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Recurrence relations for reaction matrices
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(Received 10 March 1977; revised manuscript received 13 October 1977)

The general structure of an exact Pauli projector is employed in the derivation of relations between
Brueckner reaction matrices that are deGned for a different number of occupied states (corresponding either
to different nuclei or different truncations of the Pauli projector). A numerical example is given showing the
truncation influence in He.

NUCLEAR STRUCTURE Accurate methods of calculating nuc1ear reaction mat-
rices.

Having an identity projector

in a Hilbert space X=Xo, we may divide all states
$ E Qp into separate groups D„D». . . and define
the subspaces X C X by the projectors
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In this case, simple algebraic manipulations en-
able us to replace the inversion of a large matrix
(linear operator in X) by a succession of inver-
sions of smaller matrices. This may have impor-
tant numerical advantages in some special cases. '
In application, this algebraic replacement is a
basic step in solving the Schrodinger equation by
the successive partitioning method' and proved to
be very useful in practical calculations, ' i.e.,
as a guide for making approximations.

In the present paper, we shall- consider an ap-
plication of this algebraic scheme to solving the
Bethe-Goldstone equation'

G~= V —VB~G~,
(3)

a = " K=T (u+
Q JCQ„'

defining the two-body Prueckner reaction matrix
Q =6 . Here, 7' is a two-nucleon potential, ~

E&0 is a parame-ter (E is the so-called
starting energy}, and T denotes the kinetic en-
ergy operator. The Pauli projector is given by
Eq. (2} in terms of uncorrelated two-particle
wave functions ~i).s'e Since the matrix K in the
energy denomi, nator is nondiagonal and nonsingu-
lar and the solution of Eq. (3) should be as exact
as possible, the present problem of improvj. ng the
solution method for Eq. (3) differs substantially
from the repeated introduction of an effective'

x = Go+ ~o ~~&o

(4)
' 's (a —aoa)s

A simple reinterpretation of Eq. (4) considered in
a restricted two-nucleon space XR X y N

=2, 3, . . .provides finally a relation

Ga=Ga s+Ga -s~Aa-s&-

f E D fjf= C CI g -C
Ot

(5)

for 6 „that solves Eq. (3) not only in X„. but also in
the usual space X=To and. is defined in terms of
Q„,. Here, only the inversion in the subspace
defined by -the projector R is needed.

The most exciting possibility of application of
Eq. (5) stems from the shell model structure of
nuclei. In a broad interval of the mass number
A, the same )i) may be used' so that both Q „,
and Q may be interpreted as correct Pauli pro-
jectors. In this sense, Eq. (5) uses the given re-
action matrix G, in the simple evaluation of
6 corresponding to a heavier nucleus.

As the complement to Eq. (5), the backward re-
currence 6 „G„may be derived as well: %e
put z =1 for simplicity. Supposing knowledge of
G„we may write the reference spectrum equa-
tion for Q,

interaction as presented, e.g., in Ref. 4.
As an initial step of finding G =G, the refer-

ence matrix G, defined with the trivial propagator
Q, =I should be found numerically by solving Eq.
(3}for cs = 0 on a mesh of grid points in the h-space. e

The second step is also standard —an explicit solu-
tion of Eq. (3}for a = I may be identified with the
formula of Tsai and Kuo'
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G~=G, —G, (B~ —B,)G, .
Denoting by

A =R2KR~, B=R,KQ2 = C+, D =Q2KQ2

(6)

the matrices defined in corresponding subspaces,
we get matrix identities

The situation in the forward recurrence (5) is
more favorable. Since even the reference matrix
G, is a good approximation to G', the second
term in Eq. (5) respresents a small correction.
Therefore, the direct use of the continued frac-
tion formulas obtained from Eq. (5) by iteration,
e.g. ,

Q,B,Q2 =D ',
R,B,R, =(A —BD 'C) =F ''
Q2B~R2 = -D CF

Q~B~Q2 =D + D CF BD

(6)

G, =G, +G,A,G, + (G, +G,b.,G, )B,R,

1
X

R2(By —ByGpBg —BxGpEyGoBg)R2

x R,B,(GO+Gob, ,Go), (13)

In the matrix notation

(10)

1 1 1
G~ —G2-G2 —S2R2 R S R2S2 K G

22 2

S, =K- KB,K =P, P„P2= I- Q, .1

P, P,

Hence we obtain the resulting relation

Gi-G2+G2 &2&2 ~

' R, [S2+S,(1/K)G, (1/K)S, ]R, ' ' K

Q KQ
C Dj

we have

B~ —B2 = Q~(B~ —B2)Q~

F-~BD -~

D CF D CF BD j'

')&''~(,
, „-)

-D-'C~
~

0 F

so that
1

B~= B~ j —BG( jR~ ~ ~ R~BflfR a~ n-g~ n
(14)

Although Eq. (14) is similar to Eq. (5), the matrix
dimensions are much smaller here due to the
diagonality of K= T++ with respect to the angular
quantum numbers. Furthermore, the simple har-
monic oscillator (HO) form of functions (i)
=!n,l„n,l„.. .) is mostly used' in light nuclei.
The band structure of K in the HO basis reduces
Eq. (14) to the use of the inversion method of
Ref. 2. The ordering of the basis!i) into groups
according to the growing total energy

etc. , represents a reasonable approximation
strategy. The step-by-step increase of cutoff N
[growing of the finite set (Co —C„)&(C, —C „)
~ ~ ~ ~ ~(C, —C„)]allows one to preserve the fixed
maximal (computer limited) dimensiori of matrices
to be inverted. The direct precision test for
stopping the calculation (error determination) is
at our disposal in each step (cf., Table I).

We must stress that an important component of
applicability of Eq. (5} is represented by various
technical simplifications.

(1) The B evaluation. We easily derive the re-
lation

(12)

expressing G, in terms of G2 without using "inter-
mediate" projectors Q, or I —Q, .

Together with Eq. (5), Eq. (12) represents our
main result, namely the explicit solution of the
reference spectrum equations of the type (6) con-
venient for the simultaneous calculation of neigh-
boring nuclei. Really, this is not the only possible
application. Although the initialization of the
backward recurrence by the trivial (Q„=0) value
6„=V, does not lead to a new formula, ' some other
initialisations (nuclear matter or local density'
approximated G„) seem to be a very promising
prospect of solving Eq. (3) in a region of heavy
nuclei. Unfortunately, we were not successful in
overcoming the technical difficulties yet.

!of„of„.. .);
!0 f„ 11„.. .), !11„01„.. .);
!01„2f„..), ! 1 i„.1i„.. .), !2f„of„.. .); (15)

plus the exclusion of all the vectors with Q„!i)=0
enables us to perform the matrix inversion of the

quasitri diagonal matrix' Q KQ „=Q (T + cu) Q
in the single-particle HO representation with
practically arbitrax'y precision. For nuclei up to
"Ca, thi s was tested using the computer code G)Ea, .
The convergence proved to be quick; For ob-
taining 4 (or 6) significant digits in the lowest
matrix elements of B the number of iterations
(= maximal dimension of the matrices) was equal
to 10 (or 20, respectively}.

(2) Transformation of variables. The two-nu-
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TABLE I. Exact reaction matrix element (0000
~

G
~

0000) (Mev) for He and ita convergence
with respect to the cutoff N (first column). The same with neglect of the c.m. off-diagonal
influence (second column). In further columns, the independence of results with respect to
change of the partial wave cutoff l~~ and the number of c.m. grid points Nz is shown.

lmay

N~
N c.m.

16
All

0
16

Diag.

0
32

All

2

32
All

4
32

All

1
2

3

5
6
9

-17.4166
—14,5863
-14.4464
-14.4289
-14.4267
-14.4264
—14.4263
-14.4263

-17.1900

-14.2654
-14.2405
-14.2357
-14.2357
-14.2351
-14.2350

—14.586 7
-14.446 8
-14.429 3
-14.427 11
-14.426 80
-14.426 70
—14.426 70

14.427 18

-14.426 80
-14.426 79

-14.426 80
14.426 79

/

clean potential V is diagonal in one of the relative
variables [e.g, , momenta k„=(k, —k2)/&2, K,
= (k, +k, )/~2 and Q is defined in terms of single-
particle functions' (k„k,~i). For HO functions
~i), the transformation of Q to the relative rep-
resentation is usually performed' using the
Moshinsky brackets. ' In our case, an adequate
calculational method consists in the use of the
recurrent evaluation of (k„,K,~t') as described in
Ref. 10.

In conclusion, we return to our numerical ex-
ample with the 'He nucleus and a simple separable-
potential V. The results given in Table I di.splay
the advantages of the presented formulas most
convincingly:
(a). The monotonic character of the convergence

confirms that we are allowed to use an extra-
polated error estimate arid to pick up an optimal
cutoff, N, thus avoiding unnecessary calculations.
(b). We see in Table I that the reliability of all
numerical methods may carefully be tested; using
low N saves time (e.g. , Na characterizes the
integration precision).
(c).. Physically motivated approximations may be
tested precisely by using optimal ¹ In the ex-
ample considered, the inQuence of higher partial
waves of V (the Mongan potential" in 'D, and 'G,
channels was used) due to coupling by exact Q
proved to be extremely small (-10 '% for 'D,).
On the other side, the precision of the standard
e.m. system-diagonal approximation' seems to be
i~suff ieient.
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