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Inverse scattering problem and the off-shell T matrix
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The Marchenko approach to the inverse scattering problem is utilized to generate the half-off-shell

transition amplitude from the experimental $0 n-p phase-shift data. The numerical procedures are tested for
two potential models, and the real symmetric function 0.(p, k) is obtained.

NUCLEAR REACTIONS Inverse scattering theory, off-shell T matrix from i&0

g-p data.

I. INTRODUCTION

In recent years interest has grown concerning
the usefulness of the two-body transition amplitude
or T matrix as a convenient device to use in nu-
clear structure calculations. Investigations in the
many-body problem rely on a knowledge of the T
matrix. It is quite straightforward to perform .

calculations of the properties of. nuclear matter
or of finite nuclei, once one has knowledge of the
complete T matrix. The usual procedure followed
to acquire this knowledge is to employ a two-nu-
cleon potential model. Since whatever potential
model one assumes automatically defines the off-
shell form of the transition amplitude, interest
has developed in finding ways of circumventing the
construction of a potential, and instead starting
directly from a T matrix. ' The reader is refer-
red to an excellent review' of the subject area of
the T matrix in order to get an idea of the exten-
sive work done to date.

Baranger and collaborators' demonstrated how
much information in the two-body T matrix was
free to be varied. The unitarity constraint re-
stricts considerably the form that it can take.
However, one is able to start from a real symme-
tric function o(k, k') of the scattering momenta,
and from this function generate the full T matrix.
The diagonal elements of 0 are determined in any
particular eigenchannel by the scattering phase
shift 6,(k). The off-diagonal elements are then
apparently free to be varied according to whatever
model one chooses. Sauer' presented a number of
parametric forms for cr, and examined various con-
straints which would limit the freedom of varia-
tion. This work has also been extended to include
the effects of bound states, 'and of coupled chan-
nels. '

Alternative techniques have also been developed
which use the two-body scattering data to directly
derive the half-shell T matrix. "' Some of these
have been pursued to the point of doing nuclear

calculations. "" It would of course be desirable
if one could build up a model of the 0 function di-
rectly from field-theoretic information. An ap-
proach along these lines by Reiner proves quite
promising. However, at present the approach is
somewhat restricted by its complexity, and by a
number of uncertainties such as the coupling con-
stants, form factors, etc.

An unattractive feature of the 0 function is that
it is far removed from physical quantities, and if
it is to be useful one needs to incorporate as far
as possible, sound physical information into its
form. It is well known for example that if one as-
sumes a local, energy-independent potential,
a knowledge of the phase shift at all energies
[i.e. , cr(k.k) for ail k] in the absence of bound states
uniquely determines the potential and hence o(p, k).
Any variations from this o(p, k) would arise from
differing degrees of nonlocality in the underlying
interaction. It wouM thus appear to be an attrac-
tive starting point to have a knowledge of a(p, k)
for a purely local interaction. 'This approach also
has the advantage that one can separately vary the
high-energy form of the phase shift, and the degree
of nonlocality.

A number of methods have been proposed in the
literature for carrying out the potential inversion
problem. ' ' Some are much more amenable to
numerical calculations than others. Karlsson"
has recently outlined procedures which can very
nicely enable one to generate half-off-shell T ma-
trices from a knowledge of the on-shell data. With
such an approach it is for example possible to gen-
erate a o(p, k) function to use in the method of
Baranger et al. ,

' or, more importantly, to use as
a starting point in examining the effects of intro-
ducing nonlocal variations in 0, and of varying the
form of the high-energy phase shift. One can then,
at least for some partial wave states, separate
the local and nonlocal effects.

We have utilized the approach of Karlsson" to
examine the utility of such a scheme. In Sec. II
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we briefly review the theory behind the Marchenko
approach to generating the off-shell transition
amplitude, and then illustrate the numerical
accuracy of such an approach in Sec. III. Section
IV goes on to illustrate what one finds if one uses
the experimental '80 n-p phase shift data, and
briefly looks at the sensitivity of o to the high-en-
ergy phase shift.

II. BACKGROUND

An approach whereby the half-off-shell partial-
wave transition amplitude can be derived from the
on-shell amplitude by means of a momentum-
space formulation of the Marchenko integral equa-
tion has recently been presented by Karlsson. "
'The main ideas of this approach are summarized
in this section

The on-shell amplitude or T matrix for a given
partial wave is specified in terms of the real
phase shift 5,(k),

so that f, (p, k) together with 5, (k) completely spec-
ify the half-off-shell amplitude. A knowledge of
this half-shell T matrix is sufficient to obtain the
complete off-shell amplitude from the I.ow egua
tion. "

In the inverse scattering theory the Marchenko
integral equation relates the solution f,"' (k;r) of
the partial-wave radial Schrodinger equation to
the free-particle solutions h,"' (kr) through the
kernel A, (r', r):

f"'(k r') = h,"'(kr')

OO

+ —, r"dr "A,(r', r")h,"'(kr") .

(2.3)

The solutions f,"' satisfy the boundary conditions
at infinity,

(k k ~ Q+ zc) = —sing (k)e l
2 f"'(k r)

„„„h("(kr). (2.4)

t, (p, k; E+ ic) =f, (p, k)t, (k, k; E+ ic), (2.2)

in units such that k2=2m= 1, and with E=k'. The
properties of this amplitude also enable one to
express the half-shell amplitude t, (p, k; E+ie) in
terms of a real function f, (p, k),

By also employing the out-going-wave scattering
solution to the Schrodinger equation, together with
its momentum-space transform, the half-shell
function f, (p, k) can be expressed in terms of
A, (r, r') and Ih"( k)r,

00

f, (p, k) =(p/k)'+ (p'-k') . rdr r'dr'j, (pr)A, (r, r') Im[h,"(kr') e'"' ']. (2.5)

Introducing a second solution to the Schrodinger equation, h '~((k;r), which also satisfies the boundary
conditions (2.4), but which is associated with the potential

v, (r) =-, —8(R r), -l(I+ 1) (2.6)

one can express f,"' in terms of this function through another Volterra kernel. B,

f,"'(k;r') = h", "'(k;r')+ —, real dr IIB (r I r li)hR(k)(k. r II) (2.7)

The function 9(x) is the familiar Heaviside step function.
The function f, (p, k) can now be related to B, in a fashion analogous to (2.5):

R

f, (p, k)= (p/k)'+ (p' —k') —.
& k

r'dr Im(j, (pr)[h", "(k;r) —h,"(kr)]e(6~(~')

OC CO

+ rdr r'drj', (pr)B, (r, r') Im[h", "(k;r') e"&("']
~,

0
(2.8)

The half-shell function f, is independent of R, as
the kernel B is a function of R;

The regular solutions of Schrodinger's equation
must necessarily satisfy a completeness relation.
In terms of operators, this completeness relation
takes the form

(1+B)(1 -E)(1 B~+) = 1, (2.9)
where the kernel of the operator E is given by

j. ].
Z (r' r) = — k'dk Re[h", "(k;r')h,""(k;r)

0
&( (e2(5((R& 1 )]

(2.10)
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for the case where there is no bound state. One
can then show that

B',(r', r) 8(r' -r)
I I(I,r)I'I dr )I(1"'I ,)B";(I ,r"), '&Ir

r

where

1 " „sin[5,(k)+ 5,(q")]
OO

x n,„(q",q"+ q),
(2.14)

(2.11)

which is a linear integral equation for B',(r', r) in
terms of E,(r', r)

The half-shell function f,(p, k) can then be com-
puted from (2.8) by substituting into it the iterative
solution for B; from (2.11) and interchanging the
order of integration so that all the r integrations
are performed before the k integrations in the
E,(r', r) factors.

In the case of the l = 0 partial wave with no bound
state,

E (r' r) = — dk Re[e'~'" '"'(e"'"~' —1)].1
m 0

(2.12)

Substitution of this into the series obtained from
(2.8) yields a compact series for f,(p, k):

f,(p, k) =1+(p'-k') 1

n„(k, p(k+p)) —&„(k,p(k —p))
n~l p

(2.13)

1 " sin[5, (k)+ 5„(q')]
k+

x Im e«0«& 1

q+q +i&
(2.15}

'These expressions will be used to perform the
numerical calculations discussed in the next sec-
tions.

III. NUMERICAL CHECK

%e have tested the numerical accuracy of the
technique used to evaluate the preceding S-state
equations by applying it to two potentials: an un-
bound square-well potential and a three-term
Bargmann potential originally proposed by Sprung
and Srivastava. "

The first-order function 4,(k, q) needs to be
evaluated carefully due to the singularity at q'+ q
=0 and the rapid variation of the integrand in the
neighborhood of q = 0. By first shifting the sing-
ularity to the origin the integration can be ex-
pressed in terms of a principal-value integral,

1 ",sin[5„(k)+ 5,(q' -q)], , sin[5„(k) —&,(q))
k-q (3.1)

(3.2)

The principal-value part in turn can be regularized by adding and subtracting a term with q = 0. This in-
tegral can then be written in the form

1 " sin[5, (k)+ 5„(y -q)]sin5, (y -q) sin[5, (k) —5„(y+q)] sin5, (y+ q)
dg +v, y(k+y -q) y(k -y -q)

1 dy sin[5„(k)+ 5„(y -q)] sin5„(y —q) sin[5, (k)+ 5,(-q)] sin5, ( —q)
m y (k+y -q) (k -q)

y, = a+ tan[-,'v(l ax~)] (3.3)

The cutoff point a is arbitrary. %e find that by
using 48-point Gaussian quadrature for the finite-
range integral with a=1.5 fm ' and 24-point Gaus-
sian quadrature for the infinite-range integral,
very accurate results can be achieved. For the
latter integral, the transformation

be stored in a 24 x 48 dimensional array.
The square well potential chosen is defined by

V, =17.84 MeV, 0&r&R,
=0, ~&R,

(3.4)

with R = 2.306 fm. For this potential the off-shell
Jost function" for the 3th partial-wave state is
given by

was used, with the x~ representing the Gaussian
points. 24-point Gaussian quadrature was also
used to evaluate 4„ for n& 1 together with four-
point interpolation to evaluate the required 4„,
values. " Since the 4 functions are symmetric,
d „(-k, -q) = n,„(k,q), all the required values could

k2 2

Z(k, q) = (q/Z)'C, +

with K = Vo+k'. Here

B, = -(, ',
)

W[~, (Xa),ggI"(qa)],
I

(3.5)

(3.8}
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with u, (z) =zj, (z) and m,"(z)=zh,"(z). The phase
shift for /=0 is given by

5 (k)=tan '~ —tan~ I
—ka., (u

I,A j (3.7)

The off-shell Jost function is related to the half-
shell transition amplitude according to

(
.

) ( i ), Z(k, q) Z(k, -q)-
r ~q~ + — q .

g(k)
~ (3.8)

PIG. 1.. The half-shell function fo(p, k) for k = 1.0 fm ~

obtained from the square-well phase shift. The two
dashed curves represent the series approximation for
g =9 and g =10. The solid curve is the exact result.

2 3 4 5 6 7 & 9 10

FIG. 2. Convergence off()(p, k) for,9=1.0 fm ' as a
funct''on of;g, the number of terms included. The
arrows indicate the exact results for various p values.
Square-well case. Note the change of scale on the
ordinate axis.

The balf-shell function f,(p, k) was computed
using (2.13)—(2.15) including terms up to tenth or-
der. For small p and k values (less than 1.5 fm ')
the results are almost indistinguishable from the
exact results. Figure 1 illustrates how the series
for f,(p, 1.0) converges to the exact result for large

E
I 3 I 3.

0 3 4 5
r -fm-'

0 3 4
r -tm'

FIG. 3. Contour plots of g (p, k) computed for the square-well potential. The contours are drawn in steps of 0.05
with the dashed curves representing the o.= 0 contours. The label m on a contour indicates that it is the g =m && 0.05
contour. (a) The exact &(p,k) case. (b) The approximation to g {p,k) found by averaging the ninth- and tenth-order
summations.
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FIG. 4. The half-shell functionc xonfo(p, k) for k=1.0 fm"

aine rom the Bargmann phase shift. The d
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n= . e solid curve is the exact result.

P and 0 values. Thishis behavior is amplified further
in Fig. 2, where values off (p 1.0) a

ion o e number of terms summed in th
series (2.13). Onne nice feature that appears in

e in e

this case is the oe oscallation of the sum about the
exact result. This eis enables one to extrapolate the
results without having to go to lo arge n values.

oug various techniques may b
th~s, we have found t

y e used to do
nd that by simply averaging the

last two orders we obtainedine a very good estimate
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FIG. 5. Convergence of 1 0
for the Bar ann

0 P, .0) as a function of g
r e ar ann . ap yon or Fig»gmann phase shift. See the ca t' f

of the exact result. ThiThxs averaging approach wa s

ger, et al. ,
'p

he symmetric function of Baran-

1
o P, k = ——[kf,(k,P) sin5, (p)+Pf~(p, k) sin6, (k)].

(3.9)

'That is, at each point, the average of the ninth-
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and tenth-order sums was taken. The resulting
contour plots of the exact and approximate results
are displayed in Fig. 3. Each plot was constructed
from a 60x 60 mesh of n(P, k) values.

The contour plots within the rectangular region
p s 2.5 fm ', k s 2.5 fm ' are virtually identical.
As one goes to larger p, k values, the distance
away from the diagonal line p = k within which
agreement is good, tends to decrease.

The Bargmann potential is defined in terms of
the S matrix:

(3.10)

which can incorporate the change of sign of the
phase shift in the '8, state with the proper choice
o f parameters. Sprung and 8rivastava" performed
a least-squares fit to the 5('5', ) values of n-p scat-

tering of MacGregor, Amdt, and Wright' yield-
ing a y' of 12.2. The resulting parameters are

n, = 0.0404,

n2 3= 1.2192+ i1.8918,

O, = 0.8788,

p, ,= 0.8000+ i1.5659.

We have used this phase shift to generate the 4„
functions and to compute f,(p, k). Expressions for
the exact result have been given by Sprung and
Srivastava":

(3.11)

where M, (r) are given in Eq. (7) of their paper.
It is then straightforward to show that

f,(p, k) = 1+ (p' —k') . Im(e""~' . drM, (r) e &"e' "sinPr
~

. (3.12)

Notice that here f,(p, k) has a singularity when

5,(k)=0. The function o(p, k), however, has no
such singularity.

In this case, due to the change of sign of 5,(k),
numerical accuracy was more difficult to achieve.
In evaluating the integrals (3.2) in h, (k, q) we used
a= 0.5 fm ', and also split the first integral into
a finite-range part (0.5-1.0 fm ) and an infinite-
range part. 48-point Gaussian integration was
used for all finite-range integrals, together with
24-point Gaussian integration for the infinite-range
part. Here, for large p and k values, the series
again converged in an oscillating manner, but not
to the exact result. 'This is shown in Fig. 4 where
the series approximations to f,(p, 1.0) are present-
ed for n = 11 and 12, and are compared with the
exact result obtained using (3.12). The agreement
for small p is still very good, however, the nu-
merical inaccuracies arising from the quadrature
procedure used tend to amplify the error for large
p values. Trial runs made using more integration
points did decrease the discrepancy, but at the
cost of considerably increased computing time.
It was felt that the additional cost was unwarrant-
ed at this time, until other methods of obtaining

f,(p, k), as will be mentioned later, have been
pursued.

The rate of convergence for the series with the
Bargmann phase shift was found to be very simi-
lar to that of the square-well phase shift. This
is shown in Fig. 5. The o(P, k) contours were also
plotted for this case in Fig. 6. 'The approximate
results were obtained by averaging the eleventh-
and twelfth-order sums. As in the square-well

case, the differences in the region of small p and
k (S2.5 fm ') are quite small. Beyond this region,
and away from the region bordering the diagonal

(~P —k~ = 1.0 fm ') the discrepancies are larger
than in the square-well case. .

0-

-60
1
E (GeV)

FIG. 7. The high-energy forms of the $0 phase
shift.

2

IV. EXPERIMENTAL PHASE SHIFT

We have next taken the experimental 'So n-P
phase shift as deduced by MacGregor, Amdt, and

Wright, "extrapolated this to higher energies, and

used the result as the 5,(k) phase shift required
for the generation of the 4„series. Interpolation
between the experimental data points has been
achieved by using a rational-fraction' fitting pro-
cedure. Extrapolation is achieved by then match-
ing this with a smooth continuous function, "



INVERSE SCATTERING PROBLEM AND THE OFF-SHELL T. . .

E
~gmw 3 3

1 2 3 4 5 6 2 3 4 5 6
p (fm ') p {fm ')

FIG. 8. Contour plots of 0 (p, k) as computed from the experimental z -p phase shift data. The contours are drawn in
steps of 0.1 after averaging the eleventh- and twelfth-order results. (a) For high-energy form No. 1; {b) for high-en-
ergy form No. 2.

V(k) = [f,(k,)+ C(k -k,)]e "-"'/[l+ m(k -k,)"].

(4.1)

The matching point occurs at k = k, and C is deter-
mined by the value of d6,(k)/dk at k=k, . Two dif-
ferent forms have been examined with the corres-
ponding high-energy phase shift shown in Fig. 7.

1.2

0.8

OA

The parameters for set No. j. are a=0.01, m=0. 5,
n = 4, and E,= 600 MeV (E, is the energy corres-
ponding to k,). The corresponding parameters for
set No. 2 are &=0.01, m=0. 2, m=4, and E,
= 700 MeV.

The resulting a(p, k) contours are displayed in
Fig. 8. As expected, the change in the high-ener-
gy form of 5,(k) leaves the behavior of v in the re-
gion p, k ~ 3.0 fm ' virtually unaffected. It has been
shown elsewhere' that this part of o dominates in
the calculation of the properties of finite nuclei
and nuclear matter. It is essentially determined
by the known part of 5,(k). We also show in Fig.
9 the form of f,(P, k) with k= 1.0 fm '. As with the
o(p, k) contours, these have been obtained by
averaging the eleventh- and twelfth-order summa-
tions. The rate of convergence of the series in
this case is very similar to that shown in Fig. 5
for the Bargmann case.

-0,4

-0.8-

I I I

0 2 3 4
p (fm ')

FIG. 9. The half-shell function fo(p, 1.0) for the two
experimental sets of p'hase shifts.

V. DISCUSSION

We have shown that the approach outlined in Sec.
II can be used to generate the half-shell 7 matrix
from a knowledge of the partial-wave phase shift
5, (k). The theory is based on the assumption that
the underlying potential is local and energy inde-
pendent. Specifically we have treated the 'So par-
tial-wave case and have found that the resulting
f,(P, k) or o(P, k) values are fairly reliable in the
region P or k~ 2.5 fm '. The approximations made
in performing the integrations introduce errors
which are enhanced at larger p or k values, away
from the diagonal. Results from the square-we11
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potential studied indicate that this should not be
as much of a problem in highe r partial waves,
where the phase shift does not change sign.

A knowledge of o(P, k), or equivalently f,(p, k),
can be the starting point for performing a number
of calculations. ' Many nuclear structure calcula-
tions do not appear to be sensitive to the region
beyond P or k values of 2.5-3.0 fm ', ' so that the
numerical approach here can still be useful. One
can also use the o(p, k) functions generated by
this approach as a starting point for examining
the effects of nonlocal variations introduced
through unitary trans formations.

The h„series used to calculate f, (p, k) is not

unique, and in many cases may not even be con-
vergent. Karlsson" has outlined alternative series
expansions for the half-shell amplitude which are
always convergent, even in the case where the po-
tential supports a bound state. These have yet to
be investigated in detail to study their suitability
for applications. Work has been initiated in this
area.
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