Application of quasi-two-body scaling to $p + A \rightarrow p + X$

S. Frankel, W. Frati, R. M. Woloshyn,* and D. Yang Physics Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104

(Received 27 December 1977)

Previously unpublished data on $p + A \rightarrow p + X$, by Cochran *et al.*, covering a wide range of angles and atomic numbers, are analyzed to probe the validity of the single scattering model and "quasi-two-body scaling."

NUCLEAR REACTIONS Inclusive cross section, structure function, high momentum components, scaling.

We have recently obtained hitherto unpublished data¹ on the interaction of 730 MeV protons (p + A - p + X) with a large range of nuclei and over a large range of angles which are ideally suited to studying the validity of the single scattering model² and of "quasi-two-body scaling"³ (QTBS).

In this model the inclusive cross sections per nucleon are related to the differential cross sections for p-p scattering on free stationary protons and to the structure function G(k), which is a functional of the ground state nuclear wave function,⁴ by

$$d\sigma/d^{3}q = C(p, k_{\min})G(k_{\min})/|\mathbf{\tilde{p}}-\mathbf{\tilde{q}}|, \qquad (1)$$

with

$$k_{\min} = |\vec{\mathbf{p}} - \vec{\mathbf{q}}| - |\vec{\mathbf{p}}'| \,. \tag{2}$$

FIG. 1. $d\sigma/d^3q$ per nucleon vs $q^2/2pm$; $p + Ta \rightarrow p + X$; 730 MeV incident protons.

Here \tilde{p} is the momentum of the incident proton, \tilde{p}' is its final momentum, and \tilde{q} is the momentum of the detected proton. k_{\min} is the minimum momentum of the recoiling (A-1) nucleus that allows production of a proton of momentum \tilde{q} . $d\sigma/dq^3$ is the inclusive cross section, $d^3\sigma/q^2dqd\Omega_q$. In the region of energies covered by the Cochran *et al*. data, elastic p-p scattering is expected to play a dominant role. In addition, inelastic scattering would require higher values of k_{\min} for the same observed q. Thus we employ the value of $C(p, k_{\min})$ obtained from elastic scattering as the best approximation.³

$$C(p, k_{\min}) = [s(s - 4m_p^2)/32\pi^2 pm_p E_q] \times [d\sigma(\vec{k}_{\min} \rightarrow \vec{q})/dt].$$
(3)

18 1379

© 1978 The American Physical Society

FIG. 3 $G(k) = |\vec{p} - \vec{q}| d\sigma/d^3q/C(p, k_{\min})$ per nucleon vs k_{\min} ; $P + Ta \rightarrow p + X$.

FIG. 4. $d\sigma/d^3q$ per nucleon vs $q^2/2pm$; $\theta = 90^\circ \cdots 150^\circ$; Be, C, Al, Ti, Cu, Ag, Ta, Pb, and Th. All experimental points are plotted to show the values of the cross section from the lowest to the highest momenta.

FIG. 5. $G(k) = |\vec{p} - \vec{q}| d\sigma/d^3q/C(p, k_{\min})$ per nucleon vs k_{\min} ; same targets and angles as in Fig. 4. G(k) falls rapidly but is not represented by a single exponential.

To use Eq. (3) we have employed interpolations of the data on p-p scattering,⁵ since not all values of $d\sigma/dt$ at the appropriate values of s(k) and t(k) have been measured. s and t are the Mandelstam variables for a bound nucleon, where the (momem-tum, energy) four-vector is $[k, m_A - (k^2 + m_{A-1}^2)^{1/2}]$.

A basic assumption of the model is that $d\sigma/dt$ varies slowly with k_{\min} as compared with $G(k_{\min})$. This condition is satisfied for angles from 90° to 150° (lab) but not for the forward angles for which the factorization of Eq. (1) does not apply.

Figure 1 shows the differential cross section nucleon vs $q^2/2m_p$ for ¹⁸¹Ta at the laboratory angles 90°, 105°, 120°, 135°, and 150°. These cross sections show large angular variations, falling off more rapidly at the largest backward angle. Figure 2 shows the same data, but this time $|\vec{p} - \vec{q}| d\sigma/d^3 q/n$ ucleon is plotted vs k_{\min} , i.e., C has been arbitrarily set to unity in Eq. (1). The shapes are more nearly the same at each angle but the magnitudes differ. Finally, Fig. 3 shows the same data, but now the variation of C with angle and momentum obtained from Eq. (3) has been employed to present $|\vec{p} - \vec{q}| (d\sigma/d^3 q)/C(p, k_{\min}) \equiv G(k_{\min})$

vs k_{\min} . This figure shows the operation of QTBS when the p - p scattering information is properly employed. It is clear that the *s* and *t* dependence with laboratory angle are needed to obtain a universal structure function G(k).

In order to illustrate the A independence of the scaling we show in Fig. 4 a plot of all the data at all angles for Be, C, Al, Ti, Cu, Ag, Ta, Pb, and Th, for $d\sigma/d^3q$ per nucleon vs $q^2/2m_p$, and similarly in Fig. 5, a plot of all the values of $G(k_{\min})$ over this same range of $A(9 \rightarrow 232)$ vs k_{\min} . These "scatter" plots are meant to show at a glance the operation of QTBS and the approximate A^1 dependence of the magnitude of G(k).

In Fig. 6 we compare the 730 MeV data of Cochran *et al.* at 150° with the recent higher momentum range data at 800 MeV of Frankel *et al.*⁶ at 158° to show the internal consistency of the two experiments.

In this work we have attempted to show for values of $C(p, k_{\min})$ and k_{\min} characteristic of proton production from nuclei, that a common structure function G(k) can be extracted from the data. In this connection the reader is referred to a similar demonstration by Frankel and Frati,⁷ this time for antiproton production, of the validity of Eq. (1). In the antiproton case, k_{\min} and $C(k_{\min})$ are entirely different functions of the observed antiproton variables. Yet these authors have observed QTBS with a similar universal function G(k). The straight line shown in Fig. 6 extends up to the same value of k studied in the antiproton data. Clearly G(k) is not a pure exponential. The line in Fig. 6 follows $\exp(-k/k_0)$ with $k_0 \cong 110 \text{ MeV/c}$. k_0

FIG. 6. $G(k) \text{ vs } k_{\min}$: 730 MeV, $\theta = 150^{\circ}$ (Ref. 1), and 800 MeV, $\theta = 158^{\circ}$ (Ref. 6), showing G(k) over a combined range from low to high internal momenta. The straight line shows $\exp(-k/k_0)$ with $k_0 = 110 \text{ MeV}/c$ (see text).

= 100 \pm 10 MeV/c was the best straight line fit to the $\overline{\rho}$ data.

Other tests of QTBS with the Cochran *et al.* data appear in the Los Alamos Conference proceedings, LA-6926-C, August 1977.

- *Present address: TRIUMPH, University of British Columbia, Vancouver, Canada.
- ¹D. R. F. Cochran, P. N. Dean, P. A. M. Gram, E. A. Knapp, E. R. Martin, D. E. Nagle, R. B. Perkins, W. J. Shlaer, H. A. Thiessen, and E. D. Theriot, Report No. La-5083-MS, 1972 (unpublished).
- ²R. D. Amado and R. M. Woloshyn, Phys. Rev. Lett. <u>36</u>, 1435 (1976).
- ³S. Frankel, Phys. Rev. Lett. <u>38</u>, 1338 (1977).
- ⁴S. Frankel, Phys. Rev. C 17, 694 (1978).
- ⁵O. Benary, L. R. Price, and G. Alexander, Report No. UCRL 20000 NN, 1970 (unpublished).
- ⁶S. Frankel *et al.*, preceding paper, Phys. Rev. C <u>18</u>, 1375 (1978).
- ⁷S. Frankel and W. Frati, Phys. Rev. C <u>16</u>, 1499 (1977).