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The quasiparticle approach which exactly reduces the three-body Faddeev formalism to an effective two-

body theory is a general starting point for deriving approximation schemes. Practical methods, currently in

use for solving the effective two-body equations, follow from it as special cases. A new procedure is proposed

which is well suited for local nucleon-nucleon interactions containing repulsion. Its effectiveness is tested by

calculating the triton binding energy and elastic neutron-deuteron scattering data for the soft-core potentials

of Malfliet and Tjon. Particular emphasis is laid on extracting the influence of higher subsystem partial wave

contributions of these potentials.

NUCLEAR REACTIONS Three-body scattering theory, approximation methods
and their convergence, numerical test in a three-nucleon model with local poten-

ti al.

I. INTRODUCTION

It is well known that the Faddeev equations' ex-
hibit completely the basic principles underlying
the three-body collision problem. They are,
therefore, appropriate for mathematical investi-
gations. Moreover, due to their uniqueness, they
can be solved directly, though only with great
numerical effort.

Other independent approaches" to the three-
body problem emphasized the simplifying property
of separable potentials, namely to lead to equations
for quantities in which the internal momenta of the
colliding clusters are integrated over. Such ef-
fective two-body equations which are of the multi-
channel Lippmann-Schwinger type put special
emphasis on, and take into account explicitly,
the composite particle aspect of the process under
consideration, and are particularly suited for
practical applications.

It was Lovelace~ who exposed the relationship
between both approaches by introducing separable
subsystem amplitudes into the Faddeev equations.
This procedure gave, via pole dominance argu-
ments, a justification for considering separable
potentials as a means to describe realistic com-
posite particle collisions in an approximate but
nevertheless relevant manner.

Qeneralizing these ideas it has been shown by
Alt, . Grassberger, and Sandhas' that the reduction
of the Faddeev equations to effective two-body
equations, which is so desirable from the physical
and from the practical point of view, can be

achieved without any approximation for arbitrary,
in particular local, short-range potentials. (With
some modifications this formalism is also applica-
ble if, in addition, Coulomb forces are operative. )
This method (quasiparticle formalism), therefore,
combines the generality of the Faddeev approach
with the simplicity inherent in an effective two-
body formulation of the three-body problem. The
exact and closed form of the occurring effective
potentials and Qreen functions represents an ap-
propriate starting point for various approximation
schemes, as e.g. , the separable expansion method
and the perturbative treatment of correction terms
[quasi-Born approximations (QBA)]. This fact
is being utilized in the following to derive a mod-
ification of the quasi-Born correction which is
well suited for application to potentials containing
repulsion.

The paper is organized as follows. In Sec. II
we briefly recapitulate the quasiparticle concept.
The latter is used in Sec. III for discussing the
separable expansion method and the quasi-Born
approximation from a unifying point of view. Their
respective advantages are combined in a new ap-
proximation scheme which both is practical and
provides a simple means for estimating the ac-
curacy of the approximations. It is tested in Sec.
IV in a three-nucleon calculation with the sof t-
core pair interactions of Malfliet and Tjon.' The
numerical results for triton binding energy, neu-
tron-deuteron scattering lengths and elastic cross
sections are presented in Sec. V, and compared
with those obtained by other methods. In Sec. VI
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we discuss in detail the contributions of the cor-
rection terms with particular emphasis on the
influence of the interaction in higher subsystem
angular momentum states.

II. THE QUASIPARTICI. E APPROACH

with Uz fulfilling the Eq. (2.1) with T„re-
placed by Ty,

(2.8)

One of the most powerful, physically motivated

methods for applying the Faddeev equations', or the
equivalent equations'

U~ (z) = Fa G, '(z)+Q F~„T„(z)G,(z)U„(z) (2.1)

is provided by reducing them to an effective
iwo-body formalism. [We use the conventional
notation 5~ =(1 —5z ) and, for the free Green
function, Go(z) = (z —H,) '.] To attain this goal,
various approximation techniques have. been pro-
posed. All of them can easily be understood as
special cases of the exact reduction scheme der-
ived in Ref. 5, a fact which enables us to establish
appropriate criteria for their respective accuracy.
This scheme, moreover, represents a natural
starting point for further approximation proce-
dures, as will be exemplified in the next section.

We, therefore, begin by recalling the relevant
formulas of the quasiparticle approach of Ref. 5.
Let the given two-body transition operator T„be
decomposed into tw'o parts

TBn, em(CI& qa) &q8 Tln, em lqcm&

describe the collision of an incoming two-body
bound state

I g „) and a third particle n, leading
to an outgoing configuration (p, n), for which on
the energy shell (z =E =Ea„) the relation

G,(E..) I ~m; E..& I q.&=14..& I q.&,

and an analogous one for the final channel, holds.
Conventionally the splitting (2.2) of T, is based

on a splitting of the corresponding potential' into
a separable part and the rest

(2.9)

(2.10)

(2.11)

The index n runs from 1 to Nz, the number of
separable terms in Tz, and similarly m runs from
j. toN. .

The decisive feature of this reduction is that
all the operators (2.5)-(2.V) now act only on the
plane wave states lq ) describing the relative mo-
tion of the two-body cluster

I
nm& and the third

particle n. However, not all the quantities (2.5)
are related to physical processes. In fact, only
those amplitudes

T„=T'+T' (y=l, 2, 3) . (2.2)

Here T, consists of a sum of separable terms
containing at least all bound-state and resonance
poles of the y subsystem,

In this case the ' form factors"
I yr) of the ampli-

tude (2.3) are related to the form factors
I x„„&

according to

Ny

T„'= yx 6, „,ys (2 3)
(2.12)

T = V+VGo (2.4)

The effective amplitudes, potentials, and Green
functions are defined by

'and T„' is the nonpolar remainder. Note that the
form factors

I yr& =
I yr; z) in general depend on z

(the explicit z dependence will, however, be sup-
pressed in the following unless it is desired for
clarity).

Introducing the splitting (2.2) into the Faddeev
equations (2.1) leads to effective two-body equa-
tions of the Lippmann-Schwinger (LS) type, which
in matrix notation read as

The elements of the matrix b,„are determined
by

(b,„')„,= 5„,A.„„'—&x„„I (G + 0 T„'G ) I x„), (2»)
where T„' fulfils the LS equation

(2.14)

From Eq. (2.12) it is apparent that there, as men-,
tioned before, the form factor yr) depends on the
energy z via, T'„(z)GO(z) even if X„„)is energy in-
dependent. We mention that it is advantageous
to require for the form factors

I x„„)

T,„..= &pm I G,U,.G, I
nm&,

y'an, l =&p&IGOUItnGolam& ~

Go sn. e -&ye&~,~

(2.5)

(2.6)

(2.V)

X„„&X„„I(„,&=5„„ for r= I, . . . , N„ (2.15)

at the bound state energies E„„which guarantees
that condition (2.10) is satisfied.
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Having recapitulated the reduction of the three-
body equations to effective two-body equations
in a completely general way, we are now going
to describe commonly used approximation schemes
as special cases of this formulation. Recallingt¹standard techniques from such a point of
view, we are led to a new version which avoids
their respective disadvantages

Ue -&t G. '

respectively. The definition (2.6) of the effective
potential, therefore, reduces to the familiar ex-
pl esslon

V,....= 6,.&x,.I G. I x..&

It is graphically represented by the first diagram
of Fig. I. Similarly the inverse of the effective
Green function (2.7) becomes

(3.3)

(G; ),„.„-'=6,.(6„.~..-'- &q,„IG, I X..&) . (3.4)

One well-known choice of the form factors
I x„„&,

useful also for our later discussion, are the en-
ergy-dependent eigenfuncti. ons of the two-body
LS kernel (Sturmian functions),

v,G.( )Iv„( )&=a„( ) Ix„( )&, (3.5)

with g,„being the corresponding eigenvalues. For
such form factors, Eq. (2.3) simplifies to

T„'(~)=P
I x„(~)»„(s)[1—n„(~)] '

&x„„(~)I,

(3.6)

A. Separable expansion method 9

Choosing the number N„of separable terms in
the decomposition (2.11) so large that V,', and
hence also T'„, can be neglected, Eqs. (2.12) and

(2.8) simplify to

(3.1)

a problem if higher partial wave contributions of
V„are taken into account, because then a separ-
able expansion has to be performed in all these .

angular momentum states. This shortcoming is
avoided by the QBA procedure described in the

following.

B. -Quasi-Born approximation

The QBA' is complementary to the separable
expansion method in the sense that the number
N„of separable terms in T'„[Eq. (2.3)], and hence
also the dimension of the system (2.4), is kept
as small as possible. However, in accordance
with the discussion at the beginning of Sec. II,
N, must not be smaller than the number of bound
states and resonances in the subsystem y. If the
Hilbert-Schmidt expansion is used, the latter
requirement means that the representation (3.6)
of T'„has to contain at least all those terms in
which the attract& e eigenvalues g„„(z) (i.e., eigen-
values whose real parts are positive) come near
to or even leave the unit circle in the energy re-
gion considered.

Then, in general, T„' is no longer negligible
but may be taken into account perturbatively, i.e.,
by iterating Eq. (2.8)

(3.8)

inserting this expansion into the definition (2.6)
and keeping in mind the relation (2.12), we obtain
the quasi-Born series of the effective potential.
The lowest order term V~~o' „, called O.QBA, is
of the form (3.3), whereas in the next order
(1.QBA) a correction term linear in T„' occurs:

(o&~a., = ~a.,

+(g~„~G . gT', B~,T'„)G ~g, ) (3.9)—
y

The various terms which make up the 1.QBA are
represented in diagrammatical form in Fig. 1.

~„„(s)&x„„() l G,(s) I~„,(~)&=6„.~„,(~) . (3.7)

with the strength parameter A„„(z) fixed by the
condition

V (0)

gl 03
u~l& +

V,

Note that Eq. (3.7) reduces to (2.15) if the form
factor g„,(8) is related to a bound state wave func-
tion, and z=E„,.

The advantage of having to deal with the simple
driving terms (3.3), characteristic for the separ-
able expansion method, has to be confronted with
the disadvantage of a high dimension of the ma-
trix equation (2.4). This become' even more of

V. Vd

FIG. 1. Diagrammatical representationof the various
terms of. the effective potential (3.9) in 1.QBA. The
first diagram V corresponds to the O.QBA, and to
the potential arising in the separable expansion method,
Eq. (3.3).
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We point out that the additiv~ty of the correction
terms in (3.9) has desirable consequences. For
it enables us, af ter judging their magnitude relative
to the driving terms V' ', to restrict ourselves to the
important contributions when solving Eq. (2.4).
Moreover, in this way a simple and practical
criterion for estimating convergence is estab-
lished.

Let us add some further comments. An essential
aspect of the QBA is the fozv dimension of the ma-
trix equation (2.4). However, care must be taken
to get T„' small enough to guarantee sufficiently
fast convergence of the quasi-Born series. For
short-range potentials this is achieved with a number
tt„of separable terms in(2. 3)which is much smaller
than requiredby the separable expansion method. In
the example of neutron-deuteron scattering discussed
below, N= 1 in evt. ry channel, accounting for the
deuteron bound state and the singlet antibound
state, turns out to be already sufficient. This
fact shows another attractive feature of the QBA
approach, namely that the majority of the occur-
ring amplitudes is related to physically inter-
pretable processes.

A further, very important advantage of the QBA
is that all subsystem partial craves which have
not been taken into account explicitly in T'„enter
the effective potential (3.9) automatically via
Ty p

e g ., if T„'is chosen to ac t only in S s tates,
then for the higher partial waves the rest amp-
litude T„', is identical to the original 7„,[compare
the definition (2.2)]. Obviously this fact becomes
decisive if many two-body angular momenta con-
tribute nonnegligibly, as happens, e.g. , in the
case of the Coulomb repulsion in proton-deuteron
scattering. '

D. Improved approximation scheme

The method proposed here and applied in the
following combines the advantages of the treat-
ments discussed above. It is again based on the
quasi-Born approach. But, instead of approxi-
mating T„' in the effective potential (3.9) by V„'

which, as discussed in Sec. III |., is justified only
in special situations, we split from the rest amp-
litude T,' further separable terms

Ti T&s+ T»
y 'y y (3.12)

before approximating the remaining rest T» by
its Born term.

In detail this may be done in complete analogy
to (2.11), i.e., by splitting from V„' additional
separable terms,

v,'= Z Ix„,)x„&x,„l+v„"

and Green funct&ons. They have been used suc-
cessfully in model calculations for purely attrac-
tive Yukawa potentials. "" (Equation (3.11) coin-
cides with the exact first order formula arising in
the second version of the quasiparticle method. ")

However, potentials V, containing strong re-
pulsion support also large repulsive eigenvalues,
so that (3.10) is no longer justified. In this case
we may proceed, e.g. , by adding the separable
terms corresponding to these repulsive eigen-
values to V'„in Eq. (2.11). Thereby N„, and con-
sequently also the number of coupled equations
(2.4), increases again. This drawback is avoided
in the subsequent approximation.

C. Simple approximation of T ' in the effective potential

Vip+ V»
y y (3.13)

Tf ~Vl
y ~ (3.10)

To calculate the 1.QBA (3.9) numerically is in
many cases very cumbersome. Additional ap-
proximations are, therefore, often desirable.

%e have already emphasized above that all at-
tractive eigenvalues q„„with I q„„(s)I

~ 1 have to
be taken into account in the separ'able part V'„of
the splitting (2.11) for the quasi-Born series to
converge. Thus, if the original potential Vy does
not support repulsive eigenvalues with absolute
value near to or larger than unity, then the Born
series for the rest amplitude T,' does converge.
This fact suggests the further approximation

pt g=Q +1

with

(3.14)

(&,' ')„=&,.x„' —&x„l t 0+ Go~."Go
I x,.& (3 15)

By choosing the number (M N„) of separab—le
terms in (3.13) large enough, the rest amplitude
T„"defined by the LS equation

We then obtain [compare (2.3), (2.12), and (2.13)]

which leads to manageable effective potentials
T» V»+ V/Pg

y y o y (3.16)

v,'„".„=v,"„,' + Q (1 —&~.&„.)&xB.IGov'Golx

(3.11)

can be neglected in (3.14) and (3.15), and may be
replaced by its Born approximation in the second
term of (3.12),
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VII
y y (3i1 l)

[When (M„—N„) is made so, large that T„" can be
neglected completely in (3.12) and (3.14), we ar-

rive at an alternative to the separable expansion
method which avoids blowing up the dimension of
the matrix equation (2.4). It has been applied
successfully in Refs. 23, 24.] Then T'„ takes the
form

flay
',

, :,Ny

T„' = g I ~„„&~„'„".&q„, I
+ v„. = v„'+ g (3.18)

y~8=N +1 ty S=Ny+&

where 6„"0,' is given by (3.15) with T„"=0.
As compared to the simple approximation (3.10), additional terms occur in (3.18}which explicitly take

into account the effect of the (M„-N„) large eigenvalues (see in this respect Sec. III E). Inserting (3.18)
in (3.9) we now get, instead of (3.11),

I',".,'..= I',".,'..+ Q(1-6,.6,.) g &x.„ IG.Ix„&&,",,".&x,.lt-. lx..&+ g (I -6,.6,.)&x,.lG.I,"G.lx..& . (3.18)
y rt s=Ny+1 y

If the second representation (3.18) of T„ is used, we obtain the correction terms in a form particularly
suited for the following numerical considerations,

v,"„,'..= I',"„,'..*g (1 —6,.6„.)h,.I G.l",&. I x..&

+ g P (1 —6,.6,.)&x,.lG. lx„)(~,',",.'-6,.~„)&x,.l~. lx..&

y r, s=Ny+j
(3.20)

Note that the first two terms on the right-hand
side of (3.20) coincide with the expressions (3.11).

Summarizing, we therefore conclude that by the
present approach the simple but often not satisfying,
approximation (3.11) is improved with little ad-
ditional work. For, the added terms are not .

much more compl, icated than. the effective poten-
tial V"' of the separable expansion method. None-
theless, the advantages of the QBA, not to blow

up the dimension of the integral equation (2.4),
and to automatically incorporate the higher partial
wave contributions of the potential Vy via V„" or
V,', are preserved.

E. Question of convergence

For the investigation. of the convergence of the
methods discussed above, it is advantageous to
choose Sturmian functions as defined in (3.5), with

&„„=-ii„„(ideal choice'}.
In the separable expansion method (Sec. III A)

the adequate convergence criterion is to choose
the number N„of separable terms in (2.11) so
large that T„' in (2.2) can be neglected. According
to (3.6) this is achieved if

Iii„„(z)[1—ii,„(z)] 'I «1, for r&N„, (3.21)

in the energy region under consideration. As
compared to the conventional assumption

Iil„„(z)I
« I, for ~&N, , (3.22)

requirement (3.21) gives different weight to at-
tractive and repulsive eigenvalues.

Conditions (3.21) and (3.22) both represent cri-
teria on the two-body level, but they neglect the
three-body context in which they are used. This
shortcoming is avoided by starting from the quasi-
Born expression (3.19) which in the "ideal choice"
reads

(3.23)
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This representation shows that besides (3.21) two
additional aspects are relevant for the converg-
ence. First, the magnitude of the products
(y8„ I GO I y„„)(X„„I&, Iy„„)appearing in the second
term on the r.h. s. of (3.23) decisively influences
the size of the correction relative to the driving
term t/'"'. Second, eancellations occur in general
if the (M„-N„) eigenvalues are partly attractive
and partly repulsive. Calculating the triton bind-
ing energy and the doublet scattering length in a
model based on the S-wave part of the Malfliet-
Tjon (MT) potential the practical importance of
these aspects has been demonstrated previously. "

In the following numerical investigation we in-
corporate also the third term in expression (3.23)
which is mainly determined by the higher sub-
system partial wave contributions. Again the ad-
ditivity of the correction terms allows us to judge
their respective importance.

Cn
i( „(p)=g ~," „,2, p„= K„+ P/(X,„,P+ (P".)' ' (4.3)

with X=15. We refer to this work for the values
of the constants C„"„z„,and n. However, these
expressions were not appropriate for use in the
quasiparticle method due to the enormous amount
of computer time which would be needed. They
have, therefore, been fitted to the same analytical
expressions (4.3) but now allowing also the con-
stants P„"to be varied. Satisfactory fits could be
achieved in this way with K=4.

Since our nucleon-nucleon potentials are purely
central, the total spin S of the three-nucleon sys-
tem, together with the total isospin I and their
corresponding three-components, are conserved.
Therefore the equations to be solved reduce, after
symmetrization, to the system of integral equa-
tions

IV. MODEL FOR NEUTRON-DEUTERON SCATTERING

In order to test the method proposed in Sec. IIID
we investigate the soft-core potentials of Malfliet
and T]on

V„(r)=g "„exp(-p."„r)/r gs exp(-—p„"r)/r (4.1)

(n = d, s for the triplet 'S, and the singlet 'S, state).
Their S-wave parts have been widely used in
three-nucleon calculations by means of Pade, "
and separable expansion (UPE)"'" techniques,
and of pole approximations (UPA), "'"' applied to
the Faddeev equations. Some results have been
presented already in Ref. 25.

When applying the quasi-Born approach we have
to take into account in the separable pari V'„of
Eq. (2.11) the effect of the large attractive eigen-
values corresponding to the deuteron and the
singlet S state; i.e., denoting these two eigen-
values by q„(n=d, s) and the corresponding UPA
eigenfunctions by Iy„) we have

~:= —
I x.&n.(x. I

. (4.2)

In contrast to the purely attractive Yukawa po-
tentials which could be handled in Refs. 17-22
by the method discussed in Sec. IIIC, the MT po-
tentials are known to have in both the triplet and
the singlet channel one repulsive eigenvalue with
absolute value becoming larger than 1. There-
fore, the improved approximation of Sec. IIID has
to be used, with the sum over r and s in Eq. (3.20)
reducing to a single term.

The hvo attractive and the two repulsive form
factors i(„(p)= (p I i(„) needed have been given in
Ref. 27 in the form"

)«o;,((I )~, (q

(4.4)
where n, m, and x take only the values d and s.
Details of the effective potential P~~ are given
in the Appendix. Its graphical representation
is shown in Fig. 1. We stress once more that
Eqs. (4.4), albeit being valid for local potentials,
have in common with the equations of the simple
separable potential model (= O.QBA) that they are
twice coupled for S= —,', and reduce to a single one
for S= 2, and that they become one-dimensional
after par tial wave decomposition.

V. NUMERICAL RESULTS

The Eqs. (4.4) have been transformed into ma-
trix equations by the Gauss-Legendre quadrature
rules and solved numerically by matrix inversion.
For the triton binding energy this amounted to the
evaluation of a zero of the determinant of (1 —P'6,).
In order to solve the scattering equations in the
elastic region we used the same procedure as in
a previous calculation. It consists in transforming
the system of singular integral equations via a
matrix version ' of the Kowalski-Noyes 2 trick
into a system of nonsingular integral equations
plus some singular integrals. In this way the ac-
curacy obtained for a fixed number of integration
points is much higher than without this trans-
formation. From variation of the number of mesh
points we estimate the aecuraey of our results
to be better than —,'/0.

In Table I we present our results in 1.QBA for
the triton binding energy B„and for the doublet
('a) and the quartet (4a) scattering lengths. For
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TABLE I. Triton binding energy, and doublet and
quartet scattering lengths in 1.QBA for the MT potentials.
Comparison is made with the O.QBA and with results ob-
tained with different methods which use only the S-wave
parts of the interactions.

100--

(1/2)
(mb/sr)

E„' = 2.45 Me V

a, (MeV)

2a (fm)

8.72

0.71

8 waves only

83
8.58

8.56

0.9
0.90
0.82

8.63

0.94

80--

50--

4~ (fm)

6.35
6.387
6 44~
6.37

6.394

Reference 7.
b Reference 27.

Reference 28.
Heference 33.

10--

comparison we include the corresponding values
obtained by using only the S-wave part of the local
MT potentials (via Pade' and separable expansion
techniques"'"'" and the pole approximation to it
(O.QBA = separable potential model = UPA).

For B, and 'a it has been shown previously'~'4
that the present formalism, when applied to the
S-suave part of the MT potentials, reproduces the
UPE results to high accuracy. This has two im-
portant consequences. First of all it implies that
the higher than first order QBA terms are prac-
tically negligible. Second, it follows that the dif-
ference between the UPE results of Table I and
the 1.QBA for the full MT potentials are due to
the higher partial waves of the latter arising from
V„" in Eg. (3.19)

Let us add the remark that our 1.QBA value
for the triton binding energy is in good agreement
with a calculation employing the hyperspherical
approach, "which gives B,=8.77 Me&.

In Fig. 2 we have plotted the doublet contribution
to the differential cross section do" "/dQ for
neutron-deutron scattering, at a neutron labora-
tory energy E~ of 2.45 MeV, in O.QBA and 1.QBA
for the MT potentials. For comparison we also
show the result obtained by using simple S-wave
Yamaguchi potentials fitted to the same low-
energy nucleon-nucleon data. The latter, being
more attractive, yield a lower cross section, in
particular in the forward direction. In Table II
we compare the four lowest scattering phase shifts
in O.QBA and 1.QBA with those of Kloet and Tjon
(KT), for Ef =3.27 MeV. Recalling that their cal-
culation uses only the S-wave part of the MT po-

00 6'0O 120o

FIG. 2. Doublet contribution to the differential cross
sections in O.QBA and in 1.QBA for the MT potentials.
For comparison the result for a Yamaguchi potential is
included.

TABLE II. Neutron-deuteron doublet phase shifts at
3.27 MeV for the MT potentials. Values are in degrees.

2S+ ig L Kloet, Tjon26

2Q
0

2Q

2Q

'
2Q

3

144.6
-6.19

2.63
-0.53

146.6
-5.97

2.71
-0.53

146.4
-6.0

2.66
-'0.53

tentials, the good agreement with the 1.QB'A,
which automatically incorporates the higher sub-
system partial waves, aDows'us to infer that these
produce almost negligible effects.

In Fig. 3 we present the quartet contribution to
the differential cross section for EL =2.45 MeV,
in O.QBA and 1.QBA for the MT potentials and for
a Yamaguchi potential. As for S= &, also here the
latter yields a cross section which is lower in
forward and backward direction. Table III con-
tains the dominant quartet phase shifts at a neu-
tron laboratory energy of 3.27 MeV. Evidently
the 1.QBA corrections originating from the other
subsystem 8-wave eigenvalues (compare O.QBA
and KT) as well as those from the higher sub-
system partial waves (compare KT and 1.QBA)
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FIG. 3. As in Fig. 2, but for the quartet channel.

are small. The same conclusion holds for the full
cross sections (Figs. 4 and 5), too. Since, there-
fore, the latter show only a small sensitivity, no
reduction of the discrepancy between theory and
experiment in the forward direction is achieved
by incorporating the l&0 partial waves of the MT
potentials, at least at the energies considered.

100--

00 M4

8 c.m.

180o

VI. INSCUSSION

. Let us first investigate the relative contributions
of the various graphs of Fig. I, to three-nucleon
quantities. This will be exemplified by means
of the most important doublet and quartet phase
shifts at E~ =2.45 MeV. In Fig. 6 we have dis-
played in graphical form what happens when we
start in Eq. (4.4) with the potential V"' and add
to it successively the contributions of (V,+ V,),
then of V, and, finally, of V~, thereby producing
the 1.QBA results. Vo is the same effective po-
tential which produces the O.QBA. However, the
effective propagator used here is the one calcu-
lated in 1.QBA [Eg. (2.13) with T,' as shown in Eq.
(3.18)]. Inspection of this figure reveals some
interesting aspects.

TABLE III. Neutron-deuteron quartet phase shifts at
3.27 MeV for the MT potentials. Values are in degrees.

+ ~&& O.QBA 1.Q BA Kloet, Tjon26

FIG. 4. Fu11 differential cross section for neutron-
deuteron scattering in O.QBA (dashed line) and 1.QBA
(full line). Also shown are the calculated values of
Ref. 26 (triangles) and the experimental results of Ref.
36 (dots).

(I) The doublet phase shifts for given angular
momentum are more strongly influenced than the
corresponding quartet phase shif ts.
(II) The doublet and quartet P-wave phase shifts
are most sensitive to the various parts of the
effective potential.
(III) The various graphs contribute differently
to the 8-wave phase shifts and to:he ones with
L, &0. In particular, the largest effect for '5,
and ' 50 originates from V, and V, which is then
canceled in part by the contributions of V, and
V„both of which have the same sign. In contrast,
for the doublet and quartet P- and D-wave phase
shifts, where the two terms V', and V'~ are less
important, the term V„gives the largest contri-
bution, which, however, is reduced appreciably
by the one of V, .

4g

4g

4g

106.6
26.9
-4.66

1.08

106.8
27.36
-4.64

1.09

107.6
27.3
-4.66

1.09

Thu the relativeiy small 1.QBA corrections of the
phase shifts, leading to the small corrections of
the cross sections observed in Sec. V, originate
in a complicated cancellation mechanism.
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FIG. 5. Same as in Fig. 4, but for higher neutron
bombarding energy E~~.
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This cancellation can be attributed to three
causes.
(i) As we know from Refs. 27-30, the effect
of the full 8-wave part of the MT potentials is
already well reproduced by the UPA =O.QBA for
energies below, and not too far above, the break-
up threshold. This is due to the fact that the con-
tributions corresponding to the higher attractive
and repulsive S-wave eigenvalues almost cancel
each other in three-nucleon quantities. Conse-
quently, any difference between the O.QBA and
the 1.QBA neutron-deuteron phase shifts should
be attributed essentially to the higher subsystem
partial waves.
(ii) These, however, are also suppressed. For,
in the terms V, and V, the S-wave form factors
project the l 40 parts of the two-body potential
onto zero. Furthermore, the Pauli principle re-
quires that for odd nucleon-nucleon angular mo-
menta V, and V„are equal but of opposite sign, '7

thus annulling each other (this is, of course, true
only in the simple model for the nucleon-nucleon
forces investigated here)
(iii) As a consequence of points (i) and (ii) the
first subsystem partial wave which may contri-
bute appreciably to the sum V, + V, + V, + V~, is a
D wave. But at the low energies which we are
working at, such high subsystem angular momen-
ta are unimportant.

APs'5L )in percenf

'S yo

v j
-sO;

I

I I

VN& + (V,+ V~) + V,

FIG. 6. Contributions of the various parts of the effec-
tive potential (3.20) (see also Fig. 1) to the lowest
doublet and quartet neutron-deuteron phase shifts, in
percents of their final 1.QBA values. The first number
results from the O.QBA term Vo . Adding to V the
terms (V,+ V&) the second value is obtained, and so
on. In order to guide the eye the corrections to each
phase shift have been connected with lines.

These considerations demonstrate that the small-
ness of the 1.QBA corrections is due to the re-
markable quality of the UPA for the S-wave part
of potentials containing repulsion, due to the Pauli
principle and due to. the insignificance of the D-
wave part of the MT potential.

It is interesting to contrast this situation with
the one arising for purely attractive Yukawa po-
tentials. '9~' Points (ii) and (iii) mentioned above
still remain valid. But the cancellation among
the subsystem S-wave contributions, discussed in
point (i), can no longer happen since all eigen-
values are of the same sign (attractive). We,
therefore, expect an appreciable modification of
the O.QBA (UPA) when going over to the 1.QBA.
Indeed, it turns out that for the binding energy
this modification is by one order of magnitude
larger than for the MT potentials. The same holds
true for the differential cross section, as illus-
trated in Fig. 7. Here only the dominant quartet
contributions are plotted in O.QBA and 1.QBA,
both for the Yukawa and the MT potentials. More
details can be inferred from Table IV in which the
real and imaginary parts of the partial wave amp-
litudes for. the relative angular momenta L =0, 1,
2, 3 between the deuteron and the third nucleon
are shown. It is remarkable that for even I.
neither the 1.QBA corrections nor the difference
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the MT potentials. Since the L = 1 amplitudes es-
sentially determine the forward, and also to a
large extent the backward, peak of the cross sec-
tion, the differences in these regions are mainly
a consequence of the sensitivity of the neutron-
deuteron I' state to the potentials employed. At
higher energies the odd-L, amplitudes can be ex-
pected to play an important role also at the cross
section minimum which is shifted away from 90
towards larger angles.

Concluding we can say that the quasi-Born ap-
proach is not only an efficient method when ap-
plied to potentials acting in few partial waves,
but is particularly effective for genuinely local
potentials.

One of the authors (E.O.A) acknowledges grant
of computer time at the Hechenzentrum der
Universitat Mainz and the HHHK-Kaiserslautern.
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The analytic expressions corresponding to the
various terms of the effective potential V(» are
similar to those already given in Hefs. 17 and 21,
so they will not be repeated here.

The identity of the nucleons leads to the form

FIG. 7. Quartet contribution to the differential cross
section in O.QBA and 1.QBA for the MT potentials (MT)
as compared to the corresponding results for Yukawa
potentials (Y).

between the two potentials produce noticeable ef-
fects. This result was to be anticipated from the
Pauli principle. It implies that the cross section
in the minimum which is predominantly deter-
mined by the even-L amplitudes (the odd-L Leg-
endre polynomials vanish at 90') is the same for
all potentials. On the other hand we have pro-
nounced changes in the odd-L amplitudes when
correcting the O.QBA Yukawa results by the
1.QBA, and when going over from the Yukawa to

for the symmetrized effective potential. Here
the nondiagonal part consists of the sum of V'",
V„V„and V, of Fig. 1. But since the diagonal
contribution equals two times the term V, [com-
pare the definition (3.9)], we can separate out a
common factor of 2 and write symbolically for
the symmetrized effective potential

V„'."=2(V"'+V.„.+V, „„+V,„„+V, ) . (A2)

The effects of including the spin and isospin of
the nucleons can be summarized by specifying
the spin-isospin matrices which multiply the vari-
ous contributions to V"' as calculated by neglect-
ing spin and isospin. Looking carefully at Fig. 1

TABLE IV. Real and imaginary parts of the neutron-deuteron partial wave scattering amplitudes
at E„=2.45 MeV (in fm). Compared are the O.QBA and the 1.QBA, both for purely attractive
Yukawa and for the MT potentials.

O.Q BA O.Q BA
Malfliet- Tjon

1.Q BA

0
1

3

ReTI.
0.779

-0.752
0.126

-0.0261

ImTI.
-1.734
-0.321
-0.007.7
-0.000 33

BeTI
0.774

-0.832
0.129

-0.0285

Im Tg
-1.738
-0.415
-0.008 0
-0.000 39

ReTL
0.761

-0.782
0.128

-0.0262

Imper-1.753
-0.354
-0.007 9
-0.000 33

BeTI
0.762

-0.791
0.128

-0.0263

ImTI
-1.747
-0.365
-0.007 9
-0.000 33
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it becomes clear that, with respect to spin-iso-
spin recoupling, the terms V' ', V„and V, are
equival'ent, as are the terms V, and V~. We thus
expect two different sets of spin-isospin matrices
which we denote by A and A.

Let S (Z) be the total spin (isospin) of the three-
nucleon sy'stem. Then we write for the first
group of potential terms

V(0)sI PsIV(0)
tilt t5tl f55

(A3)
VSI PSI V

and similarly for V~s~, where the quantities V
without spin-isospin indices S, I are those calcu-
lated for spinless particles. The indices n, m
characterize the subsystems in the initial and the
final state taking the values n, m = d, s corres-
ponding to the deuteron and the singlet 8 state.
The numerical values are well known

and V~s because in the intermediate state the
two nucleons which interact via T' must be ar-
ranged into a subsystem with values of subsystem
spin and isospin which match those of T'. And
this pair must then combine with the third par-
ticle to give the desired values for 8 and I. We,
therefore, split Vsl and V~sr into two parts in
order to distinguish whether the action of T' takes
place in the intermediate d or s channel

I

Vsr Vsr(d)+Vsr(') (A5)

and analogously for V ~ . If we now define the
coupling matrices A(d) and A(s) as

V~' =A'„'(d)V, „„(d)+A~„'(s)V, (s), (A6)

and similarly for V~» (with the same A matrices),
then it is evident that A(d) and A(s) are determined
by~ as

AsI(d) AslAsI
O 1 -3)

jgI2 &I2 — A&I2 &I2
At8 0 0 & tPs 4 3 j j

A»(s) = A»A»
(A7)

(A4)

Some attention is required for the terms Vs~
The numerical values can thus be trivially ob-
tained from Eg. (A4).
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