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A coupled-channel computer program has been used to calculate dispersion corrections to elastic and
inelastic electron scattering from ' Sm and ' Er arising from the virtual excitation of some intermediate
states in the ground state rotational band. Data from recent experiments on these nuclei have been analyzed
using both phenomenological and Fourier-Bessel forms for the transition charge densities. The inclusion of
dispersion corrections in the analysis was found to affect the extracted nuclear transition charge densities at a
level comparable to other sources of uncertainty. These dispersion corrections did not remove the
discrepancies existing between these experiments and the predictions of microscopic theories.

NUCLEAR REACTIONS Sm(e, e' ), arid Er(e, e') calculations, coupled-chan-
nels, 35 MeV&E& 350 MeV. Dispersive effects on elastic and inelastic cross sec-

tions and on extracted nuclear shapes.

I. INTRODUCTION

Electron scattering provides a precise probe
for the investigation of charge and current densi-
ties for both the nuclear ground state and for tran-
sitions to higher states. This precision is due in
part to the fact that the electron-nucleus interac-
tion is electromagnetic in nature, and therefore
calculable to high precision within the framework
of quantum electrodynamics. Because the inter-
action is well understood, experiments can be in-
terpreted unambiguously in terms of the nuclear
structure. Present analysis techniques use nu-
merical methods to calculate the distortion of the
electron wave function by the Coulomb monopole
field of the nucleus exactly. The transition poten-
tials, however, are treated only to first order.
While this approximation is generally quite good
(because the transition potentials are relatively
weak), the accuracy of modern electron-scattering
experiments is increasing rapidly toward the point
where higher-order effects will become important.

A large number of theoretical investigations
have been carried out to examine the importance
of higher-order (or dispersion) corrections in
electron scattering. ' The general conclusion to
be drawn from these investigations is that disper-
sive effects are small, of order 10% in the region
of the diffraction minima and less elsewhere. An
exact treatment of the general problem of higher-
order scattering is essentially impossible as one
must include the excitation of all possible nuclear
states. Previous authors have therefore employed
a variety of approximations in order to arrive at

a solution. These approximations have involved
the choice of calculational techniques, the inter-
mediate states included, the treatment of the tran-
sition potentials, and a variety of other considera-
tions. Recently, Mercer and Ravenhall have con-
structed a computer code ZENITH, ' which solves
the problem with only two assumptions. First,
they consider only a finite number of nuclear
states, and second, they neglect the energy loss
in inelastic scattering. All other details of the
calculation, including the distortion of the elec-
tron wave function and the treatment of the multi-
pole transition potentials, have been solved exact-
ly through the use of numerical techniques.

Many authors have suggested that there are two
main components to dispersive corrections in
electron scattering. The first component, which
comes from the excitation of intermediate states
common to all nuclei (such as the giant collective
states and the quasifree nucleon states), is ex-
pected to vary quite slowly and smoothly from
nucleus to nucleus. The second component arises
from the occurrence of low-lying excited states
strongly coupled to the ground state in a manner
varying from nucleus to nucleus. The virtual
effect of these low-lying intermediate states may
be substantial.

It is the aim of this work to examine quantita-
tively the level at which corrections of the second
kind affect the extraction of nuclear transition
charge densities from the experimental data. We
have considered the cases of the rotational nu-
clei '"Sm and '"Er for three reasons. First, both
of these nuclei have low-lying rotational bands
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strongly coupled to the ground state. The neglect
of energy loss in the scattering is an excellent
approximation in this case. Second, data of excel-
lent quality exist for these nuclei from recent ex-
periments at Saclay' and MIT'. Finally, because
the observed states are well-described by the ro-
tational model, it is possible to predict with con-
fidence for these nuclei those transition charge
densities which are not accessible to measurement
by electron scattering but which are required to
calculate the dispersion correction accurately.

It must be recognized that the calculations we
have undertaken, as outlined in Sec. II below, are
incomplete in that we have included only a finite
number of intermediate states. It is possible that
some cancellation of the dispersion correction
might result if all possible intermediate states
were included. It is our belief, however, that,
by including all known effects in this more limited
system to an accuracy considerably greater than
present experiments achieve, our calculations
provide a more reliable guide to the magnitude of
dispersive processes than has been available here-
tofore. Furthermore, by studying in considerable
detail the manner in which the neglect of these
processes affects the analysis of electron-scat-
tering data, we have also determined the level of
accuracy at which dispersive processes affect the
nuclear structure information obtainable from
these experiments. Details of the data-analysis
procedures employed are presented in Sec. III,
and the results of this analysis for electron scat-
tering from the ground-state rotational band of
"'Sm are presented in Sec. IV. Results of a simi-
lar analysis for '"Er are presented in Sec. V.
Our conclusions regarding the importance of dis-
persive effects in this data are given in Sec. VI.

II. THEORY

A coupled-channel scheme has been employed
to obtain some of the dispersive corrections to
the customary partial wave (elastic) and distorted-
wave Born approximation (DWBA) (inelastic) treat-
ments of electron scattering. Its methods have
been described in detail elsewhere' and the mag-
nitude of the corrections it makes to cross sec-
tions have been illustrated in several cases. ' '
For completeness, we discuss here the basic as-
sumptions made, the physical couplings included,
the degree of accuracy of the methods, and the
physical processes not included. %e shall not,
however, repeat the computational details.

The only interaction included between the elec-
tron and the nucleus in the present calculations
is the Coulomb potential of the nuclear charge
distribution. For the excitation energies h in-

volved (the largest, in "'Sm, is 0.712 MeV), the
effect of the transverse electric interaction with
the nuclear current distribution (of relative order
(v/c)'[ ~ + tan'(-,' 0)]- (4/Mc' [ ~ + tan'(~ 8)] where M
is the rotating mass of the nucleus) is small at
all angles used (&10 '). Since the purpose of the
coupled-channel calculation is to obtain the con-
tributions of multiple interactions, which further
accentuate the stronger couplings, this omission
is not serious. In the coupled-channel program
the nuclear excitation energies themselves are
also neglected. The effect of this approximation
has been examined in Ref. 2, where it is shown
to vary as b, /E, and to be negligible already at
E=50 MeV.

All allowed matrix elements of the nuclear
charge density operator p„(r) can in principle
contribute to the scattering via the Coulomb inter-
action. Between states ~nIM) and [n'I'M'), the
expansion

(n'I'M'
J p., (r) (nIM)

= v'4v g ( -1)"{XMIm)I'M') /(2I'+ 1)

xi'p," "(r)r, (il)

defines charge multipole radial matrix elements

p,
" "(r). Each p", "(r) generates a Coulomb poten-

tial gf "(r) of the same multipolarity I, which ha.s
the form

y,
" "(r) =4m/(2l+1) r '

~r
pn

'n
(I )fk+ 2df

"o

+ +I „ptl n (f )f 1 l df

The computer program works with matrix ele-
. ments between states of total (electron + nucleus)
angular momentum F of the potentials which are
the sum of all such possible multipole contribu-
tions, indicated schematically for 1=0, 2, 4, and
6 in Fig. 1. In Fig. 1b, for example, are shown
diagrammatically all possible quadrupole coup-
lings among the I = 0, 2, 4, and 6 states with
which the present analysis is concerned. It is
clear that not all of the quantities p," "(r) are
accessible to experiment. In many cases the
B(E2;nn'), measured by photon transitions, will
give the overall normalization of p, (r) in the form
g, p", "(r)w'dr, but the scattering problem requires
(to an extent depending on the maximum momentum
transfer) the function p,

" "(r) itself. It thus ap-
pears that for general / it is possible to make
definite calculations only with a, nuclear model
which relat'es the unmeasurable p," "(r) to quan-
tities which are measurable. The model we have
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OQ 6+ 2Q 6+ ~ „ „ 6+ first, p(r) itself is parametrized and the various
p, (r) are projected numerically using the relation-
ship

4+ 4+ y 'lr 4+
4 4

1
p ()= g4, (r) I'r o(Q)dQ, (2)

p+
2

o+

a) Allowed (,=0
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e) Zenith
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Scheme

f) DWBA
Coupling
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FIG. l. {a)-(d) Allowed I=0, 2, 4, and 6 couplings
among the 0', 2, 4' and 6' levels in the ground-state
rotational band. (e) The coupling scheme used in smtm
for the ground-state rotational band. {f) The coupling
scheme employed in the usual DWBA calculation for in-
elastic scattering to a level in the ground-state rota-
tional band.

p(r) = 4 4rr Qp, (r) Y, ,(g) .

Two approaches have been taken to the problem of
extracting the intrinsic nuclear shape p(r). In the

used for describing electron scattering from ro-
tational nuclei follows the same assumptions as
those of Bertozzi et al. '. (1) The nuclear Hamil-
tonian can be separated into a rotational H amil-
tonian and an intrinsic Hamiltonian which de-
scribes all other degrees of freedom. (2) The
nucleus has axial symmetry and reflection sym-
metry. Within the context of this rotational model,
all transitions of a given multipolarity among
states of the same rotational band have the same
radial shape, and their normalizatiogs, specified
conveniently by their B(EI;nn'), are all related
The rest of the present paper confines itself to
this nuclear model.

The starting point of the coupled-channel cal-
culations is therefore the charge distribution p(r)
of the nucleus in its intrinsic frame, expanded
into multipoles:

and are determined by simultaneously fitting the
scattering data from all levels observed. In the
second approach, for greater flexibility the indi-
vidual p, (&) are determined separately, from in-
dependent fits to the scattering from each level.
In this case, Erl. (1) then serves to define p(r).
The details of these procedures are described in
the next section. Specification of these functions,
and consequently of the moments which determine
their normalization, such as the intrinsic quadru-
pole moment,

Q = (16rr/5)r/'M(E2, 0),

where

M(EI, ) ) = p(r) 'V, „(&)a'r,

completely determines the multipole transition
charge densities pr' "(r). As has been described
in Ref. 3, the radial shapes of p, (r) and pr "(r)
are identical, and the strength S", " which defines
the asymptotic behavior of Qr" "(r) by eQr "(r)
-S", "/e'r ", is given by

S", "= 4rre [(BI+1)/(2l+1)j'/'ii ' ~ (IOIO [I'0)

x p, r r''+'dr, 3

where po(r) is normalized as defined inEq. (1). The
B(El,n-n') associated with the transition from a
0' ground state is then given by

(2l+ 1) Sr
4m e

and the transition radius It„[r by

(4)

Jt p, (r)r +'r'dr
w P 0

p, (r)r' r'dr

(5)

The couplings included in the present calculation,
shown in Fig. 1e, are those of Figs. 1a, 1b, and

1c, with only the 0 -6+ contribution of I = 6 includ-
ed from Fig. Id. From this point, with appropri-
ately chosen computational parameters, the pro-
gram ZENITH determines the elastic and inelastic
differential cross sections resulting from the cou-
pling scheme assumed. Ad justable parameters
such as the integration step size ~ for inner in-
tegration, and the radius A,„assumed to contain
all charge distributions, have been chosen con-
servatively. The one limiting quantity whose ef-
fect needed some later manual smoothing was the
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numk)er of E states (effectively the number of par-
tial u~aves) used and its effect on the 0'-2' inelas-
tic c:i..oss section. The problem arises because of
the q uadrupole potential, the least rapidly de-
creasing of the coupling potentials, and is due to
its diiagonal contribution in the 2+ state. The re-
sult!," quoted include states up to F= 127/2, i.e. ,
about 60 partial waves. By varying the cutoff
value. , it is determined that after smoothing, the
resulting corrections are known to about 0.1'fc,
whic, 'h is completely adequate for the present- anal-
ysis;

Th.e effect of the channel couplings included is
spec;ified to the data-analysis procedure in the
fords of ratios to one-channel elastic or DWBA
inelastic cross sections. To avoid extraneous
nun'clerical errors, these comparison cross sec-
tions are also determined using ZENITH under
the same computational conditons. The coupling
scheme for the DWBA simulation is that of Fig. 1f,
and in the case l = 2, where the actual excitation
strength is large enough that higher-order effects
would be included also, the strength S", is re-
duced by v10, and the resulting cross sections
m~ultiplied by 10.

'.I'he set of physical processes and couplings
wf. ~ieh are beyond the capabilities of the present
an.alysis, but which might make appreciable con-
tributions, involve the hi.gher-lying collective nu-
clear states. These lie too high in energy for the
p:r;esent treatment, which must assume zero exci-
tation energy, to be reliable. They would also in-
vt&lve an impractieally large number of coupled
ski;ates. The physical situation to which the pre-
sent methods are directed assumes that only the
low-lying states affect each other intimately, so
that all couplings need individual specification,
xvhile the high-lying collective states have a
.smoother, more averaged effect. These extra
~'ontributions, ignored at present, might then be
included in terms either of optical potential con-
tributions to the potential for each state, or by
suitable redefinition of effective charge densities.
These matters are under active investigation, by
us and other workers.

best-fit is the minimization of X where

p(r, ~)=p,
1+exp

2y
c(8)
r —c(9) '

where

c(&) = col. l + p21;0(e) +p. I;o(&) +p. l'so(e)],

and the deformed modified Gaussian distribution
(DMG)

p(r, e)=

ta 2y
c(9)r'-c' 81+exp

The quantities N, o,', g', , and Eo,'- represent the
number of data points, the ith theoretical cross
section, the ith experimental cross section, and

the statistical error in o; respectively. The theo-
retical cross sections are calculated from the
relevant charge density using a modified version
of the DWBA code HEINEL. " For fitting rota-
tional nucleus data, DEFFIT has two modes of
analysis. In the first mode, it is assumed that all
of the observed states are characterized by rigid
rotation of a single, simply parametrized intrin-
sic nuclear shape. Therefore, the cross sections
for all of the levels observed are included in the
X' sum and the best-fit shape is taken to be that
intrinsic shape which minimizes the total X'
summed over all levels observed. In its second
mode of fitting, DEFFIT treats the scattering to
each nuclear state independently and finds the
best-fit transition charge density for each level
separately. The corresponding intrinsic shape
is then obtained via Eq. (1). This technique pro-
vides degrees of flexibility not available in the
first fitting mode.

Within the context of the rigid rotor model, we

have considered two parametrized shapes for the
intrinsic charge distribution. They are the fol-
lowing:

The deformed Fermi distribution (DF)

III. DATA-ANALYSIS PROCEDURES

A. DWBA fits to the data using analytic charge densities

Initial fits to the data were performed using
the computer code DEFFIT. In this code the
ground-state and transition charge derisities are
obtained from parameterized, phenomenologieal
shapes, and the best-fit values for these para-
meters are obtained using the usual nonlinear
least squares technique. ' The criterion for a

where

c'(e) =c,'[1+P,k'„(e)+P,k'„(e)+P,k'„(e)] .
In the first mode of fitting, DEFFIT uses one of

the shapes described above, together with Eq. (2)
to generate the transition charges used in the cal-
culation of the cross sections, for all of the levels
observed, based on a single parameter set
jc„g,w, P„P„P,}. In the second (separated fit)
mode, independent parameter sets (c„z,w, P„P„
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(6,},are used in one of the shapes above for the
calculation of the scattering for e~h multipole
l, and tbe resultant independent transition charges
are combined to yield the intrinsic shape of the
nucleus using the relationship of Eq. (1).

In addition to nonlinear least squares fitting
of elastic and inelastic cross sections, DEFFIT
can also do constrained nonlinear least squares
fitting. The rms radius of the ground state charge
density and/or the B(E2) of the first excited state
can be entered as data points with errors, and the
y' sum of Eq. (6) is augmented appropriately during
fitting. Using this technique, it is further pos-
sible to rigidly constrain the fits to an input rms
radius and/or B(E2) by using unrealistically small
error bars for these quantities. These constraints
are essential for the analysis of low-energy ex-
periments where the momentum transfer region
covered is too small to permit determination of
all of the model parameters from the electron-
scattering data alone. The constraints ean also
be used in the analysis of high-q data to improve
our knowledge of the radial behavior of the rele-
vant charge densities.

The program DEFFLT determines uncertainties in
the best-fit parameters in the usual way. Defining
the curvature matrix n by

1 O'X' 1 Bo' Bg'
2 BP,.BP,. (b, ()')2 BP BP

where p,- and P J are the ith and jth parameters of
the charge density model under consideration, and
the partial derivatives are evaluated at the mini-
mum of X ', then the error matrix c = n ', and the
uncertainty 4p,. in the parameter P,. is-given by

This is the maximum uncorrelated change in P,.
which results in the total X' increasing by one.
The error matrix is also used to propagate pa-
rameter uncertainties to determine the uncertainty
in quantities Q, such as the rms radius, which
are functions of the parameters through use of the
re J.ationship

The final consideration in DWBA fitting was the
conversion of cross sections measured at dif-
ferent energies to cross sections at a common
energy. This was desirable because the execution
time of the DWBA code HEXNEL depends primarily
on the number of incident energies considered.
Each cross section o,(E, , O;) measured at. the
energy and angle E,-, 0,- was transformed to the
common energy E, by first choosing an angle 8,'-
such that the effective momentum transfers q, ff

for both combinations of energy and angle are
equal:

q„,(E, , O,') =q„,(E,, O;), .

where

(9)

2E sin(O/2)qE, O =

and R„~, is the appropriate transition radius Rs
given by Eq. (5). After choice of the angle O,', the
cross section was then transformed using

o,.(E„O,') = To,.(E, , O,.)

where T is the ratio of theoretical cross sectio~ns
calculcated using HEINEL at (E„O,') and (E, , O,.), re-
spectively. The correctness of this transform
depends on our knowledge of the appropriate tr:cn-
sition charge, which of course is .o be determined
from a fit to the transformed cross sections. It.
was therefore necessary to use an iterative pro-
cedure whereby after each nonlinear least squares
fit the transformation factors T are recalculate(i
using the new best-fit transition charge. Three
iterations of this procedure were adequate in all
cases for the process to have converged to within

p
of the correspond ing exp ™ ~~aI cros s sec

tion uncertainties.

B. DWBA fits to the data using Fourier-Bessel charge densities

In recent years several techniques have been
developed for the analysis of elastic and inelastic
electron-scattering data with the aim of deducing
the ground-state and transition charge densities
without the constraints imposed by the assumption
of phenomenological forms. The most popular of
these techniques are the "sum of Gaussians"
method of Sick" and the Fourier-Bessel expansion. s
of Dreher et al. ,

'""and Friar and Negele. '~ We
have analyzed the scattering data for '"Sm and
'"Er using the second of these techniques in an
effort to obtain a less model-dependent description
of the effect of the inclusion of coupled-channel
corrections in the data analysis. Following
Dreher et al. ,

'""we assume that the transition
charge density p, (x) for excitation of the lth multi-
pole is restricted to a region x& A and may be ex-
panded into a Fourier-Bessel series using the
spherical Bessel function j, of order I:

(10)

where q,„ is related to the vth zero of the Lth

spherical Bessel function: j,(q,„R)=0. These
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spheri~"al Bessel functions form a complete set,
and ca~~ theref ore be used, in principle, to repre-
sent ar)i. arbitrary charge density in the region 0 to
B-. Ho~wever, as has been pointed out by Boryso-
wicz and Hetherington, "eiectron-scattering data
cover c)nly a limited range of momentum transfer,
and lack of data beyond a maximum momentum
transfe. r q restricts the extraction of the co-
efficients of the series describing the charge den-
sity [E(1. (10)] to vs M, where q,„=q,„. There-
fore, the determination of the complete set of co-
efficients $ a,„j describing the 1th transition charge
requires that assumptions be made about the be-
havior of the experimental form factors beyond
the region of measurement. In a manner similar
to Bory.'owicz and Hetherington, "we added
fictitious data at q&q to the set under analysis.
These data were generated for values q,". "=q,„,
where n =M+ i and the form factors at these q', "'
are take. n. to be —,

' the value of the envelope of the
measured form factor projected to the momentum
q',."'. Tt~e uncertainty in these fictitious cross
sections were taken to be equa, l to their value.
Three fi(::titious data points generated. in this
manner &vere added to each data set. To avoid
pathological fits due to the location of these q',."'
at the exact values q,„, it was necessary to include
additional fictitious data points at momentum trans-
fers uniformly spaced between the q';"'. Thus a
total of six data points describing the envelope of
the expected high-q behavior of the form factor
were added to each data set. Starting values for
the ar„were obtained by analytically expanding the
best-fit phenomenological transition charge den-
sities using Eq. (10).

For the 1high-q Sm a.nd
' Er data analyzed, the

number of parameters M determined directly
from the d.ata with a choice of 11 fm for the expan-
sion radius R varied from nine for elastic scat-
tering to si'.x for the 1 =6 inelastic scattering. The
addition of fictitious cross sections beyond q
was found t.o primarily affect the error band as-
sociated with p, (x). The effect on the values of
the integraJ. quantities, B(El) and B„, was only at
the level of a fraction of a standard deviation. The
reason for this. can be understood simply if we
expand, for example, Eq. (4) in terms of Eq. (10):
As shown in' Ref . 13, B(El) can then be written as

g'l 2
B(@f) 4z iB+ +3&rv~r+a«rv

I
V qr ~\

Numerical B.nalysis of the '"Sm and '"Er inelastic
form factor best-fit coefficients shows for the k =2
fits, for example, that only the first five or six
terms contr:ibute significantly to the sum above.
Since the data determine the first eight coeffi-
cients in this case, the integral quantities are in-

sensitive to reasonable assumptions about the high-
q behavior.

Several authors have considered in detail the
effects of normalization errors, assumptions about
high-q behavior of the form factor, completeness
errors, and choice of basis sets on the "model-
independent" analysis of electron- scattering data. ~

We have restricted our attention primarily to the
use of this technique for the determination of the
changes in the extracted transition-charge densi-
ties, strengths, and radii due to the inclusion of
coupled-channel effects in the analysis. As these
changes should be far less sensitive than the quan-
tities themselves to the assumptions and errors
mentioned above, we have not examined their ef-
fect in detail. Our choice of high-q behavior de-
termination is similar to that of Borysowicz and
Hetherington. " These authors have also shown
that the errors due to the choice of basis set are
small, so we have neglected this source of un-
certainty. Following Neuhausen, "we first analyzed
the data including M+3 terms in the sum of Eq.
(8) and extracted the best-fit parameter set. We
then fixed the a,„for v) M+ 1 to the values ob-
tained from the first fit, and recalculated the
error matrix. This new error matrix was used
to extract the uncertainties in the transition charge
density and in the associated B(E/) and 8„. As has
been noted by other authors, " the use of a fit in-
cluding only one term beyond the number deter-
mined directly from the data as an estimate of the
completeness error is reasonable, but it is by no
means definitive. We have also ignored as small,
uncertainties due to the absolute normalization of
the data. Such errors have been observed" to
scale B(El) directly, but to have little effect on the
radial dependence of p, (r) or on R„. The pro-
cedure outlined above has been tested by applying
it to the "Zn inelastic scattering results of
Neuhausen. The extracted charge densities and
uncertainties are in excellent agreement with his
published results. "

Fourier-Bessel analysis of the elastic- and in-
elastic-scattering data was performed using the
code SESFIY written at Illinois. In this code, non-
linear lea.st squares techniques are used to fit
the data in a manner similar to the DWBA fits
described in Sec. IIIA above. Cross sections were
calculated from nuclear charge densities given by
Eq. (8) using the computer code HEINEL and the pa-
rameter set (g„)„,„„,was found which minimized

Inelastic scattering to each member of the
ground-state band was considered separately, and
the resultant best-fit p, (x) were combined using
Eq. (1) to determine the intrinsic nuclear shape.
An energy renormalization technique identical to
that employed in the model-dependent fits was used



1394 CARDMAN, DOWELL, GULBRANSON RAVENVENHALL, AND MERCER

to reduce the computation time required. The
elastic-scattering fits included the constraint that
the integral of the charge density yield the total
nuclear charge Z.

C. Coupled-channel fits to the data

In principle, coupled-channel fits to the data
could be obtained by simply inserting the code
ZENITH in place of the code HEINEL in the nonlinear
least squares programs described above. Unfortu-
nately, ZENITH requires execution times orders of
magnitude larger than HEINEJ. , and this approach
is not practicable. The procedure we adopted is as

the experimental cross sections and best-fit ground-
state and transition charge densities were t t d.ex rac e .

ese est-fit densities were then used as input to the
code ZENITH, which calculated theoretical cross sec-
tions inboth DWBA ~WBA ~oDwB Ag and in the coupled-channel

(0' 2' 4' 6'
mode qc in which couplings of all levels ob ds o serve

) were considered. The results of
these calculations were then used to determine
correction factors I'

wishing to improve the accuracy of their da. ta an-
alysis might keep this fact in mind.

IV. ANALYSIS OF Sm DATA

A. Saclay high-energy data

b th
The first data analyzed were the result bt '

ds (3 aine
y e Saclay-Tel-Aviv collaboration' on th.e scat-
ering of 251.5 MeV electrons b m. T1hese

data were initially analyzed in DWBA usia~' a de-
forormed Fermi distribution for th te in rinsic nucle-
ar shape. In this fit, as in all fits to the ' '

obt
high-q data, the rms radius and its uncert."-

' ter "-u.n y as
o ained from muonic x-ray studies was added as

Sm(e, e')

EO = 25l.5MeV

Coupled Channel Correc tions

C=a

0—

E(E g )
+cc( i & gi)

oDWBA( i &I

which transformed the measured cross sections
o, (E„g,) to those that would have been measured
if dispersive processes (as calculated by zENITH)
were not present in nature:

, ( )
o (E;, 9)

1++(E,, 8;)
(12)

These dispersion-corrected eros t's sec ions cr,. were
then fitted using the conventional DWBA analyses
described above.

Because the corrected cross sections yield dif-
erent best-fit transition charge densities, one

should, in principle, iterate the correction of Eq.
(12) and the subsequent DWBA fit using the new
best-fit transition charges until a self-consistent
set of cross sections, transition charges, and cor-
rection factors is determined. It was found, how-
ever, that the differences between the best-fit
transition charges were sufficiently small that no
i eration was required. Finally it h ld b

a e correction factors I' are functions of both
the incident energy and the momentum transfer.

nel ef
Because of this fact, the inclnsion of coupled- ha-

effects in the analysis of data taken at different

than at diff
energies (as js the case for the ' Er da )e r atag rather

an at different angles but a fixed energrgy gas ls
case for the Sm data) requires considerabl

more computational effort. Experimentalists

+5
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FIG. 2. Cou led-p -c"annel dispersion cori-ections, in

including ail couplings shown in Fi . 1 e
ion ~s define by Eq. (11).
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TABLE I. Saclay 251.5 Mev 's Sm data: deformed Fermi distribution fits. (rtl'rr was constrained

by adding the rms radius as a data point in the fit, (r~),tg„=5.085 + 0.06 fm.

Parameter DWBA analysis Coupled-channel

analysis

% dif.

d if./error

co (fm)

z (fm)

P2

p4

P6

(I 2) 1/2 (fm)

R«l, (fm)

R«l4 (fm)

R«ls (fm)

B(E2) (e2b2)

B(S4) (e'b4)

B(E6) (e2b6)

5.7752 + 0.0083

0,5501 + 0.0034

0.2888 + 0.0023

0.0881 + 0.0017

0.0168 + 0.0015

5.0316 + 0.0042

6.9067 + 0.0073

7.6680 + 0.0116
8.3601 + 0.0170

3.518 + 0.058

0.2101 + 0.0061

0.0141 + 0.0008'

5.7714 + 0.0084

0.5515 + 0.0035

0.2895 + 0.0023

0.0885 + 0.0017

0.0180 + 0.0016

5.0316 + 0.0043

6.9091 + 0.0074

7.6736 + 0.0116
8.3583 + 0,0169

3.536 + 0.0579

0.2131 + 0.0062

0.0148 + 0.0009

+0.07
—0.25
—0.24
—0.45

-6.67

0.00
—0.03
—0.07

+0.02

—0.51
—1.41
—4.73

+0.5
—0.4
—0.3
—0.2
—0.8

—0.3
—0.5
+0.1

—0.3
—0.5
—0.8

Xo

X2

X4
2

X6
2

Xconstraints
2

~total

56

45

65

7

0.8
174

67

53

46

53

8

0.8
161

67

a data point in the elastic-scattering fit. The re-
sults of this analysis, which are presented in Ta-
ble I, are i;n agreement with the results of Nakada,
et a/. ,' with the exception of the l =6 transition.
Our values for P, and B(E6) are substantially
larger than the values obtained by these authors,
a result which we believe is due to unequal weight-
ing given to the elastic data in their fit. The over-
all quality of our fit is reasonably good, with X'

per degree of freedom v on the order of 2.6.
The nuclear shape obtained from this D%'BA fit

was then used as input to 2'EN&TH, and the disper-
sion correction I was calculated as described in
Sec. III C above. The results of this calculation,
shown in Fig. 2, display many features common to
all of our calculations. The correction is largest
(as a percentage of the DWBA cross section) in the
diffraction minima. For elastic scattering it goes
to zero in the forward direction due to the domi-
nance of the Coulomb amplitude at low q. In
marked contrast, the 4' and 6' corrections be-
come quite la,rge at low q. This is due to the fact
that a q" ' dependence is predicted for the cross
section for excitation of the lth multipole in DWBA.
The l = 4 and 6 cross sections are therefore pro-
portional to q and q', respectively. The disper-
sion correction, however, is dominated at low q

by sequential excitations which are mediated by
quadrupole potentials, and thus are proportional
to q' in the forward direction. This results in a
very large percentage correction. For the 1=2
excitation, the correction remains small in the
forward direction because the DNA cross section
itself is a,iso proportional to q'. Finally, it should
be noted that the correction does not go to zero
outside the diffraction minima, in contrast to the
results of several other calculations, ' but rather
is a gradual function of q,«which varies from mul-
tipole to multipole and nucleus to nucleus. This
implies that attempts to remove dispersive effects
from electron-scattering experiments by simply
excluding data in the diffraction minima from the
analysis will not be successful.

The correction factors E were used to remove
coupled-channel effects from the measured cross
sections as described in Sec. III C above, and the
resulting cross sections were refit. The results
of tM. s coupled-channel fit are shown in Fig. 3,
and the new parameter set extracted is shown in
Table I. As is evident from this table, the inclu-
sion of coupled-channel effects in the analysis
modified the deduced nuclear shape only very
slightly. None of the charge-distribution parame-
ters varied by as much as one standard deviation
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FIG. 3. Experimental form factors (corrected for coupled-channel effects) for elastic (l =0) and inelastic (l =2, 4, and

6) scattering from Sm as measured in the Saclay high-energy experiment (Ref. 5). The solid curves are based on

the best-fit deformed Fermi charge distribution.

from the value obtained by the DWBA fit. At first
glance this would seem surprising in light of the
large corrections to the cross sections. However,
inspection of the experimental cross sections re-
veals that the magnitude of the cross-section un-
certainty is typically similar to the magnitude of
the dispersion correction. This fact significantly
reduces the impact of the coupled-channel correc-
tions on the deduced shape for this data.

A similar procedure was followed in analyzing
this data using a deformed modified Gaussian dis-
tribution for the intrinsic nuclear shape. The re-
sults of these fits were qualitatively similar to the
results of the deformed Fermi distribution fits in
that the inclusion of coupled-channel effects yielded
changes of less than one standard deviation for all
parameters. The overall quality of the fit was,

however, significantly worse, with X /v equal to
268/66. As will be seen, the relatively poor y'
obtained in both of these simple intrinsic shape
fits is due to restrictions contained in the nuclear
models employed, rather than to the quality of the
experimental data.

The third "model-dependent" fit to the high-q"Sm data was made using the separated deformed
Fermi (SDF) distribution. In this model, the pa-
rameters c„z, and-P, were determined indepen-
dently for each multipole l, and the intrinsic shape
was then obtained via Eq. 1. Because the fits to
each form factor are uncoupled, this model has
considerably more freedom to respond to changes
in the cross sections due to the inclusion of cou-
pled-channel effects, and should therefore be more
sensitive to their presence. The results of these
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TABLE [1. Saclay 251.5 MeV ' Sm data: separated deformed Fermi distribution fits. (I' }'/ was
constrained hy adding the rms radius as a data point in the I =0 fit, (r.),',„„=5.085 +006 fm.

Parameter D%BA analysis Coupled-channel

analysis

% dif.

dif. /error

I=0

I=2

cp (fm)

z (fm)

p2

P4

p6

(r )' (fm)

x/v

cp (frn)

z (rm)

p2

p4

p6

R„i2 (fm)

B(E2) (e'b')
x2/v

5.8142 + 0.0171

0,5005 + 0.0263

0.3320 + 0.0266

O.O8S1 '
O.O16S '

5.0237 + 0.0051

42/16

5.7555 + 0.0172

0.5866 + 0.0084

0.3100 + 0.0047

0.0881 '
O.O16S '

7.0005 + 0.0250

4.119 + 0.151

21/17

5.8136 + 0,0189

0.4940 + 0.0293

0.3439 + 0.0351

0.0881 '
0.0168 '

5.0249 + 0.0065

42/16

5.7697 + 0.0174

0.5850 + 0.0085

0.3116 + 0.0048

0.0881 '
0.0168 '

7.0119 + 0.0252

4.203 + 0.155

21/17

+0.01

+ 1.32
—3.46

—0.02

-0.25

+0.27
—0.51

—0.16
—2.00

0
+0.2
—0.3

—0,2

+0.2
—0.3

—0.5
—0.5

I=4

cp (fm)

z (fm)

P2

P4

p6

R„~4 (t'm)

B(E4) (e'b4)

x2/v

5.8797 + 0.0285

0.6095 + 0.0132

0.2888 '
0.1040 + 0.0030

O.O16S '
7,9732 + 0.0501

0.3319 + 0.0241

17/14

5.8439 + 0.0284

0.6164 + 0.0133
0.2888 '

0.1038 + 0.0030

O, O16S '
7.9630 + 0.0516

0.3204 + 0.0236

9/14

+0.61
—1.12

+0.19

+0.13

+3.59

+ 1.3
—0.5

+0.1

+0.2
+0.5

I=6

cp (fm)

z (fm)

p2

p4

p6

~rrls (fm)

B(E6) (e b )
X /v

5.7809 + 0.0682

0.5951 + 0.0297

0.2888'

0.0881 '
0.0184 + 0.0023

8.5648 + 0.1573

0.0171 + 0.0038

4/12

5.7575 + 0.0633

0.6022 + 0.0296

0.2888 '
0.0881 '

. 0.0195 + 0.0024

8.5703 + 0.1597

0.0174 + 0.0039

3/12

+0.41
—1.18

—5.64
—0.06
—1.72

+0.4
—0.2

—0.5

—0.1,

'Not varied during fit,

fits, shown in Table II, indicate once again that the
effect of coupled-channel corrections on the de-
duced nuclear shape is quite small for ' Sm. The
quality of the fits is significantly better than was
obtained using either of the simple rigid rotation
models, with ){'/v of order one for all levels ex-
cept the ground state. A careful examination of
the results of the SDF distribution fits provides
insight into the difficulties encountered in either
of the earlier model fits to the '"Sm data. As
can be seen from Table II, when the length pa-
rameter c, is allowed to vary independently for

each excitation, the resultant best-fit values are
different for each multipole, whereas in the sim-
ple intrinsic shape fits, c, is restricted to the
same value for all multipoles.

The final model-dependent fits to the data, ob-
tained using the separated deformed modified
Gaussian (SDMG) distribution, are shown in Ta
ble III. This distribution yielded the best model
fits for '"Sm, with X'/v of order one for all lev-
els. As was the case for the SDF distribution fits,
the best-fit length parameter c, was different for
each level. Inclusion of coupled-channel effects
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TABLE III. Saclay 251.5 MeV Sm data: separated deformed modified Gaussian distribution fits. &r )~)'2

was constrained by adding the rms radius as a data point in the E = 0 fit, ter ) „„=5.085 + 0.06 fm.

I=O

I=6

Parameter

co (frn)

z (fm)

p2

p4

p6

x2/v

co (fm)

z (fm)

p2

p4

p6
)t J, (rm)

8(E2) (e2b2)

x2/v

co (rm)

z (fm)

p2

p4

p6

R„~4 (fm)

8(E4) (e2b )
x'/v

co (fm)

z (fm)

p2

p4

p6

W„~, (rm)

~(E6) (e'b6)
x2/v

0%HA analysis

5.8936+ 0.0155.

2.1393 + 0.0540

0.0381"
0.9333 + 0.0199

0.1932'
0.0428 '

4.9949 + 0.0050

10/16

5.8193+0.0156

2.7011 + 0.0196
0.0381'

0.6433 + 0.0097

0.1932'
0.0428 '

6.7530 + 0.0191

3.479 + 0.113

2S/17

5.9739 + 0.0288

2.8629 + 0.0308

0.0381 '
0.6130'

0.2323 + 0.0059

0.0428 '
7.6449 + 0.0353

0.2501 + 0.0163
21/14

5.9083 e 0.0643

2.7880 + 0.0835

0 0381 a

0.6130'
0.1932'

0.0490 + 0.0048

8.0S86 + O. l 106

0.0106 + 0.0021

7/12

Coupled-channel

analysis

5.8913 + 0.0155

2.1521 + O.OS42

0.0315'
0.9319 + 0.0203

0 1944a

0 0448'

4.9942 + 0.0050

ll/16

5.8335 + 0.0156

2.7007 + 0.0193

0.031S'
0,6463 + 0.0097

0.1944'

0.0448 '
6.7651 + 0.0193

3.554 + 0.116
25/17

5.9381 + 0.0282

2.8719 + 0.0308

0,0315'
0 6139a

0.2313 + 0.0059

0.0448 '
7.6227 + 0.0358

0.2394 + 0.0155

13/14

5.8748 + 0,0561

2,8009 + 0,0825

0.0315 '
0.6139'
0.1944

0.0504 + 0.0047

8.0382 + 0.1070

0.0103 + 0.0019
6/12

'/o dif.

+0.15

+0.01

—0.24

+0.01

—0.46

—0.18
—2.11

+0.60
—0,31

+0.43

+0.29

+4.47

+0.57
—0.46

—2.78

+0.25

+2.91

dif. /error

+0.2
—0.2

+0.1

—0.9
0.0

—0.6
—0.7

+ 1.3
—0.3

+0.6
+0.7

+0.2

'&ot varied during fit.

in the analysis produced parameter changes be-
tween 0.1 and 1.3 standard deviations. It is not
surprising that the SDMG shape yielded better fits
than the SDF shape in view of previously obtained
results" for the nearby spherical nuclei "'Ba and
"'Nd. Fits to elastic scattering from these nuclei
displayed a clear preference for the faster de-
crease in density at large radius provided by the

2 2
e " ' dependence of the modified Gaussian shape.

Analysis of the data using a Fourier-Bessel ex-
pansion for the transition charge densities per-

mits quantitative examination, in coordinate space,
of the effect of the inclusion of coupled-channel
corrections in the analysis without the restric-
tions introduced by the assumption of a simple
model for the nuclear charge densities. The re-
sults of such an analysis for the Sm high-en-
ergy data (following the procedures outlined in
Sec. III C above) are shown in Table IV. The tran-
sition charge densities obtained from the coupled-
channel fits are shown in Fig. 4, together with
those obtained by SDMG model fits to the data. As
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LE &V Sacla& 251 5 Mey is2SI data Fourier-Bessel fits (R =11 fm for all fits}.

Parameter D%BA D%BA

a&

Qg

a6

Cl7

Q8

Q9

~10

~11

R J, (fm)

8 (El}(e2b'3

X2/v

a&

. 02

03

84

as

a6

a7

Na

09

R„il (fm)

a(El}(e'b'}
X2/v

0.051 34 + 0.00008

0.054 56 + 0.000 33
—0,030 12 + 0.000 79
—0.029 91 + 0.000 63

0.01692 + 0.00062

0.011 34 + 0.000 87
—0.005 05 + 0.000 79
—0.00S 53 + 0.002 59

0.002 14 + 0.001 76

0.00043 '
—0.000 28'

5.01106 + 0.015 9S

7/19

0.011 20 + 0.000 37

0.%766 + 0.000 34
—0.00& 42 + 0,000 41
—0.002 06 + 0,000 61

0.00644 + 0.00060
0.000 75 + 0.002 10

—0.004 91 + 0,001 67

0.000 30'
0.001 61 '

7.703 9 + 0.296 8

0.2819 + 0.068 9

14/17

l=4

0.051 33 + 0.00008

0.054 70 + 0.000 33
—0.029 77 + 0.000 79
—0,029 83 + 0.00063

0.016 81+0.00062.

0.01109 + 0.000 88
—0.004 95 + 0.00079
—0.005 60+ 0.002 60

0.002 04 + 0.001 78

O.OOO 48 '
—O.OOO 29'

5.012 91 + 0.015 94

7/19

0.011 18 + 0.000 38

0.007 96 + 0.00034
—0,008 01 + 0.00042
—0.002 54 + 0.00060

0.006 52 + 0.0M 60

O.M016 + 0.002 08

-0.004 88 + 0.001 68

O.OOO18'

0,001 79'
7.828 1 + 0.2704

0.298 6 + 0.0714
7/17

0.01967 + 0.000 46

0.014 36 + 0.000 65
—0.020 36 + 0,000 36
—0.005 67 + 0.000 71

0.013 20+ 0.000 58
—0.000 51 + 0.001 14
—0.00696 + 0.002 31
—0.00047 + 0.003 00

0.00330 '
—O.OO1 62'

6.703 7 + 0.235 0

3.292 + 0.483

11/20

0.004 27 + 0.000 36

0.001 90 + 0.000 38
—0.00440 + 0.000 44
—0.001 73 + 0.000 75

0.003 33 + 0.00095
—0.000 56 + 0.001 70

—0.002 15 '
O.OO2 OS '

8.543 2 + 0.5146
0.022 9 + 0.014 3

5/16

l =-6

0.01983 + 0.000 45

0 01412+000065
—0.020 55 + 0.000 36
—0.005 40+ 0.000 72

0.01335 + 0.0M 58
—0.000 52 + 0.001 13
—0.006 91 + 0.002 34
—0.00044 + 0.003 01

O.OO3 3S '
—O.OO1 S&'

6.745 2 + 0.22S 4

3.417 + 0.488

ll/20

0.004 37 + 0.000 37

0.002 17 + 0.000 37
—0.00417 + 0.00043
—0.001 86 + 0.000 71

0.003 32 + 0.00095
—0,000 90 + 0.001 64

—0.001 88'
0.002 13 a

8.657 7 + 0.434 5

0.025 8 + 0.015 0

4/16

'Not varied in final fit,

one would expect from the X' values, the shapes
»e in good agreement. The B(Et) and transition
radii obtained from the Fourier-Bessel analysis
are also in excellent agreement with the results
obtained by separated model fits to the data. Fig-
ure 5 shows the uncertainty 6p, (r) in each tran-
sition charge density p, (r) as obtained from the
Fourier-Bcssel analysis. For comparison, the
difference in the deduced charge densities due to
the inclusion of coupled-channel effects is also
shown. The changes in the deduced densities typ-
ically. lie within the statistical error band obtained
from Fourier-Bessel analysis. However, there
are clearly regions where coupled-channel effects
are comparable to other sources of uncertainty in
the charge density. Furthermore, these effects
represent systematic rather than statistical er.-
rors in the densities. This figure suggests that if
other sources of uncertainty are reduced signifi-
cantly from present levels by improved experi-
mental technique, then coupled-channel corrections

could become a dominant source of uncertainty in
the interpretation of electron-scattering experi-
ments.

The results of this analysis also clearly indicate
the difficulty of distinguishing between dispersive
effects and nuclear shape effects in electron-scat-
tering experiments. As can be seen in Table IV,
equally good fits were obtained for both the DWBA
and the coupled-channel analysis of the '"Sm
data, even though the calculated cross sections
differed by as much as a. factor of 2 in the minima.
Consider, for example, the l =4 excitation where
diffraction minima are observed. at 1.2 and 1.'75

fm '. The coupled-channel calculation predicts a
filling in of these minimaby 20% and 3070 respectively
as shown in Fig. 2. This additional cross section re-
sults primarily in a modification of the a42 and a~
coefficients in the l = 4 transition charge density.
As can be seen in Fig. 5, the coupled-channel tran-
sition charge density differs from the DWBA tran-
sition charge density primarily at wavelengths of
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FIG. 4. Best-fit transition charge densities for ' Sm. The solid curves result from the extremes allowed by the
courier-Bessel analysis, while the dashed curves are the results of the SDMG model analysis. Note that the densities
plotted are twice the density defined in Eq. (1) for po (r) and 1Avr times the densities defined in Eq. (1) for the other
p, (x).

approximately 6 and 11 fm. These are precisely
the wavelengths determined from the scattering
observed in the minima. It is probable that no
definitive indication can be obtained regarding the
presence of dispersive effects in electron-scat-
tering data until it is possible to obtain data with
sufficiently high accuracy at several beam ener-
gies and overlapping momentum transfers, and to
demonstrate that no single static shape can fit all

of the data simultaneously.
The transition charge densities obtained from

Fourier-Bessel analysis of the data can be com-
bined using Eq. (1) to determine the intrinsic nu-
clear shape under the assumption of rigid rota-
tion. The resulting shape for '"Sm is shown in
Fig. 6 together with the shapes obtained from the
DF and SDMG model fits. The contours at 10%,
50/q, and 90/0 of the central density as obtained in
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FIG. 5. The solid curves are the uncertainties in the transition charge densities for ~~2Sm as obtained from the
Fourier-Bessel analysis of the Saclay high-energy data. The dashed curves are the changes in these transition charge
densities due to the inclusion of coupled-channel effects in the analysis. Note that the densities. plotted are twice the
density defined in Eq. (1) for po ('v) and 1/W~ times the densities defined in Eq. g) for the other p, (~).

all three fits are essentially identical. In the
SDMG fit we also observe lobes in the charge den-
sity. The deformed Fermi shape (with m =0, as
was the case in this analysis) does 'not have the
freedom to produce such lobes, which explains-
why none are observed in this fit. It is particu-
larly interesting to note that the lobes persist in
the Fourier-Bessel analysi. s result. They are
probably a real feature of the '52Sm charge den-
sity However. , the modulations of the 100'%%uo den-

sity contour in the Fourier-Bessel analysis re-
sult are probably not real. In this region the slope
of the density is quite low, and the precise shape
of the contour results from small oscillations of
the various transition densities due to the finite
range of momentum transfer available. A smooth
curve could be drawn within the error band asso-
ciated with the location of this 100'%%u& density con-
tour. The contours shown are taken from the cou-
pled-channel fits. The associated DWBA results
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TABLE V. NBS-MIT 1ow-energy Sm data: deformed Fermi distribution fits. The data are from Table
II of Ref. 19. The energy of the fourth cross section measurement was corrected to be 76.08 MeV rather
than 67.08 MeV.

Parameter D%BA analysis Coupled-channel

analysis

% dif.

dif. /error

cp (fm)

z (fm)

P2

P4

p6

5.7920 + 0.0262

0.5868 + 0.0113
0.2878 + 0.001S

0.0697 + 0.0012
—0.012'

5.7917 + 0.0264

0,5868 + 0.0114
0.2871 + 0.0015

0.0724 + 0.0013
—0.012'

+0.24 +O, S

—2. 1

(r2) ')'2 (fm)

RJ, (rm)

R„l, (fm)

a(E2) (e'b')
8(E4) (e b )

Xp

X2

X4

constraints
2

Xtotal

5.0922 '
6.9486 + 0.0063

7.7512 + 0.0188

3 380a

0.1343 + 0.0028

5.1

3.7
19.4

0.9
28.3

14

5.0922 '
6.9524 + 0.0063

7.7457 + 0.0190

3.380'
0.1406 + 0.0031

4.0

4.2

16.6

0

24.9

14

—0.05

+0.07

—0.6
+0.3

'Rigidly constrained to values shown during fit.

TABLE VI. ~52 Sm pseudodata: deformed Fermi distribution fits. The pseudodata were generated using
the deformed Fermi shape with c&=5.7752 fm, z=0.5S01 fm, p2

= 0.2888, p4 =0.0881,p6 =0.0168, implying
&r2& '1 =5 0316 fm, R„~2 = 6 9067 fm, R„(4=7 6680 fm, R„(6=83601 fm, 8(E2) =3 518 e b~ 8(E4) =

0.2101 e b" andB(E6) =0.0141 e b . &r ) ~2 was constrained by adding the rmsradius as adata point
in the fit, &r2&~)'2 = 5.085 + 0.06 fm.

Parameter DWBA analysis Coupled-channel

analysis

% dif.

dif. /error

c, (rm)

z (rm)

P2

P4

p6

(r )' 2 (fm)

R(rl4 (rm)

R~rl6 (rm)

a{E2) (e'b')
B(E4) (e2b4)

a(E6) (e'b')

Xp

X2

X4
2

X6

X2
constraints

~2
total

5.7877 + 0.0043

0.5489 + 0.0016
0.2914 + 0.0013

0.0897 + 0.0007

0.0161 + 0.0003

5.0412 + 0.0027

6.9213 + 0.004S

7.6810 + 0.0059

8.3823 + 0.0075

3.626 + 0.030
0.2211 + 0.0025

0,0147 + 0.0003

15

32

44

165

0.5
256

67

5.7778 + 0.0043

O.S499 + 0.0016

0.2888 + 0.0013

0.0884 + 0.0006

0.0166 + 0.0002

5,0325 + 0.0027

6.9078 + 0.0044

7.6667 + 0.0058

8.3613 + 0.0073

3.505 + 0.029

0.2100 + 0.0023

0.0140 + 0.0002

14

18

19

14

0.8
66

67

+0.17

-O. i8
+0.90

+ 1.47
—3.01

+0.17

+0.20

+0.19

+0.2S

+3.45

+5.29

+5.00

+2.3
—0.6
+ 2.0

+ 2.2
—2.S

+3.2
+ 3.1
+2.5

+2.9

+4.2
+4.8
+3.5
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FIG. 8. Coupled-channel dispersio'n correction, in percent, for the l = 0, 2, and 4 scattering in ~52Sm, as calculated
by ZENITH for the lower energies of the NBS-MIT experiment. The correction is defined by Eq. (].].).

the fact that a larger fraction of the low-energy
data is in the diffraction minimum where the coup-
led channel effects are greatest.

The Saclay high-energy measurements and the
NBS-MIT low-energy measurements are not in
agreement on the magnitude of the 4' form factor.
The high-energy data are approximately 30% high-

er than the low-energy data at the first maximum
of the form factor. Dispersive effects, at least
in the context of our rotational model calculation,
do not explain this discrepancy, and further in-
vestigation has not revealed the cause of this dis-
agreement. It should be noted, however, that the
recent (n, o. ') measurement of the Bochum group"
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FIG. 9. Experimental form factors {corrected for coupled-channel effects) for elastic {l = 0) and inelastic {1=2and 4)

scattering from Sm as measured in the NBS-MIT low-energy experiment {Ref.19). The solid curves are basedon the
best-fit deformed Fermi charge distribution.

yields a value of 0.2144+ 0.042e'b' for B(E4),
which is in good agreement with the high-energy
result, but disagrees with the low-energy result.

C. Highwnergy pseudodata

It has been noted above, the inclusion of coupled-
channel effects in '"Sm yielded only modest
changes in the intrinsic nuclear shape deduced.
This lack of effect was attributed to the fact that
the uncertainties in the experimental cross sec-
tions are similar in magnitude to the coupled-chan-
nel corrections. In order to examine the level
of experimental accuracy at which coupled-chan-
nel corrections would become important in the
interpretation of '"Sm (e, e') data, we have ana-
lyzed a set of pseudodata with improved accuracy.

This pseudodata was generated at the energy and
angle combinations measured in the Saclay ex-
periment by first calculating theoretical cross
sections (in DWBA) using an assumed deformed
Fermi distribution for the intrinsic nuclear shape.
In order to simulate the results of an experimental
measurement, these theoretical cross sections
were then randomized by multiplying each cross
section v, (E, 6, ) by a factor (1+x;), where the

x, mere randomly chosen from a Gaussian distributed
set having an average value 0.0 and variance of
0.05. Each cross section was then assigned a
statistical uncertainty of 5%. Finally, each of the
o& was multiplied by a factor 1+E(E„8&)to in-
clude the effect of coupled channels by inverting
the correction of Eq. (12). The data were now

representative of a possible experimental mea-
surement in which statistical uncertainties for
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TABLE VII. Sm pseudodata: separated deformed Fermi distribution fits (see Table VI caption regard-
ing pseudodata).

Parameter 0%BA analysis Coupled-channel

analysis

% dif.

dif. /error

f=0

co (fm)

z (fm)

P2

Py

P6

(r )' (fm)
x2/v

5.8001 + 0.0291

0.5333 + 0.0254

0.3112 + 0.0290

0.0881 '
0.0168~

5.0424 + 0.0090

15/16

5.7914 + 0.0301

0.5413 + 0.0265

0.3039 + 0.0315

0.0881 '
0.0168 s

5.0415 + 0.0087

11/16

+0.15

+ 1.48

+2.40

+0.02

+0.3
+0.3
+0.2

+0.1

I=2

cp (fm)

z (fm)

p2

P4

P6

R„[, (rm)

8(Z2) (e'b')
x2/v

5.7749 + 0.0075

0.5429 + 0.0036
0.2817 + 0.0029

0.0881 '
0.0168'

6.8815 + 0.0116
3.322 + 0.079

14/17

5.7845 + 0.0074

0.5412 + 0.0035

0.2(32 + 0.0029

0.0881 '
0.0168'

6.8883 + 0.0115

3.378 + 0.080
12/17

+0.17

+0.31

+0.53

+0.10

+ 1.66

+ 1.3
+0.5
+0.5

+0.6
+0.7

c, (fm)

z (fm)

P2

Pg

P6

Z„I4 (rm)

8(E4) (e b )
x2/v

5.7887 + 0.0059

0.5477 + 0.0030
0.2914'

0.0889 + 0.0012

0,0161 I

7.6786 + 0.0108

0.2182 + 0.0052

43/14

5.7681 + 0.0059

0.5497 + 0.0031

0.2&8& '
0.0874 + 0.0012

0.0166'
7.6592 + 0.0110
0.2055 + 0.0049

17/14

+0.36
—0.36

+ 1.72

+0.25

+6.18

+3.5
+0.7

+ 1.3

+ 1.8
+2.6

I=6

co (fm)

z (fm)

P2

P4

P6

R(, i6 (fm)

B(E6) (e2b)
x2/v

'Not varied during fit.

5.7965 + 0.0053

0.5472 + 0.0030
0.2914'
0.0897"

0.0162 + 0.0003

8.3823 + 0.0139
0.0150 + 0.0003

163/12

5.7770 + 0.0049

0.5505 + 0.0030

0.2888'

0.0884'
0.0167 + 0.0003

8.3650 + 0.0141

0.0141 + 0.0003

14/12

+0.34
—0.60

—3.00

+0.21

+6.38

+4.0

-1.7
+ 1.2

+3.0

all measured cross sections were 5%. It was com-
parable in accuracy to the Saclay experiment for
the l =0 and l=2 excitation, but represents a four-
fold improvement in accuracy for the l=4 mea-
surements and a tenfold improvement in accuracy
for the l =6 measurements. These data were
treated in the usual manner —that is, they were
first analyzed in DWBA, corrected for coupled-
channel effects based on the DWBA best-fit charge
density, and then reanalyzed.

The fits obtained for this data using the deformed
Fermi distributions are shown in Table VI. The

coupled-channel fit is essentially perfect, verify-
ing the procedure used for generating the data
set. The neglect of coupled-channel effects re-
sults in errors of as much as four standard de-
viations in the parameters of the charge density
deduced from this data. Similar results were ob-
tained using the separated deformed Fermi dis-
tribution as shown in Table VII. In this case,
parameter differences are less than j..3 standard
deviations for the l = 0 and l = 2 analysis, but as
much as 3.5 and 4.0 standard deviations for the
l =4 and l = 6 analysis, respectively. This result
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FIG. 10. The solid curves are the uncertainties in the transition charge densities for ~ Sm as obtained from the
Fourier-Bessel analysis of pseudodata (see text). The dashed curves are the changes in these transition charge den-
sities due to the inclusion of coupled-channel effects in the analysis. Note that the densities plotted are tvgice the den-
sity defined in Eq. (1) for p (~), and 1/v 7). times the densities defined in Eq. (1) for the other p, (~).

may be understood by noting that the coupled-
channel corrections, as displayed in Fig. , 2, are
less than 5% for l=0 and l= 2 scattering, but are
as large as 30/~ for 1=4 and 100% for l = 6 scatter-
ing. We note also that the SDF model is unable
to -achieve a good fit to the / = 4 and l = 6 data,
particularly in the diffraction minima where the
coupled-channel .effects are largest. Even the
Fourier-Bessel analysis, which has considerably
more flexible transition charge densities, cannot
reproduce the form factor in DWBA, as can be

seen in Table VIII. In Fig. 10 we plot, for the
Fourier-Bessel analysis of the pseudodata, the
uncertainty in each transition charge density com-
pared to the difference between the coupled-chan-
nel and DWBA results. The l=0 and l=2 plots
are similar to those obtained for the Saclay data,
presumably because the Saclay data already had

cross section uncertainties of order 5% for these
states. However, for the l =4 and l =6 data we

now see that the error due to the omission of
coupled-channel effects in the analysis is com-
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TABLE VIII. ' Sm pseudodata: Fourier-Bessel fits (see Table VI caption regarding pseudodata. R =11.0 fm for all fits).

Parameter DWBA

1=0
DWBA CC

a&

Q2

Q3

a4

a6

Q7

as

Q9

Q]p

a 1 1

RJ, (fm)

B(El) (e2b)
x2/v

0.051 05 + 0.000 20

0.053 66 + 0.001 33
—0.028 02 + 0.001 57
—0.029 28 + 0.000 72

0.01544 + 0.000 52

0.012 97 + 0.000 40

-0.006 60 + 0.000 27
—0.004 60 + 0.001 02

0.002 90 + 0.001 21
—0.000 13 '
—0.000 12 '

5.053 05 + 0.028 73

16/19

(=4

0.051 06 + 0.000 20

0.053 84 + 0.001 33
—0.027 70 + 0.001 58
—0.029 31 + 0.000 72

0.015 34 + 0.000 52

0.012 91 + 0.00040
—0.006 49 + 0.000 27
—0.004 47 + 0.001 01

0.002 91 + 0.001 21
—0.000 11 '
—0.000 15 '

5.052 56 + 0.028 54

12/19

0.018 73 + 0.000 30

0.012 56 + 0.000 53
—0.021 00 + 0.000 31
—0.006 82 + 0.00040

0.015 47 + 0.000 21

0.001 06 + 0.000 33
—0.008 19 + 0.00092

0.001 26 + 0.002 36

0.001 75'
—0.002 09 '

6.8041 + 0.1444

3.152 + 0.297

14/20

(=6

0.018 82 + 0.000 29

0.012 37 + 0.00053
—0.021 28 + 0.000 30
—0.006 58 + 0.000 40

0.015 63 + 0.000 21

0.000 87 + 0.000 33
—0.008 40 + 0.000 91

0.001 52 + 0.002 30

0.001 47 '
—0.002 13 '

6.809 8 + 0.1409

3.198 + 0.295

11/20

a]
Q2

Q3

a4

a5

a6

a7

as

Q9

R„l, (fm)

B(El) (e2b')

x2/v

0.01014+0.00016
0.008 17 + 0.00016
—0.009 28 + 0.000 13
—0.003 34+ 0.00014
0.007 85 + 0.00018
—0.000 33 + 0.00042
—0.005 52 + 0.001 31

0 00089 a

0.001 29'
7.407 6 + 0.1605

0.1834 + 0.021 1

37/17

0.01012 + 0.00016
0.008 11 + 0.00016

—0.008 91 + 0.00012
—0.003 84 + 0.00014
0.007 97 + 0.00017
—0.000 56 + 0.00042
—0.005 57 + 0.00128

0.001 16'
0.001 22 '

7.607 5 + 0.1376
0.2040 + 0.022 3

13/17

0.003 91 + 0.00006

0.002 04 + 0.000 05
—0.005 37 + 0.000 06
—0.001 15 + 0.00006

0.003 70 + 0.000 22
—0.001 89 + 0.00068

—0.001 63 '
0.002 42 '

8.002 0 + 0.228 2

0.011 5 + 0.002 1

150/16'

0.003 87 + 0,00007

0.002 25 + 0.00005
—0.005 04 + 0.00005
—0.00141+00005

0.003 89+0.00021
-0.001 22 + 0.000 64

—0.001 51 '
0.002 28 '

8.053 5 + 0.226 5

0.01 13 + 0.0021
14/16

'Not varied in final fit.

102 of the X total comes from one data point (60.150').

parable to experimental uncertainties in the tran-
sition charge. The structure observed in these
difference charge densities can be understood by
arguments identical to those presented in Sec.
IV A. for the Saclay data Fourier-Bessel analysis.

We have also generated a second set of pseudo-
data with 2—,'% average uncertainty. This repre-
sents approximately a twofold improvement in
accuracy for / = 0 and 5 = 2 measurements when
compared to the Saclay experiment. For these
data, the coupled-channel effects are comparable
to experimental uncertainties for the l =0 and k =2
scattering also. It is clear, then, that modern
electron-scattering experiments are rapidly ap-
proaching the level of accuracy at which coupled-
channel effects will no longer be negligible.

V. ANALYSIS OF ~ Er DATA

The case of '"Er is particularly interesting from
the point of view of coupled-channel effects be-
cause this nucleus has a rather small hexadecapole
moment. [The B(E4) for "'Er is approximately

; the value of the B(E4) .in '"Sm.] Owing to this
fact, the single-step excitation of the I, = 4 state
is suppressed, and the (two-step) sequential ex-.

citation of this level is relatively more important.
The data analyzed for "'Er were the results ob-
tained by the MIT group for the scattering of elec-
trons of energies between 34.65 and 321.28 MeV.
The lower-energy data were obtained in collabora-
tion with the NBS electron-scattering group, and
have already been reported. " The high-energy
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data were obtained in a recently completed ex-
periment at the Bates Linear Aeeelerator. ' As
the two experiments yielded generally consistent
results for the scattering from "'Er, the data
were combined for the purpose of this analysis.

Our attempts to fit this data using either a de-
formed Fermi distribution or a deformed modified
Gaussian distribution for the intrinsic shape were
unsuccessful, presumably due to the fact that the
length parameters for the '"Er transition char ge
densities are even more disparate than was the
case in '"Sm. This can be seen clearly in Tables

IX and X where the best-fit parameter sets for the
analysis of these data using the separated deformed
Fermi (SDF) and separated deformed modified
Gaussian (SDMG) distributions are presented.
The coupled-channel corrections to this data,
based on the SDMG fit, are shown in Fig. 11. The
general features of these corrections, as dis-
cussed in Sec. IV A. above, are seen to also apply
to the ease of '"Er. It is clear, however, that
the details of the correction vary from nucleus to
nucleus, both in the diffraction minima and outside
them. The correction to the '"Er l=4 cross sec-

TABLE IX. MIT and NBS-MIT ' Er data: separated deformed Fermi distribution fit.

Parameter D%8A analysis Coupled-channel % dif.

analysis dif. /error

l =0

l=4

co (fm)

z (fm)

P2

p4

p6

(I )' (fm)
X2/v

co (fm)

z (fm)

W

P2

p4

p6

R,rl2 (fm)

B(E2) (e2b2)

X2/v

co (fm)

z (fm)

P2

p4

p6

R,„i4 (fm)

B(F.4) (e b4)

X2/v

5.9&38 + 0.0553

P.4460 + 0.0314
0.1889 + 0.0688

0.4404 + 0.0108

0.0'
0.0'

5.2373 + 0.0162

60/26

6.1238 + 0.0505

0.5440+ 0.0100
-0.2101 + 0.0745

0.3408 + 0.0050

0.0'
0.0'

6.9702 + 0.0378

5.915 + 0.198

103/26

6.1508 + 0.0776

0.6503 + 0.0071
-0.4174 + 0.1736

0.3504'
0.0042 + 0.0028

0.0 '
8.2828 + 0.2454

0.0851 + 0.0128
80/23

S.9546 + 0.0587

0.4562 + 0.0334
0.2262 + 0.0708

0.4395 + 0.0119
ppa

0.0'
S.2401 + 0.0163

57/26

6.1016+0.0484

0.5457 + 0.0098
—0.1S50 + 0.0756

0.3403 + 0.0049

0.0 '
0.0 '

6.9932 + 0.0359

5,918 + 0.191

100/26

5.8795 + 0.0673

0.6769 + 0,0073
-0.0133 + 0.1729

0 3504a

0.0118 + 0.0028

0.0 a

8.5403 + 0.0537

0.1029 + 0.0091

62/23

0.49
—2.24

—16.49

0,20

—0.05

0.36
—0.31

35.55

0.15

—0.33
—0.05

4.61

-3,93

3038.35

—64.41

—3.02

-17.30

0.5
—0.3
—0.5

0.1

—0.2

0.5
—0.2

0.7
0.1

—0.6
0.0

4.0
—3.6

2.3

—4.8
—2.0

co (fm)

z (fm)

P2
l=6 p4

p6

R,„i, (fm)

B(E6) (e2b6)

X2/v

'Not varied during fit.

5.5358 + 0.1701

0.9464 + 0.0679
—0.0769 + 0.4054

0.6211 a

0.0276'
0.0098 + 0.0031

10.7179 + 0.1273

0.1125 + 0.0206

7/8

S.4652 + 0.1931

0.9S10 + 0.0806
—0.0020 + 0.4547

0.6211'
0.0276'

0.0112 + 0.0030

10.7571+0.0708

0.1109+0.0274

6/8

1,29
—0.15

3745.00

12.50
—0.36

1.80

0.4
0.0
0,2

—0.5
—0.6

0.1
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TABLE X. MIT and NBS-MIT ' Er data: separated deformed modified Gaussian distribution fits.

Parameter D%8A analysis Coupled-channel

analysis

% dif.

dif. /error

l=0

co (fm)

z (fm)

P2

P4

P6

(r') '~' (rm)

x2/v

5.2629 + 0.0458

3.0331 + 0.0296
- 0.7204 + 0.0785

0.4168 + 0.1778
pa

pa

5,2551 + 0.0174

67/27

5.2360 + 0.0462

3.0147 + 0.0299

0.7315 + 0.0781

0.5171 + 0.1528

pa

pa

5.2393 + 0.0164

66/27

0.51

0.61
—1.51

—19.40

0.30

0.6

0.6
—0.0
—0.7

1.0

f=2

co (fm)

z (fm)

P2

p4

P6

R„I2 (rm)

B(~2) (e'b')
x'/v

5.6981 + 0.0656

2.8274 + 0.0236

1.0122 + 0.2103

0.8584 + 0.0298
08

a

6.9497 + 0.0217

6.101+0.145

66/27

5.7100 + 0.0610

2.8209 + 0.0229

1.0708 + 0.2090

0.8485 + 0.0277

pa

a

6.9577 + 0.0214

6.017 + 0.141

69/27

-0.21

0.23
—5.47,

1.17

—0.11

1.40

0.3
—0.3

0.4

—0.4

0.6

(=4

co (fm)

z (fm)

p2

p4

p6

R,„~4 (rm)

B(E4) (e b )
x2/v

6.2169 + 0.1759

2.8500 + 0.0516
—0.2489 + 0.4495

0.6766 + 0.0450

0.0397 + 0.0052
pa

8.0038 + 0.1661

0.0636 + 0.0117
84/23

6.2973 + 0.1621

2.8367 + 0.0365
-0.3925 + 0.2627

0.6146 + 0.0281

0.0448 + 0.0048

0 4l

7.8837 + 0.0887

0,0533 + 0.0071

48/23

—1.28

0.47
—36.56

10.09
-11.38

1.52

19.32

—0.5
0.0

—0.6
2.2

—1.0

1.4

1.5

co (rm)

z (fm)

P2

I 6 p4

p6

R„i4 (rm)

B(E6) (p2b6)

x2/v

Not varied during fit.

6.2488 + 1.0445

3.3250 + 1.6839
-0.1961 + 4.8286

0.8966 + 1.1358

0.1106 + 0.2177

0.0)77 + 0.0195

9.2316 + 0.5026

0.0181 + 0.0153
16/7

6.0900 + 1.0539

3.4138 + 1 2332
—0.1556 + 3.9626

0.9765 + 0.8525

0.1027 + 0.1527

0.0186 + 0.0192

9.2983 + 0.5026

0.0179 + 0.0136
16/7

2.61
—2.60

26.03
—8.18

7.69
—4.84
—0.72

1.12

0,2

—0.1

0.0
—0.1

0.1

—0.1

—0.1

0.0

tion, for example, is 300%%uz in the first diffraction
minimum while it reached only 20%%up in the cor
responding minimum in '"Sm. It is also clear
from Fig. 11 that the corrections depend on both
the energy and the effective momentum transfer,
a fact whic. h considerably complicated the analysis
of data taken at many energies.

Application of these corrections to the data, as
outlined in Sec. III C., resulted in the coupled-
channel fits shown in Tables IX and X. The coup-
led-channel best-fit form factors for the SDMG
model are shown in Fig. 12. The quality of the

fits was only moderately good, with X' per degree
of freedom as large as 4. The SDMG model yield-
ed somewhat better fits to the k =2 and l =4 scat-
tering. As expected, the inclusion of coupled-
channel effects had the largest impact on the /=4
transition charge density. Parameter changes of
2 to 5 standard deviations were found in the SDF
analysis, while changes of 0.3 to 2.2 standard
deviations were observed, in the SDMG fits to this
data. For all other transition charge densities,
the parameter changes due to the inclusion of
coupled-channel effects were less than one stand-
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FIG. 11. Coupled-channel dispersion corrections, in percent, for the l = 0, 2, 4, and 6 transitions in ' 6Er, including
all couplings shown in Fig. 1(e). The correction is defined by Eq. (11).

ard deviation. In the case of the l =4 transition,
the quality of the fits (as measured by X'/v} was
significantly improved when coupled-channel ef-
fects were included in the analysis. This improve-
ment can be traced directly to the region of the
second diffraction minimum. The "filling in" of

this minimum, as predicted by the coupled-chan-
nel calculation, is apparently a feature of the
measured cross sections.

We have also analyzed the "'Er data using the
Fourier-Bessel expansion for the transition charge
densities as outlined in Sec. III B. above. The
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FIG. 12. Experimental form factors (corrected for coupled-channel effects) for elastic (l =0) and inelastic (l =2,
4, and 6) scattering in Er as measured in the MIT high-energy experiment (Ref. 6) and the NBS-MIT low-energy ex-
periments (Ref. 19). The solid curves are based on the best-fit SDMG charge density.

best-fit coefficients for this data are shown in
Table XI for both the DWBA and the coupled-chan-
nel analysis. The transition charge densities ob-
tained from the Fourier-Bessel coupled-channel
fits are shown in Fig. 13 together with those ob-
tained by SDMG model fits to the data. The agree-
ment between the model analysis and the Fourier-
Bessel analysis is not as satisfactory for '"Er as
it was for '"Sm. This is not surprising in view
of the relatively poor y' values for the SDMG mod-
el fits. The most striking differences are those
obtained for radii less than 3 fm in the l=0 tran-
sition density, where the SDMG analysis predicts
a central depression while the Fourier-Bessel
analysis results in a central maximum. These
differences can be traced directly to the region
of the second maximum in the elastic-scattering
form factor. The best-fit SDMG model density
consistently underestimates the cross section in
this region, while the Fourier-Bessel density

yields an excellent fit to the data. If we compare
the best-fit Fourier-Bessel coefficients with the
coefficient set obtained by analytic expansion of
the SDMG model density using Eq. (10), we find
that the most significant differences occur in the
fourth and fifth coefficients. These coefficients
are determined by data at momentum transfers
in the region of 1.14 and 1.43 fm ', respectively,
precisely the region of the second maximum. The
changes in these two coefficients above explain
over 60% of the difference between the central
densities p(0) as obtained in these two analyses.

The Fourier-Bessel analysis yielded excellent
fits to all of the observed scattering data with the
exception of the l =2 state, where the lowest y'
obtained was over two per degree of freedom.
This relatively poor y' is apparently due to an
overly optimistic estimate of the cross section
uncertainties in the lower-energy NBS-MIT data. "
Fourier-Bessel fits to the high-energy MIT data
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FIG. 13. Best-fit transition charge dens'. ties for Kr. The solid curves result from the extremes allowed by the
Fourier-Bessel analysis, while the dashed curved are the results of the SDMG model analysis. Note that the densities
p]otted are twice the density defined in Eq. (1) for po (~), and 1/v 7t' times the densities defined in Eq. (1) for the other

(&)

alone yield y'/v values of 16/16, while SDMG
model fits to the low-energy data alone yield a
g'/v of 22/6. As the energy resolution obtainable
in the NBS-MIT experiment was barely adequate
to separate the l=2 scattering from the elastic
scattering (see, for example, Fig. 4 of Ref. 19),

the underestimation of the cross section uncer-
tainties is not surprising. For the /=4 scattering,
as was the case for the SDMG model analysis, the
coupled-channel fit to the data was significantly
better than the DWBA fit due to difference between
the calculated cross sections in the region of the
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TABLE XI. MIT and NBS-MIT ' Er data: Fourier-Besser fits. (8 =11 fm for l =0, 2, and 4 fits, 8 =12 fm for l =6 fjt).

Parameter
I=O

0%BA

a&

a4

a6

as

a9

a&0

a
1 1

R,„[, (fm)

8 (El) (e2b')

X2/v

0.05442 + 0.00015

0.047 16 + 0.000 94
—0.03865 + 0.00110
—0.01967 + 0.001 39

0.022 09 + 0.000 83

0;007 87 + 0.000 56
—0.005 30 + 0.000 51

0.000 50 + 0.000 64

0.000 52 + 0.000 82
—0.000 35 '
0.000 12 '

5.227 01 + 0.020 28

0.054 49 + 0.00015

0,047 97 + 0.000 94
—0.037 59 + 0.001 12

—0.01962 + 0.001 38

0.022 16 + 0.000 83

0.007 89 + 0.000 57
—0.005 05 + 0.000 50

0.000 25 + 0.000 64

0.001 30 + 0.000 77
—0.000 49 '
0.000 19 '

5.222 20 + 0.02041

0.024 60 + 0.000 19

0.014 77 + 0.000 49
—0.02603 + 0.00060
—0.002 04 + 0.001 09

0.01840 + 0.000 46
—0.001 95 + 0.001 09
—0.00S 72 + 0.001 13

0.002 44 + 0.001 80

0.004 41 '
—0.002 41 '

6.904 96 + 0.097 68

5.773 + 0.331

61/28

0.024 2S + 0.000 18

0.014 ].3 + 0.00049
—0.02618 + 0.00060
—0.001 77 + 0;001 09

0.018 66 + 0.00047
—0.002 14 + 0.001 11
—0.00S 69 + 0.001 16

0.002 17 + 0.001 86

0.004 56 '
—0.002 43

6.93317 + 0.097 35

5.696 + 0.327

67/28

l=4 l=6

a&

a4

a6

09

R„[1 (fm)

a(Fl) (e'b')
X2/v

0.004 04 + 0.000 23
—0.000 66 + 0.000 3S
—0.008 34 + 0.000 21

0.003 23 + 0.000 20

0.004 89 + 0,00033
—0.001 33 + 0.000 88
—0.002 28 + 0.00102

0.002 50 '
—0.001 64'

5.453 13 + 1.91504

0.01942 + 0.011 96

58/26

0.004 10 + 0.000 23
—0.00035 + 0.000 33
—0.007 68 + 0.000 17

0.002 17 + 0.000 18

0.004 91 + 0.000 29
—0.002 29 + 0.000 65
—0.000 28 + 0.00092

0.002 35 '
—0 00143'

7.488 90 + 0.529 02

0.041 35 + 0.016 25

35/26

0.002 27 + 0.000 32
—0.000 87 + 0.000 37.
—0.003 09 + 0.00017

0.00007 + 0.00017
0.002 82 + 0.000 34
—0.000 27 + 0.001 04

—0.000 86 '
0.001 03 '

10.009 18 + 0.237 11

0.084 65 + 0.039 11

7/12

0.002 35 + 0.00034
—0.000 56 + 0.00035
—0.002 93 + 0.00016
—0 00006+ 0 00015
0.002 86 + 0.000 30

0.000 71 + 0.001 14
—0.001 15 '
0.001 04'

9.788 35 + 0.344 82

0.069 40 + 0.037 33

5/12

'Not varied in final fit.

second minimum.
The agreement between the model fits and the

Fourier -Bessel fits for the inte gr al quantities
describing the transition charge densities was
reasonable with two exceptions; the SDF fit to
the l = 4 transition and the SDMG fit to the L = 6
transition. The quality of the fits in both of these
cases was significantly worse than the quality of
the fits obtained by other analyses, and these two
fits should probably be discarded. The Fourier-
Bessel analysis results for the B(E2) and B(E4)

were also in good agreement with the values of
(5.9146+ 0.0243)e'b' a.nd (0.05856+ 0.0348)e'b' ob-
tained by a recent Coulomb excitation experiment. "

In Fig. 14 we show the uncertainty &p, (x) in each
of the transition charge densities p, (r) as obtained
from Fourier-Bessel analysis. For comparison,
the differences in the deduced densities due to
the inclusion of coupled-channel effects are also
shown. For the "'Sm analysis, these density
changes were always bounded by the statistical
uncertainty in the experimental data. In contrast,
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FIG. 14. The solid curves are the uncertainties in the transition charge densities for ~66Er as obtained from the Fourier-
Bessel Analysis of the MIT high-energy data and the NBS-MIT lour-energy data. The dashed curves are the changes
in these transition charge densities due to the inclusion of coupled-channel effects in the analysis. Note that the densi-
ties plotted are twice the density defined in Eq. (1) for po (~), and lv ~ times the densities defined in Fq. (1) for the other

for the case of "'Er these density changes are
typically comparable to the experimental uncer-
tainties, and even exceed the experimental un-
certainty for significant portions of the It=4 and
l =6 transition densities. As was the case for
'"Sm, we note that the coupled-channel and DWBA
transition densities for "'Er differ primarily at
wavelengths corresponding to the diffraction min-
ima. This can be seen both in Fig. 14 and in the
coefficient changes in Table XI. It is clear from
these results that coupled-channel effects are as
important as other sources of uncertainty in the

detailed analysis of electron-scattering data for
166Er

In Fig. 15 we show the intrinsic shape for "'Er
obtained from the coupled-channel Fourier-Bessel
analysis of the data by combining the transition
charge densities under the assumption of rigid
rotation by using Eq. (l). Also shown are the
shapes obtained using the SDF and SDMG model
fits. The contours at 10% and 50% of the central
density agree among the fits. All three fits also
generate lobes in the density, although the details
of these lobes differ significantly among the an-
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ing in the diffraction minima where the coupled-
channel effects are largest. It is clear from our
results that an understanding of dispersive pro-
cesses is important in the detailed interpretation
of modern electron-scattering experiments in terms
of nuclear transition charge densities. It must
be noted, however, that dispersive effects (at
least in the context of our calculation) are much
smaller than the discrepancies which currently
exist between electron-scattering experiments
and the predictions of the best available micro-
scopic theories for deformed nuclei. "
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