Formation of the 17.637 MeV state in ⁹B in the reaction ${}^{6}\text{Li}({}^{3}\text{He},\alpha){}^{5}\text{Li}(g.s.)^{\dagger}$

O. P. Gupta,* A. Bond, and P. M. S. Lesser Brooklyn College of C.U.N.Y., Brooklyn, New York 11210

(Received 26 October 1977)

Formation of the 17.637 MeV state in ⁹B in the reaction ⁶Li (³He, α)⁵Li (g.s.) has been observed by an α - α coincidence method.

[NUCLEAR REACTIONS ⁶Li(³He, α)⁵Li(g.s.) $\rightarrow p + \alpha$; measured $\alpha \alpha$ coincidence as a function of ³He bombarding energy, observed the formation of the ⁹B state.

The nuclear reaction of ³He with ⁶Li, studied in the past by several authors, 1^{-6} has been shown to proceed mainly via the following two sequential processes:

$${}^{6}\mathrm{Li} + {}^{3}\mathrm{He} \rightarrow \alpha_{1} + {}^{5}\mathrm{Li} \rightarrow p + \alpha_{2} , \qquad (1)$$

 ${}^{6}\mathrm{Li} + {}^{3}\mathrm{He} \rightarrow p + {}^{8}\mathrm{Be} \rightarrow \alpha_{1} + \alpha_{2} . \tag{2}$

The reaction has also been shown to be predominantly a direct reaction in the first step at certain bombarding energies for both (1) and (2). However, in reaction (2), Vignon $et \ al^6$ have shown that the 17.637 MeV level in ⁹B (see Fig. 1) can be formed at a ³He bombarding energy of 1.6 MeV. An observation of such a compound nucleus formation in the first step of the ⁵Li channel would be of interest, as it was argued by Livesey and Piluso⁴ that it may have a measurable effect on the angular correlation between the protons and the α particles from this reaction. A simple excitation function measurement in the ⁵Li channel. performed by measuring the yield of an α peak corresponding to a ⁵Li state as a function of ³He bombarding energy, is made difficult by the fact that at low bombarding energies, the α singles spectrum has a large continuum component which obscures the α peaks from a ⁵Li state.

The present study aims at observing the ⁹B state using an α - α coincidence method, in which the α - α coincidence yield corresponding to the formation of ⁵Li(g.s.) is measured as a function of ³He bombarding energy.

Singly charged ³He beams, ranging in energy from 1.4 to 1.8 MeV, were obtained from the Brooklyn College 3.75 MeV Dynamitron accelerator. A 17inch diameter scattering chamber was used for the experimental study. Two surface barrier (SB) detectors of thicknesses 150 and 75 μ m were mounted inside the scattering chamber at angles of 80° and

 -68.5° with respect to the incident beam to detect the α particles. Their thicknesses provided a discrimination between protons and α particles above 4.6 MeV, which was sufficient for the purpose of this

measurement. Targets of ⁶LiF (⁶Li enrichment $\simeq 96\%$), of a thickness 33 μ g/cm² deposited on a 20 μ g/cm² carbon foil were used for the experiment. Elastically scattered ³He particles from ⁶Li, ¹²C, and ¹⁹F were monitored separately in a 300 μ m SB detector fixed at an angle of 130°.

Coincidences between the two α particles were measured using slow-fast coincidence electronics with a resolving time of 6 nsec. The measurements were taken at ³He bombard energies ranging from 1.47 to 1.75 MeV in the steps of about 25 keV.

FIG. 1. Energy level diagram of ⁹B.

18

1075

© 1978 The American Physical Society

ALPHA-ALPHA COINCIDENCE DATA

FIG. 2. $\alpha - \alpha$ coincidence data at a ³He bombarding energy of 1.61 MeV for detector angles of 80° and -68.5° with respect to the incident beam.

Coincidences measured at fixed detector angles, between any two particles of energies E_1 and E_2 , in a three-body final state reaction, e. g. the ⁶Li(³He, α_1)⁵Li(g.s.) $\rightarrow p + \alpha_2$ reaction, lead to a kinematic curve in the $E_1 - E_2$ plane. The coincidences between α_1 and α_2 at detector angles fixed at 80° and -68.5° form such a curve.

The experimentally observed $\alpha_1 - \alpha_2$ kinematic curves, one of which is shown in Fig. 2, have as their principal feature an enhancement due to the formation of ⁵Li(g.s.). This enhancement is seen in the form of two peaks located along the kinematic curve, whose widths are determined by the 1.5 MeV width for the ⁵Li(g.s.). One peak corresponds to an α_1 detected by the 80° detector and α_2 detected by the -68.5° detector; the other peak corresponds to reversing α_1 and α_2 .

Other possible contributions to the spectrum in this region could result from the formation of the ⁸Be(11.4 MeV) state, which kinematically could produce an enhancement in the counting rate near the ⁵Li(g.s.,) location because of its width of 3.5 MeV. However, an examination of the data near the calculated location of the ⁸Be(11.4 MeV) state shows that this contribution is negligible. Contributions to the coincidence data may also be expected from the simultaneous process. Previous studies^{2,3} have shown that at low bombarding energies such con-

The coincidence yield due to ⁵Li(g.s.) was obtained for each bombarding energy by adding up counts on the coincidence curve from $E_1 = 5.9$ to $E_1 = 9.6$ MeV and $E_2 = 6.5$ to $E_2 = 10.2$ MeV, which included counts under both the peaks. The data were normalized to the yield of elastically scattered ³He particles from the ¹⁹F nuclei, detected in the 300 μ m SB detector. This elastic scattering is largely Rutherford, and does not vary significantly over the range of ³He incident energies for which the excitation function was measured. The normalized coincidence yields have been plotted as a function of ³He bombarding energy in Fig. 3. The error in each data point is mainly due to the coincidence counting statistics.

A peak is seen in the excitation function curve at a ³He bombarding energy of 1.61 MeV. After taking into account the target thickness which was 70 ± 20 keV of ³He energy loss at 1.61 MeV ³He incident energy, the ⁹B resonance is found to occur at 1.57 ± 0.02 MeV corresponding to an excitation energy of 17.63 MeV. The width of the resonance as found from this measurement is 70 ± 20 keV. Both the excitation energy and width are in good agreement with previously measured values of 17.64 MeV and 71 ± 8 keV, respectively, which were obtained from a study⁷ of the ⁷Be $(d, p)^8$ Be reaction.

- Work supported in part by the National Science Foundation and the CUNY Faculty Research Awards Program.
- *Present address: Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061.
- ¹F. C. Young, K. S. Jayraman, J. E. Etter, H. D. Holmgren, and M. A. Waggoner, Rev. Mod. Phys. <u>37</u>, 362 (1965).
- ²M. A. Reimann, P. W. Martin, and E. W. Vogt, Phys. Rev. Lett. 18, 246 (1967).
- ³D. T. Thompson and G. E. Tripard, Phys. Rev. C <u>6</u>, 452 (1972).
- ⁴D. L. Livesey and C. J. Piluso, Can. J. Phys. <u>52</u>, 1167 (1974).
- ⁵M. P. Baker, J. M. Cameron, N. S. Chant, and N. F. Mangelson, Nucl. Phys. A184, 97 (1972).
- ⁶B.Vignon, J.F.Cavaignac, and J.P.Longequeue, J. Phys. <u>30</u>, 913 (1969).
- ⁷F. Ajzenberg-Selove and T. Lauritsen, Nucl. Phys. A227, 1 (1974).