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By using several optical potentials which fit satisfactorily results of a recent experiment on the elastic
scattering of ' 0 by "Si at Ei b = 55 MeV, exact calculations were performed so as to locate the positions of
the Regge poles, and to evaluate the associated residues and corresponding background integrals. Based on
the results thus obtained, a discussion is given of the roles which the pole and background terms play in the
description of the scattering between two heavy ions.

NUCLEAR REACTIONS Exact derivation of Regge poles; Residue; Pole and
background decomposition of scattering amplitude; 6O+ Si at &l,b= 55 MeV,

I. INTRODUCTION

Becently Braun-Munzinger et al. ' performed an
experiment to study elastic and inelastic scatter-
ing of "0by "Si, observing the cross section out
to 180', and found that the cross sections at these
ang1es are rather large and are highly oscillatory.
Previously, the same cross section was measured
up to about 60' and was analyzed by Cramer et al. ,'
mho found that a potential which they call "E18"
fits the limited data quite well. This potential be-
longs to the so-called strongly absorptive family.
Braun-Munzinger et a/. ' found that the E18 poten-
tial gives too small cross sections at larger angles,
where the experimental data can be fitted very well
by a Legendre polynomial ~P, (cos8} ', l being close
to the grazing angular momentum l . They, there-
fore, added a term3 with parameter's such that
this term resembles a contribution from a Begge
pole, which causes phenomenologically a shape
resonance at /= I,.

What the data of Bef. 1 showed is that the optical
potential to be'used must have a character thai is
largely different from that of E18. Thus, a few
groups of workers ' undertook to search for such
potentials. With such potentials one can fit the
data rather well, if not perfectly, and thus there
remains no need to add a Hegge-pole type term
in an ad hoc way.

It should be remarked that the Begge pole is
something that can be derived, once a potential is
given. ' This was discussed for heavy-ion scat-
tering in detail by Tamura and Wolter' (TW). With
the new data of Bef. 1, and a renewed interest in
the elastic scattering between heavy ions, me have
taken up this problem once again. Through accu-
rate calculations to locate the Begge poles, the
major portion of the present paper is devoted to
the numerical study of the role of the pole and
background terms in the Begge description of

heavy-ion elastic scattering. In performing cal-
culations, four sets of optical potential parameters
were considered; first E18' and then those by Shk-
olnik and Dehnhard (SD),' Golin and Kahana (GK), '
and Lee and. Chan (LC).'

The present work can be considered an extension
and jor continuation of our previous work. ' 'Ihe
basic formulas used here are essentially the same
as those that appeared in TW. We thus give in
Sec. II only a very few, those which are needed in
making clear the explanation of the results of the
calculations. The method of numerical calculations
are the same as in TW, and we shall not repeat
any discussion of it here. In TW, discussions
were given about the general behavior of the Begge
poles and the associated background integrals.
In particular we discussed in considerable detail
the energy dependence of the Begge poles, i.e.,
the behavior of the Begge trajectories. We also
discussed their dependence on the choice of collid-
ing partners. In the present paper, we concen-
trate our attention, on the contrary, io one pair,
colliding with a fixed energy; the elastic scatter-
ing of "0by "Siwith E„„.=55 MeV. ' In Sec. III,
the results of the calculation are presented. The
summary of our results and discussion are given
in Sec. IV.

II. SUMMARY OF THE FORMULAS

In the present section we give several formulas
which are needed for explaining the results of our
numerical calculations, as given in the next sec-
tion. These formulas are essentially the same as
some of those that appeared in TW. We shall thus
give them here without discussing their derivation. .

The amplitude for elastic scattering between
two spinless particles can be written as

f(8) =f, (8) + —g (2l +1)e"~ C,P, (cos8),1
~ p
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where f, (8) is the Rutherford scattering amplitude.
Other notation is standard except that C, is the
partial wave amplitude, related to the nuclear S-
matrix element 8, by

c, = —.(s, —1).=1
2$

(2)

~p„z(~,~.) gy„c(~.)
x -x„

+ . l
dX',

' „,c(x')z(~, ~')
d (5)

E(X,X') =2/(1+cosh[(A. —X)/b, ]]. (5)

Because of the exponential dependence of E(A., X')
on ~X -X'~, the contribution of the pole A,„ is lo-
calized to the I values for which ~X —X'[ is small.
Qn the other hand, the pole term decreases only
as X ' on both sides of the pole X„, if the Begge
representation(3), which can also be obtained
from Eq. (5) by setting E(X,X') =2k'/(X +X'), is
employed. In the second term of Eg. (5), X is the
pole of E(X,X'), considered as a function of X' for
the fixed A, and y is the corresponding residue.
This pole does not play any. si.gnificant role in the
discussion of Sec. III.

In Sec. III, we discuss the separate contributions
of the pole and the background integral to C f and
for that purpose me divide C, into two parts as

In the next section, we use mostly the Regge
representation, in which Cg is expressed as'

, 2~'c(~')
2wi A.tt N C

a =I+-,'. (3)

Here C(X) is defined by the analytic continuation of

C) into the complex A, plane, and the contour c is
taken along a path so that Bek,'-~. In the first
term of Eq. (3), X„ is the position of the Begge
pole, while P„ is the residue of C(X) at X =X„. The
summation is taken over all the Begge poles that
lie inside the contour c. The position of A.„ is of
course defined as a point in the X space at which
the C(A) coefficient, corresponding to the Schro-
dinger equation

@'2
'
d2 g2 g2 1

, +—,' + V(r) —Z ~q(~, z, r) =0, (4)
2p. d& 2p, )

becomes singular. This definition can also be re-
phrased by saying that the regular solution g(X, E,
r) of Eq. (4) is smoothly matched into the asymp-
totic form that consists purely of an outgoing Cou-
lomb wave function. '

In See. III, we also use briefly the 4 representa-
tion. ' This means that me express C, as

C, =C +C

Here the pole term C, denotes the first term of
either Eg. (3) or Eq. (5), while the background
term C, includes the rest. Note that how many
poles are included in C, depends on the choice of
the contour c. %e may use the notation, e.g. ,
C~~ (n = 0-3) to mean that the first four poles are
taken into account in C~~. (How to number the poles
is discussed in Sec. III.)

In Sec. III, we also present cross sections de-
noted by g~, g~, and 0~. Here cr~, which may be
called the cross section with the pole term only, is ob-
tained from Eq. (1)by replacing C, there by Cp, and
further suppressing f,(e). On the other hand ge,
mhich may be called the cross section with the
background term only, is obtained from Eq. (1)
by using Ce, in place of C, and retaining f,(0). Fin-
ally, or (the suffix T standing for total) is the
cross section in which both the pole and background
contributions are taken into account. By construc-
tion, this is nothing but the cross section that is
obtained by using Eq. (1) as it stands, and agrees
exactly with the cross section that is obtained in
the usual optical model calculation.

III. RESULTS OF CALCULATIONS

A. Behavior of the Regge poles

As we remarked in the Introduction, we consider
four potentials2'4 ' in the present work and the
parameters for these potentials are summarized
in Table I. It should be noted that, except for the
E18 potential, ' all the parameters mere taken from
unpublished sources. The authors of Befs. 4-6
very generously supplied us with this information.
The parameters listed in Table I were the best
set these authors had found by the time they were
given to us. Therefore, they should not be taken
as the best set mhich these authors will eventually
obtain within the framework of their search. %e
therefore specifically mant to avoid any compari-
son of the relative merits of these potentials con-
cerning the fitting of the data of Bef. 1. As far as
the parameters given in Table I are concerned, the
LC potential' fits experiment best, but the other
two4" also fit the data fairly well, and me may say
that all of these three potentials are realistic.
The situation can be seen from I"ig. 1 in mhieh the
experimental data' are plotted together with the
predictions of the SD, GK, ' and LC' potentials.
As was shown in Bef. 1, however, the E18 poten-
tial does not fit the data, unless a Regge pole term
is added in an ad hoc fashion.

A characteristic feature of the E18 potential is
that it is strongly absorptive and has a rather
shallow real part. Both SD and GK' potentials are
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TABLE I. Optical model parameters used in the calculation. The E18, SD, and GK poten-
tials are of standard 'Woods-Saxon form, and their parameters are given in the table with well
known notation. The LC potential is given by

V(r) = (286.5+ il9.7)

x(1+0 99.exp[(r R)-/9. 70I

+ exp[(r —R)/0. 491) '

with A=1.122 &(A 3+ A2 ~ ) and r, =1.2 fm.

' Label
V(,

(Me V)

rp
(fm)

ap
(fm)

8'p

(Me V) (fm)
al

(fm)
c

(fm) Ref.

E18
SD
GK

10.0
27.456
75.2133

1 ~ 35
1.310
1.2355

0.618
0.485
0.4929

23.4
4.865
8 ~ 5

1.23
1.277
1 ~ 2065

0.552
o.323
0.1844

1.0
1.0
1.4204

IO'

I I I I I I I I I I I I I:I I I I

0 + Si ELAsTlc

E Iab 55 MeV

IO

SD pot.

IO

IO

surface transparent, and the former (latter) has
a shallow (deep) real part. The LC' potential has
a geometry, common to its real and imaginary
parts, which is not of a Woods-Saxon form. As is
seen from the formula given in the caption of

Table I, its denominator has two exponents. An-
other characteristic feature of the LC potential is
that its real part is very deep and the imaginary
part is also fairly strong.

Figure 2 shows the locations of the Regge poles,
in the first quadrant of the complex A, plane, ob-
tained for these four potentials by performing
rigorous calculations as explained in TW. For
Re A, & 0 and positive energy no Regge poles can
occur in the domain Im A ~ 0,7 if the spin-orbit
potential is not taken into account as is the case
here. Thus it is sufficient to search for Regge
poles only in the first quadrant in the A. plane.
Search for poles was made within the rectangle
with Re X =0™45 and Im A. = 0- 7, where A, = Re I,
+ i Im A. . There are no poles within this rectangle
other than those shown in Fig. 2.

This figure alone already tells us a good deal
about the differences and/or similarities of the
behavior of these potentials. One thing to be noted
at first is that the E|.8 potential has one and only
one Regge pole. On the other hand, the LC, GK,

—Ioo
I=) GK pot.

I I I I I I I I I I

IO
0+ Si

EI b=55 MeV

IO

IO

LC pot.

p 0

4 ~ ~ ~ ~ ~

+ ++~'
+ +

+
+O

+»

EI8 pot.
SD pot.

~ GK pot.
+ LC pot.

IO4 I I I I I I I I

0 30 60 90
8, (deg)

I 20 150, I80

0 I I I I I I I I I I

0 5 IO l5 20 25 30 35 40 45 5055
Re X.

FIG. 1. Comparison of the optical model calculations
using the SD, GK, and LC potentials with the experi-
mental cross sections.

FIG. 2 ~ Positions of Regge poles in the first quadrant
of the complex ~ plane for the elastic scattering of ~60 by

Si at Ebb= 55 MeV for several potentials.
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and SD potentials have, respectively, 14, 13, and
8 Regge poles. It will be recognized that the num-
ber of poles is roughly proportional to the depth
of the real potential. We may say that, in this re-
gard, the GK and LC potentials share a strong
similarity.

The positions of these Regge poles, and their
associated residues P„, are given in Tables II-V
for the four potentials. The poles are labeled as
n =0, 1,2, according to the decreasing order
of the value of Be X. Note that for the n=0 and
~=1 poles of the LC potential and for the n =0
pole of the GK potential, the values of ~P„( are ex-
tremely small. It should also be noted that (P, ~

of
SD and ~P,J of the GK potentials are anomalously
large. The origin of these large values may be
the following.

As is seen in Tables III and IV, these poles have
Re X=,0 and Im A.'g0. For a complex A. , the centri-
fugal potential is written as

TABLE II. The positions and the residues of the Regge
poles for the elastic scattering of 0 by Si. The E18
potential is used.

Reh, „

24.29

ImA, „

4.20

RePn

1.773

ImP„

0.667

. a~ (Rey}(rmz)
2p,

which is reduced to

0' (Im Z)2+-,'
y2 2p y2

if Re A. =0. Therefore, the centrifugal potential
with Re A, = 0 tends to become a singular attractive
potential. This would make the corresponding
~P„( anomalously large. We note further that the
L'C potential does not have a pole close to the
imaginary axis, and thus has no anomalous P„.

It is instructive to present, for some values of
A. , the potential V«(r) and the corresponding wave
function g(X, E,r) of Eq. (4) plotted as functions of
the radius r Here .the effective potential V«(r)
is the sum of the optical potential V(r), which in-
cludes the Coulomb potential, and the centrifugal
potential. As is seen in Eq. (8), the imaginary
part of the centrifugal potential is positive definite
(or non-negative definite to be more precise) in
the first quadrant. Therefore, it plays the role
of a source, unlike the imaginary part of the op-
tical potential, which works as a sink.

In making this presentation, we chose the SD

TABLE III. Same as Table II except that the SD poten-
tial is used.

Im A,„ RePn ImP„

25.30
23.05
19.61
15.58
11.63
8.01
4.88
0.14

1.17
2.27
4.05
5.10
5 Q4

5.36
4.89
3.89

0.241
1.135
2.216

-2.891
4.067

-7.026
-35.358
-55.732

0.198.
1.353

-1.732
-0.092

1.250
-9.934
24.621

369.174

TABLE IV. Same as Table II except that the GK poten-
tial is used.

Re&„ ImA, „ RePn ImP„

0
1
2
3

5
6
7
8
9

10
11
12

28.89
26.50
24.67
22.44
19.91
17.28
14.63
11.98
9.44
7.05
4.81
2.64
0.52

1.46
1.29
1.58
2.39
3.06
3.56
3.90
4.07
4.07
3.98
3.87
3.74
3.62

0.002
0.125
0.312
1.089
2.691

-0.444
-5.599

3.024
9.466

-11.140
-28.013

0.436
60.961

-0.002
0.029
0.739
1.234

-0.606
-4.021

1.272
7.524

-5.858
-13.363

18.972
81.375

221.667

potential for no specific reason. The potentials
for selected X values are displayed in the lower
parts of Figs. 3-5 and the wave functions corres-
ponding to these potentials in the upper parts.
The center of mass (c.m. }energy Z, is also
shown in each figure. Figures 3 and 4, respectively,
correspond to the n =3 and n =6 Regge poles. On

the other hand, the case shown in Fig. 5 does not
correspond to a Regge pole, but to a real A. whose
value equals the grazing angular momentum A, =A.

=24.5.
There are a number of Regge poles for the SD,

GK, and LC potentials, which have fairly large,
but not anomalously large, values for P„, and we
may call them "standard" Regge poles. The shape
of the potential and of the corresponding wave func-
tion belonging to these poles are rather similar
to one another, in their characteristic behavior.
Therefore, those presented in Fig. 3 for the n =3
pole of SD can be considered to represent the be-
havior of most such poles.

The n =3 pole has X =15.58+i 5.10, as is seen in
Table III. In other words, (Re A,)'» (Im X)' there.
This fact makes the behavior of the (real part of
the) centrifugal potential much the same as that
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lO ~~5 T~ I ITABLE V. Same as Table II exce t
tial is used.

as a e II except that the LC poten-

HeP„ ImP„

360+~ Si

0
1

3

6

8
9

10
11
12
13

29.25
27.31
25 ~ 64
24.00
22.10
20.07
17.98
15.86
13.79
11.67
9.06
7.07
4.24
1.77

1.41
1.34
1.33
1.72
2.21
2.632
2.99
3.30
3.54
3.41
3.44
2.64
2.07
1.80

0.001
0.032
0.167
0.175
0.992
2.748
1.629

-5.177
-3.129

6.077
5.276

-0.653
0.064
0.314

-0.001
0.004
0.258
0.840
1.277
G.044

-3.869
-3.102

7.127
2.780

-3.309
-2.154
—0.901
-0.627

~ IO-
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FIG. 7. The integration paths &&, &2, and 3 in the ~
plane used in the cal.cul. ations of the background term &

~

are shown for the cases of &=0-2, &=0—5, and &=0-13,
respectively. Similar paths are used for other cases
too

FIG. 6. Moduli of C~, C&, and C~ for the LC poten-
tial in the Hegge representation are plotted as functions
of E. The notation +=0-2, e. g., means that the contri-
butions of the &= 0, 1, and 2 poles are taken into account
in the calculations of the &f and & I' terms. The partial
wave amplitude &~ is given by &g = &P+ & ~.

With increasing number of poles, IC, I keeps in-
creasing. The peak moves to lower / values and
moreover it splits into two parts at n =0-5. How-
ever, this increase of IC~~I does not take place at
the expense of Cs, l; ICs, I

also increases in the re-
gion where IC~~ has a peak, as is seen, e.g. , in
the n =0-5 or n=0-6 cases. The increase of ICsl
is indeed needed, in order to keep C, =Cg +C f

in-
dependent of the number of poles considered inC, .
When the number of poles is further increased,
the behavior of both C, and C, gets more and more
erratic.

In obtaining ICs, I plotted in Fig. 6, we performed
the contour integral numerically, as it is defined
in the second term of Eq. (3). Actually, such a
calculation was unnecessary, because C, can be
obtained easily by the usual optical model calcula-
tion, and we can get C, by subtracting C, from CJ.
We nevertheless carried out such calculations,
because it served, by confirming that the calcu-
lated C, -+C, did agree with the optical model C„
to confirm the accuracy of our calculations. It
also guarantees that we have not overlooked any
Regge pole inside the area enclosed by the contour
chosen separately for each choice of the number
of Regge poles in C, . The actual shapes of the
contours that are in fact used are shown in Fj.g. 7,
for several choices of number of Begge poles.

Before discussing further the behavior of C~ and
C, given in Fig. 6, we present in Fig. 8 the cross
sections p» o» and p» calculated by using the

I10 I I / I I I I

l00 lQb
= 55 MeV

n =0-2

Z l0-
b

CD

b lo'—

TOTAL
----POLE——BACKGROUND

lo

10

I igs iIl

I
I
I
I
I
I
I

&'I
Ii

i &s

I
I
I
I

I& I I

I" '' lv' 0 'J~ j'i

I
I I I I

',
„I )I '„ I)(

I I Ill 4 I ( II

60 90 120 l50

ec.m,(deg )

l80

FIG. 8. Pole and background decomposition of the an-
gular distribution in the LC potential in the Hegge repre-
sentation. The solid line is the total angular distribution
which is obtained from the coherent superposition of the
pole (short dashed line) and background (long dashed
line} terms. The figures (a), (b), and (c) correspond to
the cases in which the &=0-2, &=0-5, and &=0—13 are
taken into account, respectively.

LC potential, and making three different choices
of the number of the poles n=0-2, n=0-5, and
n =0-13. In these three cases presented in Fig. 8,
the same total cross section o~ is repeated, and
is compared with experiment in Fig. 8(c).

In the case with n=0-2, we first note that, since
IPJ and IP, I are very small, oJ, is dominated by a
single pole n =2. In other words, this p~ may be
called the cross section obtained by making a "sin-
gle-pole" approximation. Since it is seen that
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this az behaves in a way rather close to or (and
thus to &x,„), one might tend to conclude that the
back-angle cross section is accounted for by con-
sidering one Begge pole. Obviously, however,
such a conclusion is true only when o~ is very
small in this angular region. As is seen in Fig.
8(a), oe actually has a similar magnitude as does

at large angles, and its behavior is surprisingly
close to that of o~. [Note that the apparent differ-
ence between o~ and p~ at smaller angles is largely
due to the fact that g~ includes. the Coulomb amp-
litude f, (8), while g~ does not, because of the de-
finition made in Sec. II. This remark applies to

Figs. 8(b) and 8(c), too.] This fact indicates that
there exists a very delicate phase relation between
C, and C, so that their superposed contribution
ends up as g~.

We saw in Fig. 6 that, as the number of poles
included in C~ increases, both IC, I and lCs, l

in-
crease and take shapes similar to each other. It
seems that this fact is reflected in the behavior
of o~ and oe, which is given in Fig. 8(b) for the
case of n =0-5. As is seen, they again behave
very closely together, both now having magnitudes
that are much larger than that of g~ except at fo-
ward angles. It is thus clear that very strong des-
tructive interference is taking place between C,
and C

This strong cancellation between C, and C, is
brought to its extreme when we come to then = o-13
case. As is seen in Fig. 8(c), both oz and oe are
about four orders of magnitude larger than is o~.
A fact which may be more surprising than the on-
set of this strong cancellation is that o&, as well as
o~, lies very close to the Rutherford cross section
O„„,„except at the forward angles. Note that in
Fig. 8 various cross sections divided by e„„,„are
plotted.

Summarizing, what we found in Fig. 8 is a very
strong parallelism between g~ and o~, and thus
failure in singling out the effect of a particular
Begge pole. Note that. we have been using the
Begge representation exclusively so far. We have
emphasized in Sec. II that the Begge representa-
tion does not localize the contribution of a pole
term C, to a narrow region of the / values. One
may thus suspect that our failure to single out the
effect of one pole or two poles is due to the use of
this representation. In order to see whether such
a suspicion is correct or not, we repeated calcula-
tions by using the 6 representation, i.e., by using
Eqs. (5) and (8). The parameter b. which defines
a width in the / space is taken to be 6 =1.8. The
results are not sensitive to the value of A used.

In the inset of Fig. 8, we plot, as an example,
lC, I and lC) l as functions of l in the case of n =0-3.
Thus this figure is to be compared with Fig. 6. It
is seen that lC~~I in the 6 representation is now

strongly concentrated in the neighborhood of /. =24.
This peak value of / is very close to 24.00 which
is the Be A. value of the n=3 pole. And in the re-
gion of l ~ 24, IC, I by itself almost reproduces the
partial wave amplitude IC, I. It thus seems that
we have achieved the singling out of the n =3 pole
contribution. . However, it is seen in Fig. 9, where
0~ and z~ calculated by using these C, and CB are
plotted, that the pole and background terms also
interfere strongly with each other except at most
backward angles. We found that their behavior is
not very much different from what we obtained for
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MeV, in which the poles of = 0-3 are taken in account.

n =0-3 with the Regge representation. In other
words, we are led to the conclusion that the use
of the 6 representation does not result in the sing-
ling out of a pole, as one might have naively ex-
pected.

In concluding this section, we want to make a re-
mark about recent work of Brink and his co-work-
ers. 'o't They analyzed the n "0 and n-OCa-
scattering data in terms of a- semiclassical method,
and came to the conclusion that the large and

highly oscillatory back-angle cross sections must
be interpreted as a nuclear glory. When the semi-
classical method is used, it is possible to separate
the scattering amplitude into two parts, one re-
flected from the outermost turning point, and the
other from the innermost turning point. %hey fur-
ther showed that the former (latter) is responsi-
ble to the forward (backward) cross section. Note
that the LC potential' was derived having in mind
the results of this work.

From the fact that there are many Regge poles
with lower values of Re A. , as is seen in Fig. 2,
one might expect that C, , which includes only
poles with these lower Re.A, , might resemble the
amplitude corresponding to the reflection from the
innermost turning point, because the latter cer-
tainly includes the contribution of lower partil, l

waves. It turned out, however, that such is not
the case. The very str.ong parallelism between
the pole and background terms, as we emphasized
above, seems to prevent this.

Fina1.ly, we want to stress that this very strong
parallelism obtained in this subsection is not pe-
culiar to the LC potential; all other potentials
considered in the present work also show that
one cannot single out the contribution of one or
two pole terms which may reproduce by itself the
angular distribution at the backward angles. As
an example, we present in Fig. 10 the cross sec-
tions g~, 0~, and g~ in the case of n =0, calculated
by using the SD potential. Note that the contri, bu-
tions from the pole and background terms to the
total angular distirubtion are very similar to those
in the case of Fig. 8(a). Contrary to the present
~es~lt, ~' found that in the case of the "O+."0
elastic scattering at high E, , there are one or
two poles which contribute dominantly to the cross
sections at 1arge angles. This difference may be
attributed to the difference in the optical poten-
tials used. TW used a potential whose real part
has a strength which was much weaker than those
used in the present study.

C. Regge poles associated with E18 potential

As remarked in the Introduction, Braun-Mun-
zjnger et a/. ' modified the S matrix generated by
the E18 potential, which is strongly absorptive and
has a very shallow real depth, by adding a Regge-
pole type term' with parameters. Then they found
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that this Begge-pole parametrization method re-
produced fairly well the experimental data. It
would thus be of some interest to see briefly the
behavior of the Begge-pole term derived from the
exact calculation and from the parametrization
method.

In Fig. 2 and Table I, we showed that the E18 po--

tential does have a Begge pole of its own. The
real part of this Begge pole is nearly equal to the
grazing value l but its imaginary part is fairly
large compared with the poles of the other poten-
tials which appeared in the l= l, region. This
large Im A, causes the pole not to have the property
of a resonance in the usual sense. It should be
also noted that the E18 potential does not have a
pocket in V«(r), when X takes the value of the

pole position. In other words, an internal wave
function that is matched smoothly into a purely
outgoing Coulomb function can be formed without
having a trapping pocket, a fact which indicates
that the Begge pole is not necessarily associated
with partial-wave-orbiting resonances.

We plotted in Fig. 11 the cross section gp (short-
dashed line), ge (long-dashed line), and gr (thin-
solid line) for the E18 potential, just as we did
for the LC potential in Fig. 8. As is expected, the
pole term does not show the resonance character
in the angular distribution, and the behavior of
«z and «s is very similar to what it was in Fig. 8(b).
Neverthej. ess, the resultant g~ here is quite differ-
ent from that in Fig. 8. The cancellation between
o„and o~ here must be much more delicate than
it was in Fig. 8(b). For the sake of comparison,
we also reproduced in Fig. 11 the cross sections
which were given in Bef. 1, obtained by the one-
pole-plus-background parametrization method,
and also the cross section of the pole term only
in the parametrization method.

Here we define the pole (background) amplitude
f~(8) (fe(8)) in the parametrization method by

+ . Q (2t +l)e" i [qs(t) —1]P,(cos8),
21k

f~(8) =—. Q (2t +1)e"'~g~(t)P, (cos8),
1

where

q, (t) =so,

(11b)

with the notations of Bef. 1. In Fig. 11, the thin solid
line, dot-dashed line, and thick solid line corres-
pond to oe(8) =If'(8)I', g~(8) =If~(8)I', and g(8)

10 —-)I

IO

IO

Tc) IO

l6 28
E l8 pot,

EI b=55 MeV—TOTAL
— EXACT

---- POLE——BACKGROUND—.—PARAMETRIZED POLE

~"~ "p& -,r&,~sq~pJ",

CD

b IO'— " 'fi('l
~

I flp II I

e'-' "'~
I

I
j

IjI jl

I I J l I I

50 60 90
c. m.(«g )

I20 I%0 I80

=I fe(8) +f~(8) I', respectively, in the parametriza-
tion method. As is expected, there is a large
difference between the p~ obtained exactly and that
obtained by parametrigation. The former is asso-
ciated with the E18 potential, but the latter is en-
tirely ad hoc. %6 shall discuss in the next section
a possible way to improve the use of a parame-
trized pole, if one so chooses.

Studies were made in detail of the properties of
the Begge poles and the accompanying background
integrals. They were derived rigorously from
the several optical model potentials that gave
good fits to the data of Braun-Munzinger et al. '
and were thus considered realistic. A similar
analysis had been made earlier in TVf, ' but the
present analysis produced a few features which
were not encountered there. VYe believe this dlf-

FIG„11. Pole and background decomposition of. the an-
gular distribution in E18 potential both in the exact cal-
culation and the one-pole-plus-background parametriza-
tion (Ref. 1.). The short (long) dashed line corresponds
to the pole (background) contribution to the Op (thin solid
line) in the exact calculation. The dot-dashed (the thin-
solid) line corresponds to the angular distribution in the
pole (background) term in the one-pole-plus-background
approximation and the thick solid line gives the total an-
gular distribution obtained by the coherent superposi-
tion of the pole and background terms in this approxima-
tion. Note that all the cross sections plotted are divided

Ruth '
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ference originated from the fact that we g.se here
potentials~ ' whose real parts are much deeper
than those used in TW. The deep real potential
results in a greatly increased number of Regge
poles, appearing in the first quadrant of the com-
plex angular momentum plane. Most of these
poles have similar strengths and are packed very
closely together. This fact all but prohibits one
from singling out the effect of any one pole, which
was possible with a shallower potential at suffi-
ciently high E

The use of deep real potentials is a comparatively
new trend employed in the optical model analyses
of the scattering of heavy ions, and we believe
that this is a correct approach. The results of the
present study may thus be taken as a warning
against attempts to fit data by introducing, rather
than deriving, a Regge pole and parametrizing
it in an ad hoc way. As we have exemplified in the
inset of Fig. 9, it is of course technically possible
to single out the contribution of a Regge pole, so
that a sharp peak appears in ~c",

~
considered as a

function of l. As was seen in Fig. 9, however,
this sharp peak does not result in a dominance of
the pole term in determining the angular distribu-
tion at large angles. In the phenomenological
Regge-pole analysis, '" the pole term contributes
exclusively to the angular distribution at large
angles, which the background term dominates the
forward angular distribution.

One may still find it useful to use a parametri-
zed Regge-pole method. In, that case, we want to
recommend the following method. Take a realistic
optical potential, and calculate first C, in the
standard optical model calculation. A parametri-
zed Regge-pole term C, may then be introduced,
and C, is obtained by subtracting C, from C, .
This method allows one to avoid parametrizing

C, and C, separately, for which there seems to
exist no known guiding principle.

The data of Braun-Munzinger eg al.""also in-
clude the angular distribution to excite inelasti-
cally the 2+, state in "Si, and further the excita-
tion function of the 180' cross section of the elas-
tic scattering. The angular distribution of the 2,
state also shows strong oscillation and a large
backward rise, which would require one to use the
Coupled-channel method, rather than the DWBA
method, to fit. Although the LC potential repro-
duces nicely the envelope of the excitation function,
it does not reproduce sufficiently well the oscilla-
tion, particularly at large E„„, This trouble
might be removed by the use of the coupled-chan-
nel method. "

Suppose that such a coupled-channel fit is made
'successfully. From the point of view of the con-
tent of the present paper, it might be of great in-
terest to perform a similar analysis based on
coupled-channel equations. Both in TW and in the
present paper we solved an uncoupled equation,
i.e. , Eq. (4). That a similar calculation can be
done for the simplest set of coupled equations is
already known, ' however. Such a calculation
will be the subject of our future work.
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