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Results obtained with the g-matrix are compared in detail with variational calculations, by restricting both
procedures to an oscillator basis consisting of the same maximum number of oscillator quanta. Three-body
correlations are included in the g-matrix calculation by extending the basis of the hole states to include

additional oscillator functions. The resulting formalism is similar to the Bethe-Faddeev equations, but the
.correlated wave function is presented in a way to make comparison with variational wave functions obvious.

This comparison suggests a choice of potential in the particle states that yield a very small three-body
correlation energy in H. Applications include the Sussex interaction, and a singular short-range repulsion.

NUCLEAB STBUCTUBE g-matrix and variationsl calculations, 3H, Sussex inter-
action, 6-function potential.

I. INTRODUCTION

The calculation of the properties of complex nu-
clei with realistic nucleon-nucleon interactions is
a fundamental problem of nuclear theory. " A
difficulty in most methods of calculation lies in
determining the accuracy of the final results. Of
course one generally compares the theoretical val-
ues with their experimental counterparts, but then
one is left with the dilemma of determining whether
any discrepancies are due to the existence of many-
body forces, relativistic effects, failure of the
two-body potential, or inadequacy in the calcula-
tional procedure. Clearly one must have some
sort of reasonable estimate of the accuracy of the
calculation itself before one can begin to speculate
on other sources of discrepancy.

The work reported here represents an attempt
to test criteria for the accuracy of the Brueckner-
Bethe-Goldstone" g-matrix method in very light
nuclei. This paper will deal only with the simplest
of complex nuclei 'H.

The most reliable way to check the accuracy of
a calculation is to have an exact answer available
for comparison. Analytically soluble potential
models of the three-body problem are restricted
to such elementary forces, however, that they
yield little insight into realistic problems.

The procedure to be used in this paper is to em-
ploy realistic forces, but truncate all calculations
in a vector space which includes only a certain
maximum number of oscillator quanta. A varia-
tional calculation in this space will then be re-
ferred to as if it were ag "exact" result; with which
one can compare ¹matrix and perturbatjon cal-
culations subject to the same truncation,

When this comparison is unsatisfactory, three-
body correlations must be included in the g-ma-
trix calculation for improvement. A formalism to

accomplish this (which is similar to that of Bethe
and I'addeev4 ') is presented in Sec. II.

(2.1)

can be divided into a set of single-particle opera-
tors

H=g h, ,

i'll

and a two-particle interaction

Y=-Qvv

(2.1a)

(2.1b)

In this section we shall take h,. to be the simple
harmonic oscillator Hamiltonian. Little use will
be made of this assumption, however, since we
will later wish to consider the possibility of a
better single-particle potential.

The wave function is now taken in the form

4'= 4+
f&j

(2.2)

4 is an appropriately antisymmetric function con-
structed from oscillator orbitals, which is most
conveniently written in bra and ket notation

, . ni

Each state ~n) is an eigenfunction of Hc

(2.3)

(2.3a)

with total oscillator quanta n. All other quantum
numbers (such as spin, isospin, orbital angular
momentum, etc.) needed to specify this antisym-

II. FORMAL COMPARISON BETVfEEN THE VARIATIONAL
METHOD AND THE g MATRIX

The Schrodinger equation for the intrinsic nu-
clear system
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metric function are implied, but not written ex-
plicitly. The sum in Eq. (2.3) is taken only up to
some maximum number of oscillator quanta N, .
If Kp were taken to be infinite, we would have an
exact formulation of the problem.

The functions g,, will be written as

f)f&Ep

(2.4)

These states la(ij)) are also eigenfunctions of Ho

Equation (2.5) can be rewritten in a more conven-
i;ent form:

(2.4a}

with total oscillator quantum number u (all other
quantum numbers are implied). The difference
ln) and la(ij)) is that the latter are not totally
antisymmetric. Ia(ij)) is actually a simpler basis
vector composed of a product of an antisymmetric
function for particles ~ and j and a second function
antisymmetric and all other particles, e.g. ,

&q "'q~j~(1 2}&=&q q ln &&q "'q~l~ & (2 4b}

(n, + n, = o), so that there is no symmetry restric-
tion implied above between particle 1. (or 2) and
particles 3 to &. Note that the ij designation is
not needed in (a lk) because all pairs of nucleons
are equivalent.

Using this prescription for the wave function
and multiplying Eq. (2.1) from the left by (k I, one
finds

+ Q 5~ ocj Q
3&f a

{2.9)

(2.10)

with

&„+ ~ (~j)&& (j)~ (2.11)

Equations (2.6) through (2.9) form the basic re-
lationships of the method to be tested in this paper.
Mathematical solutions are elementary since Eqs.
{2.6) and (2.9) form a linear set of equations in
(n IC') and (a I+) which must be solved self-consist-
ently with the expression for the energy in Eq.
(2.8), retaining the normalization condition in Eq.
(2.7).

To understand the relationship with other meth-
ods it is instructive to introduce the two-body

g matrix

In the second line of Eq. (2.5) one neglects terms
I&e (k lv, & Ix, ,~) with ij wi'j '. This approximation
will be made consistently in the remainder of this
presentation and discussion is left until the end of
this section. Multiplying Eq. (2.1) by (n(ij) I, one
obtains [for consistency with the previous approxi-
mation one must consider the jn(ij)) to be orthog-
onal, (o.(ij) ja(i'j')) = 6, ,,6&&.]:

Equation (2.6) is easily seen to be equivalent to
the Bethe-Goldstone equation

(2.12)

Equations (2.8) and (2.9) can be reexpressed in
terms of the g matrix

(2.13)

(2.14)

(2.6)

&e Ic»= &g ln&&s Ie&=1,
na

the energy is given by

(2.7}

+ A sj 5~~ Q fjf Q

Multiplying Eq. (2.1) by Q I, and imposing the
normalization condition

Equations (2.13) and (2.14) take the form of a
variational calculation in which g,&

has replaced
the interaction v, , . Of course this replacement
results in the loss of the variational property of
the calculation, so that 8 is not necessarily an
upper bound on the true eigenvalue. What one
actually has above is an "extended g-matrix for-
malism. " The "extension" is in the sense that the
first-order wave function 4 can be a linea, r com-
bina, tion of oscillator states rather than a single
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determinant. Equations (2.13) and (2.14) [or al-
ternatively, Eqs. (2.6) through (2.9)] yield a simple
prescription for the linear combination through
solution for the (n I4). In the present form the
method is as easy to apply to degenerate as well
as nondegenerate first- order configurations. "

The formalism described above is fully equiva-
lent to solutions of the Bethe-Faddeev equation in
a truncated oscillator basis." One should note
that although the same results will be obtained,
intermediate definitions are different. In partic-
ular the Pauli operator (Q,.~) is defined in Eq. (2.11)
to include oscillator states only with e &N, . In
solving the Bethe-Faddeev equations one includes
states of lower values of Ot, and then directly ex-
cludes redundant diagrams of the type

0 gi2 gi2 0

This latter procedure is more useful when one
solves the Bethe-Goldstone equation in configura-
tion' ' (or momentum) space. In this paper, how-
ever, we will deal with a truncated set of vectors
in a matrix representation, "so that the greatest
mathematical convenience is provided by Eqs.
(2.6) through (2.9). These, in turn correspond to
the g matrix defined by Eqs. (2.10) and (2.11). If
C consists of only a single function (with minimum
oscillator quanta) one has the usual g-matrix for-
malism (with starting energy E)

There are bvo approximations inherent in the
above formalism:

(i) The vectors Ia(ij)) are not antisymmetric
with respect to interchange of all pairs of nucleons.

(ii) Only the nucleons i and j are active in
I tx(ij)),

so that one neglects cross terms like
(a(12)

I "xs I+'(12)).
Both approximations are directly related to

truncating the sum n at N0 in Eq. (2.3). The errors
expected from either approximation individually
may be expected to be substantial. It has been
demonstrated' that these errors cancel each other
very sharply as N, increases. The proof, however,
depends on perturbation theory, and may break
down when the perturbation expansion fails to con-

, verge.
In addition, this cancelation must depend. quanti-

tatively on the two-body interaction which is em-
ployed. The purpose of this paper is to make
quantitative tests of the accuracy for interactions
of a realistic character.

III'. TENSOR FORCES AND - U INSERTIONS

An appropriate form, for the intrinsic nuclear
Hamiltonian is obtained by taking

H0 —gK(d Q Q) + g) ) —H (3.1)

V=v -U, (3.la)

where

(3.1b)

and v" is the nucleon-nucleon interaction operator.
There are three outstanding possible sources of

difficulty in attempting accurate solutions for the
energy eigenvalue, when realistic nuclear inter-
actions are used:

(i) The nuclear force retains a strong short-
range component, which forces the wave function
toward zero at small nucleon-nucleon separations.

(ii) The tensor component of the nuclear force is
quite strong, and of comparatively long range.
This may cause substantial three-body correla-
tions.

(iii) The matrix elements of U are large and in-
crease in magnitude as the number of oscillator
quanta increases. These terms are curious in
that they arise from the way the problem has been
formulated rather than from the physical nature of
the nuclear forces. One uses an oscillator basis
in this problem primarily because of their analyti-
cal properties (particularly the separability of. the
center of mass). The tail of the oscillator orbitals is
Gaussian rather than the expected exponential char-
acter. The -U term in Eq. (3.la) corrects the shape
of the orbitals as it mixes in higher oscillator con-
figurations, and may give rise to large three-body
correlations due to the divergent character of its
matrix elements in a perturbation expansion.

In this section we shall perform a convergence
test by calculating 'H with the Sussex interaction. "
This interaction should present us with all facets
of a realistic nuclear force except for the short
range repulsive core, which will be examined in
Sec. IV of this paper. This interaction is conven-
ient mainly because it is in the form of a set of
oscillator matrix elements, and it has already
been demonstrated"' that it yields a reasonable
binding energy for Os-shell nuclei when only a
modest number of oscillator quanta are allowed
to be excited in the calculation.

Oscillator basis states for 'H which are totally
antisymmetric and properly invariant under trans-
lations are constructed employing the Jacobi co-
ordinates
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-E (MeV) 3.49
% error 25%

3.68
21%

4.31
8%

4.63
1%

4.67

TABLE I. Calculations of the energy eigenvalue of 'H with the
Sussex matrix elements [at b = 1.6 X 10 ' cm]. All results were
obtained with N = 8, and propagator e '.

words the energy denominators of the propagator
from the g matrix. These terms have long been
suspect, """and relate to the well known problem
of selecting an appropriate single-particle energy
in the excited particle states.

The diagonal term in Eq. (2.9) (that is the coef-
ficient of (g f|iI&) is

(3.4)

x = (2) '~'(q, —q, ),

y=(6) '"(q, +q. —2q. ).

(3.2a)

(3.2b)
E —c —&a(ij) fv, ~ fn(ij)&. (3.5)

while the diagonal term of Eq. (2.6) (the coefficient
of &o. f0&) is

The prescription for this construction has been
previously given in detail by Moshinsky" "and
his collaborators. The basis states fa(ij)& are
trivial to construct:

&q,q q, la(12)& = &x fnlsj r7. &&y fn'l's'j'v''7, "&, (3.3)

Vector coupling of j and j' to —,
' (and r, 7' to ~) is

implied above. It should also be noted that these
functions are translationally invariant, and anti-
symmetric under interchange of particles. 1 and 2.

Table I presents a straightforward example with
the Sussex matrix elements at b =1.6x 10 "cm.
All results in the table were obtained with X=8 as
the maximum number of quanta included in the g-
matrix computation, while N, is defined as the
maximum number of quanta in the sum on the
right-hand side of Eq. (2.3). When N, =8, one has
a completely variational calculation including all
S and D states up to eight oscillator quanta. The
eigenvalue obtained (E = -4.67 MeV) seems to be
in reasonable agreement with the value E = -4.41
MeV obtained by Jackson and Elliott" [with N = 8,
5 =1.5 x 10 "cm], with a variational calculation
including only certain selected [3]S and [21]D
states.

The value E=-4.67 MeV may then be regarded
as a "precise" result in Table I, just for'purposes
of comparison. If the g-matrix calculations pre-
sented, there worked perfectly, they could do no
better than reproduce this value for the energy.
What one actually sees can be labeled no better
than a moderate success for the g-matrix method.
For N, = 0, one is a bit more than 1 MeV (25%)
short of the full binding energy. As No increases,
one steadily approaches the precise result, with
the major correction coming at N, =4.

As one performs this calculation, the major
source of error in the g matrix becomes very
clear. The primary difference between the energy
matrix generated by Eqs. (2.6), (2.8), and (2.9)
and the actual energy matrix of the variational
method lies in the diagonal terms; or in other

&n le
'

f
n& = (z —z )

'

=(z- &e flf,„+a„fa&) '. (3.6)

The &u(ij) fv, , fo, (ij)& terms are included in the two-
body interaction but not the propagator. H,„and
H„are the components of H, =Ho, +H„, corres-
ponding to the Jacobi coordinates of Eqs. (3.2a)
and (3.2b). Now to correct the propagator for the
two additional -U, , insertions one simply replaces
the harmonic oscillator potential insertions in the
energy denominator equal by zero for the inactive
pairs of nucleons. The clearest way to construct
this is to define a new propagator simply as

&~(») I(") ' I~(»)&

= [E —&tx(12) fIf +If„-U„—U„ fo. (12)&] '.
(3 7)

The two propagators e and e ' are compared in
Table II. All g-matrix calculations in this table
were performed with NO=0. The g-matrix calcu-
lations are then displayed where only a certain

There is no difference in replacing &„by c, but
the difference between (n

f
V fn& and &o.(ij) fv, , fo.(ij)&

is very great. The V interaction defined by Eq.
(3.1a) retains the —U term, which corrects for
using a harmonic oscillator potential in H, . These
-U insertions increase in magnitude in direct pro-
portion to the number of oscillator quanta; and, in

effect, nearly cut the effective value of c„ in half.
But in the particle states (n) one is including only
one single-particle insertion for the triton instead
of three, and consequently one calculates the g ma-
trix with energy denominators in the propagator
which are far too large in magnitude. This con-
stitutes the primary error made in the g-matrix
calculations of Table I.

The error is easily corrected. The energy de-
nominator used for the calculation of Table I could
be written
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TABLE II. Calculations of the energy eigenvalue of H (in
MeV) with the Sussex matrix elements [at b = 1.6 X 10 ' cm].
Comparison is made between the variational method, the g-
matrix method with two different propagators defined in the
text (all with %0 = 0), and two varieties of second-order pertur-
bation theory, ' as a function of W.

Method

Variational

g mat'rix: e'
e

second order perturbation
theory: I

II

—1.42
—1.51
—1.05

—1.95
—1.56

-3.61
-3.34
-2.38

-4.00
-3.54

-4.29 -4.67
-4.09 -4.64
-3.04 -3.49

-5.05 -5.70
-4.55 —5.19

' Perturbation method I utilizes the intermediate states )n(ij) &,
while method II employs the properly antisymmetric intermedi-
ate states (n ).

z =e, +(0~v~0)+ g l(olv, , la(ij)) I'

e, i&/ 0 a
(3.6)

maximum number of oscillator quanta N are in-
cluded in the entire calculation', and at each stage
are to be compared with a variational calculation
performed with the same number of oscillator
quanta. The propagator with e ' is seen to yield
a much improved accuracy over the propagator
with e. In no example was agreement poorer than
a 6%%ua error, and this was for N = 2 where one ex-
pects maximal errors for the method. At N= 8 the
new propagator yields agreement to within a I%%uo

error with the variational result.
Perturbation theory results are also included

in Table II for comparison. There are two ways
to do the perturbation calculation. One is to use
the ~a(ij)) as the intermediate states

force become much more important than those of
the central (central forces yield very little addi-
tional energy for N& 4), and perturbation theory
will badly overestimate the binding energy.

H, = —',}I&u (p,'+q,.') -H„
al

(4.1)

perturbed by a repulsive &-function interaction

v=v, +6(q, —q, ).
f&j

(4.2)

There are several reasons for selecting the ~-

function interaction. First, it has a simple analy-
tic character with regard to calculations done in
this paper. Matrix elements of the two-body inter-
action, in oscillator states of the relative motion
x [defined in Eq. (3.2a}], may be expressed in
terms of-the Talmi integrals" "

IV. SHORT-RANGE REPULSION

'The use of the Sussex interaction in Sec. III
should cover all difficulties encountered with re-
alistic nuclear forces, except for the strong short-
range repulsion. This latter component is certain-
ly lacking from the Sussex matrix elements, and

we shall perform a separate test on it in this sec-
tion. One could just add a short-range term to the
Sussex interaction. Since there seems to be no

way to fit such a term either to scattering or bound
state data without diminishing agreement with ex-
periment, such a procedure would not seem to be
advisable. Besides, some interesting information
will be obtained by isolating the repulsive core.

The example chosen for illustration is one of
three nucleons in an oscillator well

the other to use the fully antisymmetric states ~n)

~ (0
(
V

)
0) + I (0 I V In

n 0 ~0-~. (3.9)

In both cases the Rayleigh-Schrodinger perturba-
tion method was applied up to second order and
all states up to the maximum. number of oscillator
quanta (N) were included.

Perturbation method I (using
~
a(ij)) yields uni-

formly mediocre agreement with the variational
calculation. Method II (using ~n)) seems to do con-
siderably better. Note, however, that method II
grows poorer for larger values of ¹ The agree-
ment of at lower values of N is actually spurious.
The higher order perturbation corrections are
attractive for the central interaction and repulsive
for the tensor force. At low Ã the resulting can-
cellation improves the overall accuracy. At larg-
er N, however, the contributions of the tensor

(p„,(x) ~v„(x)
~ p~, ,(x)) = QB(nl, n'I', p)I, (4.3}

where

I, = 2 [I'(p+ -,'}]' v„x"'exp(-x')dx,
0

(4 4)

and the coefficients B(nl, n'I', p) are easily derived
in closed form. " For a ~-function interaction,
only terms with p = ) = $' = 0 are needed, a«one
has

B(no, n'0, 0) =2 "+ '(ntn'I) '[(2n+1)l(2n'+1)l]'

(4.6)

The main advantage is that the properties of the
interaction are summarized in just one parameter,
the Talmi integral. I,. All other Talmi integrals
are zero.

The second reason for choosing the & function
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is that all orders of perturbation theory above
first order are infinite. Thus one can test the con-
vergence of the g-matrix method for a case where
perturbation theory will clearly not be convergent.

Gf course the 6-function interaction is just a
model of the nuclear repulsive core. One could
select a repulsive Gausssian

TABLE III. Energy shifts, hE = E —3hu —3IO, for the 5-
function interaction with strengths Io =

3 Au and Io = A~.
Values of hE calculated by the variational method, g-matrix
method (with No = 0), and second-order perturbation theory are
presented for comparison. N is the maximum number of oscil-
lator quanta allowed in each computation, and hE is tabulated in
units of fice.

v» = V,(1+&')' ' exp(- ~'x') (4.6) N Variational g matrix
Perturbation

method I
Perturbation

method II

so that

I„„=(1+n') 'I„. (4.6a)

For a half width n &7 one would obtain approxi-
mately the same results in the calculations pre-
sented in this section. The only significant prop-
erty of the & function used here is that it acts only
in relative S states with all Talmi integrals other
than I, negligible.

Some sample calculations are shown in Table
III. Owing to the independence of the Hamiltonian
on spin and isospin, only the orbitally symmetric
[Sj S states are needed in the variational calcula-
tions in this table. The g-matrix calculations in
this table are all performed with N, = 0. One can
then directly compare the g-matrix calculation,
done with a maximum number of N oscillator
quanta, with a variational bound in the correspond-
ing vector space. Second-order perturbation cal-
culations using the (n(ij)) (method I) and ~n) (meth-
od II) are also presented for comparision. In order
to give a clearer picture of the various methods,
only the energy shift due to configuration mixing

E —3g(d —3Io (4.7)

is tabulated.
For I,= 3+~, the g-matrix calculation reproduces

the variational result with remarkable accuracy.
Poorest agreement is found at the lowest values of
N, as predicted. Perturbation theory, on the other
hand, becomes progressively worse as N increases
One should be reminded that either second-order
perturbation method will behave like ~ '~' for
large N, and this is not a convergent series.

For Io =5+, agreement between the g-matrix
and the variational method is not as good. At N=2
the g matrix yields a 20% error. As N increases
the accuracy of the g matrix improves rapidly;
yielding only a 5% error at N= 8. Perturbation re-
sults are now absurd. One has an obvious bound
4E &- 3@~, and this limit is already passed at,
N= 2 by perturbation method II.

The case with I, =@(d is interesting because now
we can see how extending the basis (N, ) will im-
prove the approximate eigenvalue. Table IV dis-
plays &E as a function of N, and ¹ The diagonal

Io 3 Au (b,E = E —4 hu).

hE/hm

2
4
6
8

-0.30
-0.36
-0.41
-0.46

-0.28
-0.37
-0.40
-0.45

-0.25
-0.41
-0.53
-0.63

-0.37
-0.55
-0.68
-0.78

Io = fin(dE=E —6hu)

b,E/Au

—1.58
—1.95
-2.02
-2.08

—1.89
-2.07
-2.13
-2.18

-2.25
-3.66
-4.75
-5.67

3%37
-4.97
-6.09
-7.02

TABLE IV. Energy shifts hE = E —3Am —3 Io, for the 5-
function interaction with Io = fin. Calculations are performed
with the g-matrix method in an extended basis [using Eqs. (2.6),
(2.7), (2.8), and (2.9)], as a function of N and No.

N0 N

—1.89
—1.58

-2.07
—1.95
—1.95

2 % 1 3
-2.07
-2.03
—2.02

-2.18
-2.14
-2.11
-2.09
-2.08

terms of this table (N=N, ) represents variational
calculations. As one reads down any column of
this table one sees how the g-matrix calculation
approaches the variational result as the basis is
extended. Note that the change in 4E when one
goes from Np 0 to Np 2 appears to always be at
least indicative of the magnitude of the error at
N, = 0, and that an accuracy comparable to the case
where I, 3@47 is generally obtained at least by
No =4.

How does the strength of the repulsive interaction
tested here compare to that in realistic nuclear
forces'P Perhaps the best basis for comparison
is to examine the wound integral:
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4 —4 =

%can

=0.04 for I, = 3A(d

= 0.10 for Ip= Sco, (4.8)

where the quoted numbers correspond to N, = 0.
For realistic interactions one normally finds a
wound integral on the order of 0.02 in the 'Sp

state, ""so that the case I, 384) appears to be a
reasonably strong interaction. An alternative way
to judge the strength at I, 35(J0 is to note that it
will yield nearly identical results (to better than
1%) to a repulsive Gaussian [Eq. (4.6)]with range
parameter 0.2 x 10 ' cm and maximum height
-2830 MeV, if b is chosen to be 1.6(10 '3) cm.

It is also interesting to note that

82
(4

~

—@v, ~C)= 0.03 for Io= —,K&

= 0.16 for I, = Ace. (4.9)

The numbers in Eqs. (4.8) and (4.9) seem to bear
out the idea' that a, large value for s'g/sE' indi-
cates poorer convergence. A precise quantitative
criterion relating the magnitude of the second de-
rivative to the size of the error in the energy is
unfortunately lacking.

V. CONCLUSIONS

[appearing in Eq. (2.6)] is simply not nearly as
large as

(n/ Vfn) (5.2)

[appearing in Eq. (2.9)], because in the latter the
multiparticle effects are coherent and the rear-

Comparison of the g-matrix and variational cal-
culations, both performed in a basis with an iden-
tical maximum number of oscillator quanta, demon-
strates that the g-matrix procedure is capable of a
remarkably high degree of accuracy. The most en-
lightening way to obtain a general idea of how much
accuracy can be anticipated in a particular problem
is to discuss where the difficulties can be expected.

In al the examples tested in this investigation
the difficulties appeared to originate from the diag-
onal terms in Eq. (2.6). This has already been
emphasized for the Sussex interaction, where a
simple alteration of the g-matrix propagator cor-
rected the difficulty. A similar problem arises
with the 5-function intera. ction. It is not so severe,
but neither is it so easily corrected. The point is
that

&n iv„ fn&

rangement energy is also included. The difference
is quite substantial at N=2, as one can clearly
see in Table IV. The error diminishes rapidly
for increasing N, and appears to be very moder-
ate for a realistic strength of the interaction. It
will tend to be more important, however, in a
heavier nucleus.

There are several remedies for this deficiency
when it becomes sufficiently important. Beeker,
MacKellar, and Morris" introduce an additional
parameter into the propagator which produces a
uniform displacement in all diagonal terms. Al-
though this will improve the average value of the
energy denominators, a detailed comparison of-
Eqs. (2.6) and (2.'9) shows that the energy shift
should be variable depending on the state. A better
prescription, iri a fully Bruecknerized formalism,
would be to employ the partial occupation probabil-
ities introduced by Brandow.

There is a straightforward way to correct the
energy denominators within the context of the pro-
cedures employed in this paper. Simply extend
the basis (increase N,). Since the discrepancies
diminish rapidly as a function of N, it is unlikely
that one will be forced to make N, very large. Of
course, the value of N, required will depend on
the interaction one is working with, the physical
system under investigation, and the accuracy de-
sired.

In any case, it appears that one should extend
the basis at least to N, = 4 as a check on the accur-
acy of the approximations. In all examples tested
in this investigation, such a cheek gave a clear in-
dication of the error incurred by truncating to
Np 0, and if Hp and V ar e p artitioned in an appr 0-
priate manner, the results at N, ~ 4 were quite
accurate. It is also quite likely that such a pro-
cedure will reveal a prescription for the energy
denominators that will yield satisfactory results
at N, = 0, as in the example of Sec. III.

Extension of the basis will be limited in practice
by the dimension of the vector space defined by
the states

~
n) in Eq. (2.3). In the very light nuclei

(A ~4) this presents little problem. Even in nu-
clei as heavy as "O this appears to be fe-asible.
Application to heavier nuclei will probably depend
on one's ingenuity in making a further truncation
of the basis. Reasonable possibilities for such
truncations are well known. For example, in 'H
one could neglect all P states and [111]S states
without modifying the results significantly. ' Even
the [21] S states can be suppressed without serious
complications. Since such truncations were not
found to be needed in the present work, however,
we will not discuss them in detail here.

As a further illustration of the use of the formal-
ism, the g-matrix calculation for the Sussex inter-
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action was extended to N = 14, using the energy de-
nominator e' defined by Eq. (3.7). At N, =O, the
eigenvalue for 'H was estimated to be -5.31 MeV.
Extension of the basis to Np 4 increased the bind-
ing energy by only 0.03 MeV. Clearly one has not
yet reached convergence as a function of iV. Im--

portant matrix elements needed to increase N are
lacking. In addition, one is now approaching the
point where m-meson production is important in
analysis of the scattering data, and relativistic
effects may become more significant.

The simple g-matrix calculation is adequate to
demonstrate that the Sussex interaction yields a
reasonable binding energy for the triton, but that
more work must be done to obtain quantitative
agreement with experiment. In addition, since the
discrepancy with the experimental value is about
3 MeV, a more exact (and much more difficult)
variational calculation is not warranted.

Are there any restrictions on the two-body force
one employs in this method? If the perturbation
expansion for the interaction converges, then this
method must converge also. This is a sufficient
condition, however, and clearly not a necessary
one. Application to the 5-function interaction was

quite successful, and this interaction leads to a
divergent perturbation series. The only criterion
available here is a detailed comparison with the
variational method, and this may not be practical
for heavy nuclei. A rigorous necessary condition
does not appear to be yet available in a simple
form

Three-body forces may also be important in de-
termining the triton binding energy. " One import-
ant advantage of the extended g-matrix formalism
is the straightforward way in which many-body
forces cari be incorporated into the calculation. No

effort was made to include them inthe present in-
vestigation, however, simply because of the obvi-
ous uncertainties in the details of their nature.

The author plans to extend this work to calcula-
tions on 'He and "0 in the near future. The major
problems to be considered in these calculations are
the connection with the Brueckner-Bethe-Goldstone
energy denominators, and additional truncations
of the basis.
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