There are, actually, P and Q operators for each
space of states given by the same ljm and 7,.
Since the matrices do not connect these spaces,
only one will be considered in order to simplify
the notation. )

'The full Schrodinger equation which should be
solved instead of Eq. (3) is

g&PII I &c„=~,c„' (P=I, ),
n=l

whereas Eq. (3) can be rewritten as

(e, —PI P)PI» =PfqI»
and, by multiplying by Q,

(~„-qfq)q I» = qtP
I ».

(10)

The last equation can be solved, formally, for
Q I» and the result substituted into Eq. (10):

other applications these equations may be exactly
satisfied, possibly by the definition of the ap-
propriate U. ) Given these properties of U one ob-
tains from Eq. (7), by multiplying by P,

Q (P IPhP Io.) C~ =e„Cf (P= 1,N).
e=1

(6) q I»=, qfPI», (12)

Multiplying these equations by 'IP) and summing
over all P gives

(~„-PaP)P I» =Pfq — qtP I» . (13)

(h —e„)I»=0
as the exact equation and

(php- e„) I»=0
as the equation solved in the truncated spaces.

In many situations the matrix elements of the
potential part of h decrease very rapidly with in-
creasing n, the principle quantum number of the
harmonic oscillator state. For a short range po-
tential, for example, the matrix elements would
be (approximately) proportional to 1/n! For a
typical Hartree-Fock' potential, as is shown in
Table I, the diagonal matrix elements fall off fast-
er than I/n. Thus, if A is sufficiently large it is
approximately true that

Q UQ = PUQ = Q UP =0;

in other words the potential has no nonzero matrix
elements out of the space being considered. (In

At this point the advantage of using this particul-
ar basis becomes apparent. As is well. known, the
matrix elements of the kinetic energy operator in
the harmonic oscillator representatiori vanish un-
less all quantum numbers except the principle
quantum number n are the same in the bra and ket
and the two principle quantum numbers must either
be equal or differ by 1. Thus the only nonzero ma-
trix elements of the kinetic energy are

&nljm7', If Inljmr, ) =-t„„(l)=[2(n —1)+l+ 2)i ~

&nfjm7'. If 1~+ Ifjm~, &
=&.+ Ifjm~.

I

=t„„„(l)= [n(n+I+-,')P~'k(o

where ~ is the oscillator parameter.
Using this property, the right side of Eq. (13).

n sty y 5 &t

TABLE I. The Hartree-Fock matrix in the harmonic oscillator representation (Me V). For
those elements containing potential and kinetic energy contributions the potential matrix ele-
ment is given in parentheses. It is, then, apparent that the potential is well represented in

this truncated space. (The oscillator parameter used was +/mw=-3. 7 fm2. )

2s 3s 5s .6s

2s

-42.75
(-51.16)

-15.07
(-21.93)

-0.83
(-20.44)

-7.92

-0.16
(-12.37)

+19.80
(-11.02)

-1.82

-6.42

+ 10.38
(-7.78)

+35.34
(-6,69)

+ 0.62

-2.87

-4.99

18.77
(-5.01)

49.08
( 4 14)

+ 1.41

-0.94

-2.81

-3.50

26.10
(—3.29)

61.80
(-2.65)
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becomes

(»„-QfQ) ' I&+ 1) = Q a)Ii&

Then

I~+»=e.pai li&-
j~1 j,)e +1

and, for any state Ik&,

5~ „„=e„a~ Q-a, &f) Itli&(1- 5~ „).
jaN+1

(18)

To obtain the desired matrix element it is neces-
sary to determine only the coefficient a„., This
is, unfortunately, coupled to all the other a„with
i &N, through the above set of equations:

N 1( 1 f«1 «1) N&fN1 «2!

0 = a«~(&„- t«~ «„)- a«„ t «~ «.,—a«~ t

('19)

0=a«~(e„- t»., «.,)- a« t» N
—a„ t«„«„,

~ ~ ~

One can obtain a sequence of approximate solutions
for a„„by terminating this infinite set of equations
at some point and setting the last a, equal to zero.
This sequence is

(0) 1
J)r+1 —t~, N,

a (&)—
8+1 g2

~8+1 N+2
tN+1, N+1

tE+Re EA

(20)

Iz&f. ,g)&x+1I, — I~+1&f„.,(f)&xI».
1

(15}

The needed matrix element of (c„-QtQ) ' can be
evaluated by expanding (c„-QtQ) ' IN+» in a com-
plete set of states, Ii&:

with

& ~l ~„l P& =5.„5,„f„',.„a„„(.,) . (28)

This is not a simple eigenvalue problem because
of the dependence of a„,on the eigenvalue. One

method of solution is to form ~„for some q„,
diagonalize @+~„and then vary the input q~ until

an eigenvalue of g+ ~„coincides with the input
Since this only involves diagonalization of

small matrices, the calculations can be carried
out in a very short time. The accuracy of the re-
sultant &~'s is determined by the accuracy of

a„„and since the error in a„„can be made arbi-
trarily small, the negative energy eigenvalues of

the infinite dimensional matrix can be determined,
to any desired accuracy, in the N-dimension
space.

The method will be applied here to the s-state
Hartree-rock matrix calculated for "O using the

Tabakin nucleon-nucleon interaction. ' The cal-
culations were performed using six harmonic os-
cillator states for the s-state space and the re-
sulting 6x 6 Hartree-rock matrix is shown in

Table I. The eigenvalues of this matrix are given
in Table II. Only the negative energy state, at
-48.51 MeV, corresponds to an occupied orbital.
The other eigenvalues are of use in numerous
other types of calculations of Such quantities as
excited state spectra, perturbation corrections,
etc. The fact that the second lowest eigenvalue
has a positive value, +1.22 MeV, has been consid-
ered a deficiency of the Tabakin interaction. This
manifests itself, .in scattering calculations, in the
difference between the phase shift at zero and in-
finite energy, which is, according to Levinson's

theorem, equal to the number of bound states
times m. It was, therefore, disturbing when this
difference was actually calculated4 and found to be

2g, rather than w.

To study this it was necessary to write a com-
puter program to solve the bound-state SchrMin-
ger equation. It was then found that, defining

a (2)
M+1

N+i, &+ tN+l-, ++2

t~ 2.~*3
~~- t&+3,N+3

V)r, r')= g g„")F)&nl Ulm')y„;)r'),
n,n =&

(24)

(~ -Pap)PI&& =
I N&t», »,1a

or, in matrix notation,

(21)

&~l(~+~»)l p& & pl~&&=.,&~l»&,

(22)

This sequence converges quite rapidly for &~s 0,
whhich is the region of interest, so that one may
readily compute a«„(&~) to arbitrary accuracy.

Equation (18) can now be written as

there were, in fa('.t, two bound states. The ener-

2s 3s 5s

-48.51 + 1.22 +9.62 + 25.'22 + 50.38 + 84.52

TABLE II. Hartree-Pock eigenvalues (MeVj. The fact
that only one has negative energy does not mean there is
only one bound state. In fact, there are two.
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FEG. 1. The convergence of a~+). The continued fraction can be terminated at the ith term to obtain an approximation
for az, &. The convergence is sufficiently rapid for any energy not positive because even the 5000th approximation can
be calculated in a fraction of a second.
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FIG. 2. Graphical solution of the non-linear matrix equation. The intersection of the dotted and dashed lines is at
the energy of a true bound state, according to the method developed here. The solid line is drawn at the eigenenergy
resulting from a numerical solution of the full Schrodinger equation. Any difference between the exact and approximate
energy can be reduced by using more terms in the calculation of a~+&. The error for the case shown above is less than

of 1%
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gies of these states were found to be -48.514 and
-0.0244 MeV, so that the lowest energy was very
well approximated in the 6x6 space but the second
lowest was not.

Thus the quantity t„' «,a&«'~, was calculated, for
various values of q~, for i large enough to obtain
convergence. The results are shown in Fig. 1 for
three values of q~. The slowest convergence is
for the case q~=0 but since the evaluation, even
for i=4000, takes only fractions of a second this
presents no problem. For q&=-48, on the other
hand, a~, is determined to within one part in a
million with just i=20. %ith these various esti-
mates of ~~, the matrix g+g„ is diagonalized in
the 6x6 space, One then plots the resulting eigen-
value as a function of a„+, and on the same graph
plots the a„„asa function of the input q~. The
intersection of these two curves represents the
value of &„ for which the input to QN y will match
the eigenvalue of fj+g„. This plot is shown in
Fig. 2 along with the exact solution of the Schro-
dinger equation. As is apparent from the figure, '
the method reproduces the exact energy -0.0244
MeV quite well. The lowest s-state energy was
also well reproduced by the method and agrees

with the 6x6 answer.
The method was also tested for the p-state and

d-state Hartree-Fock matrices and it works equal-
ly well in those cases.

Summary

A method has been suggested for obtaining the
"exact" negative eigenvalues of an infinitely di-
mensioned matrix in a truncated basis. The only
requirement for applicability is that the full matrix
differ from the truncated matrix by a tridiagonal
matrix, at most. As an example, the bound states
in a Hartree-Fock potential were calculated using
the method and they coincided quite precisely with
the eigenvalues of the full Schrodinger equation.
In addition. to the accuracy of the results, the
method has the advantage of only involving small
computations.
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