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Exchange-Coulomb interaction in resonating-group calculations

M. LeMcre and Y. C. Tang
School of Physics, University of Minnesota, Minneapolis, Minnesota 55455 .

{Received 1 May 1978)

A simple, self-consistent procedure is proposed to approximately calculate the exchange-Cou. omb kernel in
a resonating-group formulation. By applying this procedure to a+a, He+a, and light ion plus ' 0
systems, it is found that satisfactory results can be obtained in all these cases.
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I. INTRODUCTION

In resonating-group calculations, ' the major
task is to compute the various kernel functions
which enter into the formulation through the use
of totally antisymmetrized wave functions. Hy
using a complex-generator-coordinate technique
recently developed, ' and by choosing functions of
Gaussian dependence for both the spatial part of
the cluster internal function and the spatial part
of the nuclear interaction potential, it is straight-
forward, though tedious, to carry out an analytic
evaluation of the normalization kernel and the
kernels arising from the kinetic-energy operator
and the nuclear part of the potential-energy opera-
tor. On the other hand, due to the fact that the
Coulomb potential does not have a Gaussian spa-
tial dependence, the evaluation of the exchange-
Coulomb kernel frequently requires a consider-
ably larger amount of computational effort. There-
fore, it is desirable to devise a simple procedure
by which this particular kernel may be approxi-
mately evaluated but is still accurate enough for
practical purposes. In this investigation, we pro-
pose such a procedure which is based on the rec-
ognition that, because of the long-range nature of
the Coulomb potential, the total Coulomb energy
of a bound system may be computed in a good ap-
proximation by using only the unantisymmetrized
part of the wave function. '

In the next section, we discuss the procedure for
obtaining an approximate expression for the ex-
change-Coulomb kernel. To demonstrate that this
expression is indeed useful in practical calcula-
tions, we consider in Sec. III n+n and 'He+o.
systems where exact expressions for this kernel
function have been derived. Here also, we shall
describe the results obtained for the more compli-
cated systems of d, 'He, and e plus ' O. Finally,
in Sec. IV, concluding remarks will be made.

II. EXCHANGE-COULOMB KERNEL

Consider a singLe-channel resonating-group
wave function given by'

where 8 is an antisymmetrization operator,
and Qs describe the internal structures of clusters
A and &, &(R) describes the, relative motion be-
tween the two clusters, and Z(R, ) is any normal-
izable function describing the motion of the total
center of mass. By writing

8 =8'8&8~,

where 8& and 8& are, respectively, antisymmetri-
zation operators for the nucleons in clusters A. and
&, and 8' is an antisymmetrization operator which
interchanges nucleons in different clusters, one
obtains, by using the procedure discussed in Ref.
1, the following expression. for the exchange-Cou-
lomb kernel &c(R,R' ):

where

and Q~(K =A. or B) is an antisymmetrized cluster
internal function given by

Also, in Eq. (3), the quantities R' and R are
parameter coordinates on which antisymmetriza-
tion operators do not act, and 'V& represents the
total Coulomb interaction. which has the form

(6)

with & being the total number of nucleons in the
system and V;; being the Coulomb potential be-
tween. nucleons & and g. As was mentioned in the
Introduction, the fact that V;; possesses a non-
Gaussian spatial dependence means that the evalu-
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ation of &~ is particularly time consuming.
For a bound system described by the wave func-

tion of Eq. (1}with

then one obtains from Eqs. (V) and (12) the follow-
ing equation:

F(R) =RA (R}Pi(cos~), 0

f *, (R')k) (R', R" )f, (R" ) de' dR"

the total Coulomb energy is

E c &Vl&'cl 0)
&Vl 4)

=E, , R' X, A', A", R" dA'de!".
p p

(16)

with

&VIUol 0&+&Pl&&l + 4'&

&4l f&+&Vl dt" 0&
Since'(R) is an arbitrary function, Eq. (16) im-
plies that

(R', R") EK -(R' R" )

Because the Coulomb potential ~&& is long ranged,
it is a good approximation (see Chap. 6 of Ref. 2)
to compute &» by using only the unantisymme-
trized part of g; that is, one can obtain a good
estimate of the Coulomb energy. by simply using
the expression

&@l~cl 0&

This is a useful, approximate expression. for the
partial-wave exchange-Coulomb kernel, because
one can, in general, analytically evaluate the par-
tial-wave exchange-normalization kernel &&~ in a
relatively straightforward manner.

Next, we define the relative Coulomb energy
~&~ between the clusters by expressing ~~~ as

Exi =&~+F-a+~g~-C C C C (16)

E* R' &~ R', R" & R" ~R'~R"

F*(R')6~,(R', R" )&(R")dR' d H",

where 6'(R', R" ) is the exchange-normalization
kernel given by'

X,(R', R") =& y„y,6(R -R')S~

xe"[y„j,6$-R'gj) .
If one now makes the partial-wave expansions

K (It', Il")=, „P k, (R', R")Y,„(e' y }
l ~ m

xy,*.(e", @"),

sos(R, R"}=, „QOZ~, (R', R")Y', (g' y')-
l, m

(16)XY* (g Q"),

For example, in the 'Be case where a translation-
ally invariant shell-model function of the lowest
configuration in a harmonic-oscillator well of
width parameter n =0.514 fm ' is used, ' the val-
ues of Er~ calculated with Eqs. (8) and (10) are,
respectively, equal to 4.26 and 4.06 MeV, which
differ from each other by only about O'Fo.

By equating the expressions for & 2 ~ given by
Eqs. (8) and (10), one finds

(4I'U. I
~"5) = Er& &Tlat" 0&.

Using Eqs. (1) and (3) then yields

In the above equation, && and ~& are, respective-
ly, the internal Coulomb energies of clusters A.

and &; these energies may be easily computed by
using the expressions for the cluster internal
functions Q„and Qs. On the other hand, the rela-
tive Coulomb energy ~» is an a priori unknown

quantity, but may be approximately determined by
the use of a self-consistent procedure to be dis-
cussed below.

Before we discuss the self-consistent procedure,
we wish to make the following remarks.
(i) If the cluster R is a neutron or a dineutron
cluster and if each cluster (A or R) is described
by a single Slater determinant of translationally
invariant functions, then Eq. (17) is simply re
duced to

k )o (R', R '
) =E~ 6t~( (R', R" ),

which is in fact an exact expression for the ex-
change-Coulomb kernel, as can be easily verified
by an explicit calculation. '
(ii) For states in which the clusters penetrate into
each other strongly, the mutual antisymmetriza-
tion between nucleons in different clusters is im-
portant. In such cases, there will be substantial
cancellations between the individual terms in both
the numerator and. the denominator of Eq. (6}, and
it is a, poor approximation to omit exchange-Cou-
lomb contributions entirely by simply setting &&

equal to zero in the calculation.
For an approximate but self-consistent determi-
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nation of &„&, we use the following procedure. We
consider a bound or a sharp resonance state having
a certain definite value for the relative orbital
angular momentum ~ and compute the separation
energy of the clusters by solving the resonating-
group integrodifferential equation

lem. ' ' In comparing with these, our method has
the advantage of being exceedingly simple to apply.
Also, as the discussion below shows, the results
obtained are in good agreement with those obtained
in cases where exact expressions for the exchange-
Coulomb kernels have been derived.

2g dR" R" gE —V (R') —V (R') f, (R')

[0", (R', R )+k (R', R )jf, (R )dR
0 (20)

where V& and V& denote, respectively, the direct
nuclear and the direct Coulomb potentials, and

~& contains the normalization kernel and the ker-
nels arising from the kinetic-energy operator and

the nuclear part of the potential-energy operator.
Two separate calculations will be performed. In
the first calculation, we choose an arbitrary but

C
reasonable value for ~» and obtain the separation
energy Es for the actual case where both clusters
are charged. In the second calculation, we com-
pute the separate energy ~s for the reference case
where the charge of the proton is assumed to be
infinites imally small. The difference

«s =Zs -Zs (21)

is then a good estimate of the relative Coulomb
energy. In general, the value of &Es so deter-
mined will, of course, not be equal to the value of
8&& chosen initially. The procedure is thus to
systematically repeat the calculation with differ-
ent choices of E» until self-consistency, i.e., E„,
= ~s is finally obtained. This self-consistent value
of Ecs, will thenbe used in Eqs. (11)and (18)to cal-
culate binding energies and phase shifts in all
states which are characterized by this particular
& value.

In principle, one should determine the self-con-
sistent values of E» for all & values of interest.
In practice, however, this does not seem neces-
sary and it is a good approximation to use the

value determined for & =0 in all even-& states and

the value determined for & =1 in all odd-& states.
The reason why this simplification does yield
satisfactory results is that in all states of a ro-
tational band the intrinsic structures and, hence,
the relative Coulomb energies are similar, and

for those values of & for which no bound or sharp
'resonance states exist, the calculated values of
the phase shifts are not expected to be greatly
sensitive to the choice of &&& appearing in the ap-
proximate expression for the exchange-Coulomb
kernel.

It should be mentioned that there are other ap-
proximation methods which have been proposed to
specifically handle the exchange-Coulomb prob-

HI. EXAMPLES

A. 0. +n system

To test the procedure described above, we con-
sider the n + n system where the exact exchange-
Coulomb kernel is known. "'" For this test, we
use the wave function of Eq. (1), with P~ and Qs
being translationally invariant products of single-
particle functions in harmonic-oscillator wells of
width parameter n =0.514 fm '. The nucleon-nu-
cleon potential used is given by Eq. (5) of Ref. 5,
with the spin-orbit part set as zero. The exchange-
mixture parameter & in this potential is chosen to
be 0.93, which yields a'Be, &=0 bound state having
an +-particle separation energy of 0.748 MeV.

Using the self-consistent procedure for the & =0
ground state, we obtain a value of &» equal to
1.63 MeV. The corresponding value of the n-par-
ticle separation energy is 0.709 MeV, which is
very c;lose to the abovementioned value obtained
with the exact exchange-Coulomb kernel. On the
other hand, if the exchange-Coulomb interaction
is neglected by setting && =0, then the separation
energy becomes only 0.246 MeV, which is ap-
preciably smaller than the correct value of 0.748
MeV quoted above.

In Table I, we compare the phase shifts &&, &&,

and && for &=0, 2, and 4 obtained, respectively,
with the exact exchange-Coulomb kernel, with the
approximate but self-consistent exchange-Coulomb
kernel, and with && set as zero. Here it is seen
that the approximation of omitting exchange-Cou-
lomb effects leads to significant deviations from
the exact result especially at energies near res-
onances, but the use of our simple, self-consistent
procedure to take these effects approximately into
account does yield satisfactory phase-shift values
in all orbital-angular-momentum states.

To have a measure of the effectiveness of our
proposed procedure, we define a quantity

(22)
l

In Table I, the values of g~ are given in &=0, 2,
and 4 states at various energies. From this table
one sees that its value is always appreciably lar-
ger than 1, indicating that the result obtained with
the. self-consistent exchange-Coulomb kernel is in-
deed greatly improved over that obtained by setting
u,' =0
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TABLE I. Various phase shifts (in deg) as a function of'E.

E
&Mev~

L=O l=2
64

2
4
6
8

10
12
14
16
18
20

480.9
435.8
406.7
385.3
368.4
354.2
342.0
331.3
321.7
312.9

480.4
435.0
405.8
384.4
367.3
353.1
340.9
330.1
320.5
311.8

474.3
428.7
399.7
378.5
361.8
347.9
336.0
325.6
316.3
307.9

11.4
9.2
7,9
7.0
6.3
5.7
5.2
4.8
4.5
4.2

220.8
311.5
303.3
294.2
286.0
278.8
272.3
266.3
260.8
255.6

217 3
310.3
302.3
293.2
285.0
277.7
271.2
265.2
259.6
254.'5

197.9
296.0
293.8
286.0
278.5
271.8
265 ..7
260.1
255.0
250.2

6.6 0 0 0
12.3 0.6 0.6 ' 0.6
9.6 3.5 - . 3.4 3.3
8:.2 12.4 12.3 11.1 8.4
72 372 361 300 64
6 5 83 8 80 6 65 1 5 9

' '6.0 '
. ll'.5.2 112.3' 97.8 6.0

5.5 129.1 126.7 115.9 5.6
5.1 136.5 134.4 125.8 5.1
4.7 141.1 L39.2 132.1 4.8

B. 3H&+ n system

Next, we study in the 'He+ a system the results
obtained by using the approximate exchange-Cou-
lomb kernel of Eq. (17) and the exact exchange-
Coulomb kernel of Koepke et a/. " This is a useful
study because, in this system, both even-~ and odd-
& partial waves contribute but there exi.st no bound
or sharp resonance states with even values of &.

Thus, in the self-consistent procedure we shall
consi. der only the ground state with & =1 and use
the resultant value of ~~, for all orbital angular-
momentum states.

The wave function used is again that of Eq. (1),
with the cluster internal functions given by the
lowest configurations in harmonic-oscillator wells
characterized by a common width parameter of
0.45 fm '. The nucleon-nucleon potential is chosen
to have a Serber exchange mixture (i.e., & =1)
which results in a cluster separation energy of
2.058 MeV in the & =1 ground state when the exact
exchange-Coulomb kernel is employed.

The self-consistent procedure, when applied to
the L =1 ground state, yields a v'alue of ~„& equal
to 1.755 MeV. With this choice of E&&, the result-
ant value of the 'He separation energy is 2.032
MeV, which is rather close to the exact value men-
tioned above. As a comparison, we have also com-
puted the separation energy in the case where &&

is set as zero. This turns out to be 2.450 MeV,
which again differs appreciably from the value ob-
tained with the exact exchange-Coulomb kernel.

Using the self-consistent value of &» so deter-
mined, we calculate the phase-shifts for & =0 to 5
at various energies. The results are shown in
Fig. 1, together with those obtained with the exact
exchange-Coulomb kernel and with && =0. As i.s
seen, the phase-shift values in all & states obtain-
ed by our self-consistent procedure are indeed
much closer to the exact values than those obtain-
ed by omitting exchange-Coulomb effects.

From Fig. 1 one also notes, the interesting fea-
ture that in even-& states the phase-shift values
obtained with A'& =. 0 are smaller than those obtain-
ed with the exact exchange-Coulomb kernel, while
in odd-& states the.oppos. ite is true. This is a
demonstration of the odd-even. effect arising from
antisymmetrization, which has been discussed in
detail elsewhere ' 's

C. d, H, He, and n+ 0 systems

The self-consistent procedure di.'scussed here
has also been applied to the d, 'H, 'He, and 0.
plus "Q systems. ' In-these systems, because of
the presence of P-'shell nucleons, an analytic der-
ivation of the exact expression for the exchange-
Coulomb kernel be'comes generally difficult and
the use of an approximate procedure seems to be
quite necessary.

In Table II, we list the vat.ues of &~& obtained
by applying the self-consistent procedure to the
lowest & =0 and 1 states. From this table, one ob-
serves the following features:
(i) The values of Z„, are larger than the values of

This is consistent with the 'fact that in all
these systems the ground states have & =0 arid,
hence, the intrinsi, c structures are expected to be
more compact in & =0 states than in & =1 states.
(ii) Using the va'lues of E„,and &„„oneesti-
mates that in the n+ "6case the mean separation
distances between the clusters are equal to 3.8
and 4.5 fm in & =0 and 1 states, respectively.
These values should be compared with the value of
about 4.1 fm for the sum of -the rms matter radii
of the a. and ieP nuclei. From this comparison it
is reasonable to state, in agreement with the con-
clusion reached by Matsuse et al. ,

"that the states
in the ground-state band may have a rather shell-
model-like character, while the states in the &'
=0 band with band head at 5.79 MeV are likely to
have a strong n+' Q molecule-like character.
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pIG. &. Comparison of 3He+ Q,' phase shifts calculated with the exact exchange-Coulomb kernel, with the approximate
but self-consistent'exchange-Coulomb kernel, and with k& set as zero.C

TABLE II. Values of Etc and @c&

System
&zo

(MeV) (MeV)

d+ "p
3H+ i6p
3He+ 16Q

Q. + "p

3.38
3.23
6.34
6.12

2.42
2.73
5.38
5.19

(iii) The value of Es in the 'H+ "0 system is0
3somewhat larger than one-half of that in the He

+"0 system. This can be attributed to the fact
that the 'H separation energy in the ground state
of "F is larger than the 'He separation energy in
the ground state of "Ne.

Because of these features, we are confident that,
even though there is no comparison with results
from exact exchange-Coulomb calculations, the
binding energies and phase shifts obtained by our

approximate procedure are likely to be reasonably
correct. '

IV. CONCLUSION

In this investigation, we discuss a simple, self-
consistent procedure which can, be used to obtain
an approximate expression for the exchange-Cou-
lomb kernel in a resonating-group formulation.
For this 'procedure the basic idea is that; because
the Coulomb potential between two protons is long-
ranged, thetotalCoulomb energy can be calculated
to a good approximation by using only the unanti-
symmetrized part of the resonating-group trial
wave function.

By applying this procedure to a+a, 'He+ e, and
light ions plus "0systems, we find that satisfact-
ory results can be obtained in all these systems.
From this we conclude that our procedure is likely
to be useful in a general case involving complica-
ted clusters. This is important, because already
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for a two-cluster system where the clusters con-
tain P-shell nucleons, the analytic derivation of the
exchange-Coulomb kernel becomes difficult and an
approximate procedure may have to be devised in
order to make the corresponding resonating-group

calculation computationally feasible.
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