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Antisymmetrization effects in the a-nucleus interaction are investigated on the basis of a microscopic model
in an one nucleon exchange approximation. It influences the form factor, increasing the halfway radius and
decreasing the diffuseness as compared with the direct term of the potential only. Antisymmetrization

preserves the shape of the potential which can Qe parametrized by a %oods-Saxon squared form. The
phenomenological potential with the energy independent form factor of the above shape fits experimental data
in a wide energy region.

NUCLEAR REACTIONS ~ Zr(o, , n), E=26.2, 40, 59.1, 79.5, 99.5, 118, and 166
MeV. Microscopic optical model analysis with antisymmetrization.

I. INTRODUCTION II, ANTISYMMETRIZATION PROCEDURE

Data on the elastic scattering of n particles from
some nuclei taken in a broad energy range have
recently become available. Phenomenological and/
or semimicroscopic optical model calculations
performed for some of these data assumed a lin-
ear energy dependence of the depth of the real
part of the potential with the slope of about -0.26
MeV/MeV. ' A nonlinear energy dependence of the
parameters of the radial shape of the real po-
tential was necessary in some cases. ~

It is well known that a local phenomenological
potential equivalent to a nonlocal one should show
an energy dependence of its depth. On the other
hand it is difficult to explain the energy dependence
of its radial shape which can also be influenced by
the nonlocality of the interaction.

The nonlocality of the optical potential is mainly
due to the effect of the antisymmetrization of the
total wave function when. exchange of nucleons be-
tween colliding nuclei is taken into account. This
phenomenon can only be investigated on the basis
of such theories as derivation of the real part of
the optica, l potential from the elementary nucleon-
nucleon interactions. This kind of "fully micro-.
scopic" model has been proposed previously.
Several attempts to introduce antisymmetrization
effects into the microscopic model" were con-
cerned with the scattering of n particles in a
limited energy range only and did not yield any
definite conclusions as to the shape of the real
pa, rt of the optical potential.

The aim of this work is to investigate the in-
fluence of the exchange terms of the form-factor
of the real part of the poten. tial.

dr'V'"~ r, r' cp r', 2.1

where E denotes t;he kinetic energy of incoming
particles. , T ~ the kinetic energy operator,
V„~ r(r) the direct term of the real potential,
V'". (rr, r') the nonlocal part of the potential re-
sulting from the antisymmetrization, and W(r)
is the imagin. ary potential.

The direct part of the potential V r(r) was cal-
culated according to the double folding formula de-
scribed previously

Vd r(r) = dz'dz" p (z')pr(z")t (r„„), (2.2)

where p, p~ are matter density distributions in
the n particle and the target nucleus, respectierely,
and t(r„„) is an effective nucleon-nucleon inter-
action. Internal. coordinates z' and z" of the
nucleons in the n particle and target nucleus, re-
spectively, and the relative distance r»= r+ z
-z" between two interacting nucleons are defined
ln Flg. 1.

Since the exchange part of the potential V "~
cannot be exactly calculated for composite pro-
jectiles, it was obtained in an approximate way by
taking into account the one nucleon exchange o'nly.

It we consider for a moment any one nucleon.

The Schrodinger equation describing the elastic
channel, after taking into account the antisymmetr-
ization between the projectile and the target nu-

cleus, can be reduced to the following integro-
differential form:

[E,—T r(r) —V r(r) iW(r-)] y(r)
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we obtain the local approximation in the form

dz" Ve.'„(8,z "}V(z"}= 4 (R)fdz'pr" (R, z")

Ze ~

V = y (R)V„"' '*(R),

FIG. 1. Schematic representation of the coordinates
of the n -target system.

from the (x projectile (Fig. 1), the exchange po-
tential term for the corresponding nucleon-target
system can be written' as

dz" V'„* (R, z")y(z")

dz"p~" H, z" t H- z" p z~, 2.3

(2...)= 8( & 4,) (2.8)

and the other due to the motion in the field of the
target nucleus for proton and neutron, respect-
ively:

2m x/a
k~ „,(R,)=, [—,

' E —V~ r(R,)+ V,(R,)]

(2.9)

where k is the wave number of the incident nucleon
taken at R, =R (R+ z").

As our incident nucleon is immersed in an e
particle, its wave number k consists of two com-, ,

ponents, one corresponding to the average mo-
mentum in the n particle"

where p~" i,s a mixed density which can be cal-
culated using a modification of the Slater approxi-
mation' due to Pandharipande

and

2m a/2

k„„,(RO) = , [& .E —V„r(RR)] (2.10)

p, '*(R, z") = [p,(R)pr(z")]"'
k „E N¹

x [sin(k»r»») —k»r» cos(k»r»»)],

(2.4)

The total nucleon-target potential V» r(R) contains
both direct and exchange parts

V„(R) fd z pr(z )t(R z"")"-
where

(2.5)
r — ~f dz" pr "(Rz )t(R z"), "-

x jo(lr»»tlk& I) (2 11)

V(z») = exp(r»»S) V(R) . (2.6)

Substituting (2.6) into Eq. (2.3) and performing the
angular integration over the direction of rz„,'

In order to obtain the local equivalent approxima-
tion of the exchange potential (2.3), we take into
account the short range of the tko body interaction
f(R- z"), express the wave function of the relative
motion in the form

proton and neutron, respectively. Its second part
is energy dependent and should be calculated in a

" self consistent way.
Folding V„~ into the matter density distribu-

tion of the n particle, we obtain the total potential
for the interaction of an e particle with a target
nucleus' "

V -r(r) dz dz" p, (z')p (z")t(r„„)'rfd p(z ) —e P d'z ,p„'"(Rz)t(R z)t,"((r„"llz, ,—))) . (2. 12):
j=ng P

Calculations were made with the effective nucleon-nucleon interaction derived by Slanina and McManus"
in the form

Z exp( —2.44r„„) exp( —2.8r„„)
)EN 2.44'~~ 2.8r~~

N-Z exp( —1.7r„„) exp(—2.82r„„)
)

.

(2.13)
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TABLE I. Parameters of the direct potential (2.2) and total potential (2.12).
I

U

(MeV)
DiA

(f )
R«, A '"

(f )
4o-eo
(fm)

Direct potential
Total K~=46 MeV
potential E~ = 106 MeV

183.78
200.99
193.37

1.288
1.315
1.310

1.284
1.237
1.249

1.035
1.071
1.064

4.736
4.562
4.606

The target matter point-density distribution p~
was taken. to be of the Fermi shape with param-
eters obtained from electron scattering" and from
the meson photoproduction. " The matter point-
density distribution in the n particle p had the
Gaussian form with parameters taken from the m'

scatter ing. "
Direct (2.2) and total (2.12) o.-target potentials

are compared in Fig. 2. It can be seen from Table
I that the halfway radius R, &, of the total potent, ial
is larger and the 10-90%distance t„90 is smaller
than that of the direct potential.

Another importantconclusion is that both the di-
rect and the total potentials have a radial shape
which is different from the Woods-Saxon form
factor. They can be very well reproduced, how-

ever, by the square of the Woods-Saxon form fac-
tor,"which is also presented in Fig. 2.

It should be mentioned that the tota. l n-target
potential is deeper than the direct one, in agree-
ment with the results of other authors. "

tential but they preserve its general radia, l shape.
This shape can be weH. parametrized by the square
of the Woods-Saxon form factor. This type of the
form factor wasrecommendedfor phenomenological
analyses in our earlier papers" and later proved in

analyses made by other authors. "
Data on. elastic scattering of. n particles from

"Zr nuclei were chosen for the analysis since for
this nucleus the most extensive measurements
taken at the energies 26.2 Me&,"40, 59.f, 79, 5,
99.5, and 118 MeV,"and 166 MeV" are available.

The calculations were carried out using the e-
target interaction in the form

V(r) = Vc(r) —Uf (r, D~, d, )

-~(W„f(r, D„d,)-4d, W, f(r, D„d,)
(3 1)

1

where Uc(r) is the Coulomb potential due to a
uniformly charged sphere with a radius R~

III, PHENOMENOLOGICAL REPRESENTATION D,.f(r, D, , d, )= 1+exp (3.2)
In order to represent the antisymmetrization

effects in a phenomenological way the model po-
tential was restricted to the direct term only with
a suitable modification. As one can see from the
preceding paragraph antisymmetr ization effects
influence the range and the diffuseness of the po-

V„,(l)
{M@V)

The usual volume imaginary potential was supple-
mented by the surface term. This form of the
imaginary potential was, necessary to fit the
"'oNi(n. n) data in the large energy range scat-
tering ' and was accepted by analogy with the nu-
cleon-nucleus calculations (see Ref. 30 and ret'-

erences quoted therein).
The energy dependence of the optical potential

has been parametrized in the following way":, .
50-

100—
X

/

U=A, +A, E

W„=A~+A~ exp(-A5E~),

W, =A, +A, exp{ A, E ), -

(3.3)

(3.4)

(3.5)

150- "Zr(~, ~)

~ r
r--

10 12 r (fm)

FIG. 2. The real part of the'o Zr(n, n) potential.
Direct potential (2.2) (solid lines) and total potential
(2.12) (dashed line) for E =46.0 MeV. Crosses and

dots represent fitted Woods-Saxon-squared potentials.

where E is the energy of the n particle. The
parameters of the form factors were energy in-
dependent.

In the optical model analysis the GLOB 'code"
was used. This code varied parameters of the
model in order to minimize simultaneously the
va, lue of y' for all of the angular distributions.

The halfway radius R, &, and the 10 90 /&distance
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TABLE II. Optical model global best fit parameters.

Parameters 90Zr(~, o. )

A, (Mev)
A2
D,A ~» (fm)
d, (fm)
A, (MeV)
A4 (MeV)
A& (MeV )

D,A-~» (fm)
d2 (fm)
A, (Mev)
A, (MeV)
As (Mev )

D3A ~» {fm)
d3 (fm)

177.17
-0.2189

1.3854
1.2259

20.49
—30,36

0.0222
1.7333
1.0009
0.7237

47.37
0.0184
1.3261
0.4068

R,&, = r «, A'r~ ' = D+ d ln(v 2 —1), (3.6)

fgo 9o d In[(~10 1)/(v 1)]
A comparison of the experimental angular dis-

tributions for a-particle scattering with those cal-

(3.7)

~Zr (~.oc }
I

26.2 MeV

~r„.' 7'kA;. i'x f
'~~'&'V)~A~r" 'Ak

59.1 MeV

I
I 'f P V'. ..".

II

I f i&
~& 'Vb

'I vxtIL', ",-- g. , 118.MeV
"'~ 166Vev

0.1

1

30 60 90
e~II1 (deg )

120 150 1SO

FIG. 3. Comparison of the experimental angular dis-
tributions for Zr(Q. , n ) scattering with distributions
calculated with the optimum sets of parameters of the
potentials given in Table II (solid line). The dashed
line is explained in the text.

4

typ 20 des cr ibing the dif fusenes s of the potential in
its surface part are connected- with the parameters
D and d in the following way:

culated using the parameter set given in Table
II is presented in Fig. 3 (solid line). The dashed
line in Fig. 3 represents angular distributions
calculated with the real part of the potential ob-
tained from the formula (2.12) and the imaginary
potential optimized by the search routine.

IV. DISCUSSION

Comparison of the phenomenological approach
(Sec. 111) with the results where one-nucleon ex-
change was involved (Sec. II) leads to the con-
clusion that the antisymmetrization effects are
important in the whole energy region investigated.
It can be seen from Tables I and II that the pheno-
menological best fit form factor has a larger radius
and a. smaller diffuseness than that of the micro-
scopic direct part of the potential taken alone, 35%%uo

of the difference for the radius and 75%%uq for the dif-
fuseness can be accounted for by including the one-
nucleon- exchange term.

The form factor of the microscopically derived
potential varies slightly with the energy of the
projectile. However, this variation is almost an
order of magnitude smaller than differences be-
tween the parameters of the form factor 'of the
direct potential and the parameters of the form
fa.ctor of the total one. This energy dependence is
too small to be found by phenomenological analysis.
As was shown in Ref. 28, the best fit parameters
do not indicate this systematic variation. Similar
slight energy dependence of the form factor was
found also for the nucleon- target interaction. "

The depth of the best fit potential decreases lin-
early with the energy of the a particle, according
to the formula

U(E) = 177(1—0.0012E ) . (4.1)

The parameters of this formula are in agreement
withthosefoundby other authors. '

60%%up of the value
of the slope parameter of this energy dependence
is explained by the one-nucleon-exchange term as
can be seen from Table I.

There remains home discrepancy between the
absolute depth of the potential calculated in the
microscopic way and that obtained from fits to the
experimental data, . As can be seen from Tables
I and II, the calculated microscopic potential is
deeper than the one obtained in the phenomeno-
logical way. This is due to the fact that the pheno-
menological potential was obtained from fits to the
experimental data which are sensitive to the outer
region of the potential. ' The difference can be
removed when. the density dependent effective nu-
cleon-nucleon interaction" is used. The correct-
ion due to density dependence of the effective
nucleon-nucleon. interaction mill be strongest for
small distances between colliding nuclei.
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As was shown, by Thompson and Tang, "the in-
clusion of the antisymmetrization leads also to
the appearance of the Majorana type interaction in
the local phenomenological potential. It was shown

by Kondo et al. and by Majka~ that the Majorana
term mostly influences the angular distribution at
the backward Angles. Since the data used in this

analysis do not cover that angular region at higher
energies the Majorana term was neglected.

Authors are indebted to Dr. G. W. Greenlees,
Dr. I. W. Put, Dr. T. Brissaud, and Dr. B.
Tatischeff for making their experimental results
available prior to publication.
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