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Elastic scattering of alpha particles near the Coulomb barrier and matter distribution of
-medium and heavy nuclei
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The elastic scattering of ~ particles near 180' was mea8»red in the vicinity of the Coulomb
blrrjer for 110 112 & 114,118Cd 112~ 114 ~ 118 ~ 118 ~ 120 ~122~ 124Sn 122 ~ 14,128 ~ 128 ~ 130Te 144~ 148 ~ iw, 152S

and 204 ~ 208Pb. An optical-model analysis using Moods-Saxon potentials shows that the
usual parameters -of the real part of the potential V R

p&
and a must obey the relationship

V exp[pppf R0 2)/a] =0.2 MeV in order to fit the data. The ~-nuc1eus distance R0 2 at which
the nuclear potential depth is -0.2 MeV can then be determined for each nucleus within
+ 0.03 fm. An analysis in terms of a folding model was performed for 0 Pb and 4Te. For
the class of potentials thus obtained, it is the o -nucleus distance at 0.5 MeV depth rather
than at 0.2 MeV that appears to be best determined. The same. analysis determines the ra-
dius RFD-0 002 at which the nucleon density is 2x10 nucleon/fm . The value of RFD is found
to depend mostly on the m-nucleon effective interaction used, and very little on the functional
form of the density distribution. Further evidence is presented in favor of the Gaussian in-
teraction -U0 exp(-E ~2) with U0= 127 MeV and%=0. 6 fm, which has been proposed by
Sumner and which leads to the probable value RFD=R0 2

—{3.06+ 0.03) fm. Other interac-
tions are not excluded, however, and considering those proposed so far in the literature
leads to RFD=R0 2

—(3.11+0.14) fm. The average variation of R Fp with mass number is found
to be (R&D) =(1.355A +0.87) fm for spherical nuclei. The rate of variation. of |'RFD) with
mass number is found to be in good agreement with the droplet model predictions, which is
taken as an evidence that the surface thickness of spherical nuclei is practically constant
from Sn to Pb.

I. INTRODUCTION

'The elastic scattering of a particles has been
used extensively at energies well above the Cou-
lomb barrier to investigate the size of atomic nu-
clei. At these energies use was xnade of the
strongly diffractional character of this scattering
in order to determine a strong absorption radius. '
Several authors then pointed out that, at the
strong absorption radius, the depth of the real
part of the nuclear potential felt at a given energy
by the incoming 0. particle depends very little
on the possible ambiguities in the parameters of
this potential. Typical such depths were found
to be -1.9 MeV for "Ca and "Ti at 30.5 MeV,
-2.4 MeV for a series of Ca, Ti, and ¹iisotopes
at 42 MeV." The strong absorption radius is then
considered as a most significant size parameter.

It is only in the last few years that the original
Rutherford method, ' viz. , ef.astic scattering of a
paxticles near the Coulomb barrier at large angles
was again utilized. Several authors have done such
measurements at a series of angles and have de-
fined, on the basis of optical-model analyses,
some quantities as significant size parameters.
Goldring et al. ' and Eisen et a/. ' have proposed the
radius at which the sum of Coulomb plus real nu-
clear potential is maximum, which they call the

Rutherford radius R„, and Tabor, %atson, and
Hansen' have in addition proposed the radius R„
where the nuclear potential amounts to the con-
stant fraction of 2% of the Coulomb potential.

In the present work, we have measured the cross
section of a particles elastically scattered from
110, 112,114,116~d 112& 114& 116& 118& 120& 122& 124Sn
122~ 124' 126~ 128, 130Te 144' 148~ 150~ 152& d 204» 206t 208Pb

at energies near the Coulomb barrier and at one
single angle near 180'. The choice of the largest
possible angle was motivated by the re~ark that
in such experiments we study the first effects of
the interference between the nuclear amplitude
and the Coulomb amplitude when the energy is
increased from below the Coulomb barrier to a
few MeV above it. Since the Coulomb amplitude
decreases very rapidly with increasing angle, the
interference with a small nuclear amplitude is
maximum at 180'. Furthermore, we shall show
later on th8t additional measurements at other
angles would not give any further information on
the a-nucleus potential.

After a description of the experimental arrange-
ment and procedure in Sec. II, the optical-model
analysis of the data is presented in Sec. III, where
w'e shall show that for incident energies close to
the Coulomb barrier the a-nucleus distance R0 2

at whj. ch the real nuclear potential is 0.2 MeV
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deep is the most significant quantity characterizing
the scattering process. What this implies for the
nuclear matter distribution is discussed in Sec.
IV, where we shall show that the best defined quan-
tity is the radius RFD where the nuclear density
is 2.10 ' nucleon/fm'. Finally we relate in Sec.
V our results to other information on the nucleon
density distribution.

II. EXPERIMENTAL ARRANGEMENT AND PRQCEDURE

The beam of a particles was produced by the
FN tandem Van de Graaff accelerator of the CEN
Saclay with a typical intensity on target of about
200 nA. An annular silicon surface barrier de-
tector of 150 mm' surface area and 400 pm depth
was mounted at the entrance of the scattering
chamber. 'The detector was protected against the
beam by an assembly of tantalum diaphragms
and a funnel-shaped piece of tantalum. The small-
est diaphragm was 3 mm in diameter. The de-
tector was situated at 170 mm from the target,
subtending a solid angle of 1.74 msr at 178.6
+0.3'. Another silicon surface barrier detector

of,109 mm-' surface area and 1000 p, m depth was
mounted at 30' for monitoring. In order to sup-
press backscattering into the annular detector,
the beam was stopped in a beryllium plate mounted
inside the Faraday cup.

The targets (enriched isotopes supplied by
ORNL) were prepared by evaporation under vac-
uum on a 10 pg/cm' carbon backing. A 2 to 5 pg/
cm' gold layer was deposited onto the cadmium,
tin, and tellurium targets for monitoring purposes
as explained below. Table I lists the target thick-
ness and isotopic composition for the 23 isotopes
studied in this work. In the cases of the rare iso-
topes of '"Sn, '"Te, "'Sm, and "'Pb admixtures
of the more abundant isotopes of the same ele-
ment were sufficiently large so as to render cor-
rections of the measured counting rates neces-
sary. 'The elastic cross sections measured with
the highly enriched targets of these isotopes were
used for these corrections, which in no case
amounted to more than 1%.

For target nuclei much lighter than gold, viz. ,
cadmium, tin, and tellurium isotopes, monitoring
was done by measuring simultaneously the scat-

TABLE I. Isotopic purity and thickness of targets used in this work.

Nuclide
Thickness
(pg/cm2)

Enrichment
(%)

Contamination s
|%)

"'Cd
'"Cd
ii4Cd
ii6Cd
ii2sn
114$n

116$n

118Sn

120sn

122$n

124sn

122Te
124Te

126Te
128Te
130Te
"4Sm
148sm
'"sm
'"sm
204Pb

2 06Pb
208Pb

50
50
50
50
40
40

40

40
40
40

40
50
50

50
50
50
60
60
60
60

250

400
400

97.2 + 0.05
97.8 + 0.1
99.09 + 0.05
97.2 k 0.1
83.64 ~ 0.04
60.65 + 0.2

95.74+ 0.05

97.1 + 0.2
98.39+ 0.05
90.8 + 0.1

96.0 + 0.1
95.44 ~ 0.1
83.7 + 0.1

97.0 ~0.2
99.46 + 0.1
99.49+ 0
95.1 + 0.1
76.01 + 0.05
94.1 + 0.05
99.06 + 0.05
71.1 + 0.1

97.2 + 0.05
99.3 ~0.05

1.04 of '"Cd, 0.9 of "'Cd
0.73 of 1 3Cd, 0.71 of Cd
Traces pf Cd, 1 8Cd

1.44 of 14Cd

3 9 of 6Sn 3.61 of Sn
11.99 of Sn 3.72 of ~sn,
6.89 pf ii&sn, 2.0 pf Ssn,

07 pf
1.02 of ii Sn, 1.48 of Sn,
1.06 pf 120$

1.1 of 8$n, 1.2 of Sn
Traces of 1 Sn, Sn, Sn
1.01 of 1 Sn, 1.91 of 1 8Sn,
3.75 pf 12 Sn, 1.16 pf 124Sn

12OSn

1.03 of 3 Te
8.5 of Te, 3.3 of Te,
2.2 pf '"Te, 1.7 of 130Te

1.0 of 28Te, 1.0 of 3 Te
0.48 of Te
Trace of 8Te
1.45 of Sm 0 93 of Sm
3.0 of 4 Sm, 0.62 of 1 4$iTi

3.3 of '"Sm
0.48 of 54Sm

13 3 of '"Pb - 5,8 of '"Ib
9 82 pf 2o8P

134 of YPb 139 of Pb
Traces of Pb Pb.
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tered a particles from the isotope under study and
the thin gold layer. Since the a-Au scattering fol-
lows the Rutherford law at the energies considered
here, and has therefore an E ' dependence upon
the a-particle energy E t the ratio of the two
counting rates is proportional to the ratio o',&los
of the elastic to the Rutherford cross section for
the isotope considered. The absolute normaliza-
tion was then simply given by the measurements
well below the Coulomb barrier where o„/o„= 1.
As for the heavier targets, this procedure has to
be modified since the o.'-Au scattering is no longer
of Rutherford type at the energies required to pass
the Sm+ & or Pb+ a Coulomb barriers.

In all cases, however, the grazing angle is at
least about 90' at the highest energies (see Fig.
6), and optical-model calculations show that
c,~(30') = o'a(30') to within less than 11, a result
that was confirmed within its accuracy of 2 to 3%
by integrated beam current monitoring. Con-
sequently o„(30') as measured by the monitor
counter was used as reference cross section. Fi-
nally, statistics better than 1% were obtained in
most cases.

Measurements were carried out on the following
targets for the incident laboratory energies as in-
dicated:

~ ~

'LO

0.5 .

10

18
I I I I I

I I i I
20 22

10 12 'l4 16
I f I

/
I

'"""'"""Cdfrom 8 to 17 MeV t

112,114, 116g118g120s122s124Sn from 8 tp 17 MeV

'"'"'"'"""Tefrom S to 17 MeV

'""""""Sm from 10 to 20 MeV

Pb from 15 to 23 M

Energy steps ranged from 0.25 to 1 MeV. Exam-
ples of the results appear in Fig. j..

III. OPTICAL MODEL ANALYSIS AND DISCUSSION

A. Woods-Saxon analysis of present data

An optical-model analysis of the results described
in Sec. II was carried out using a standard four-
parameter optical model

U(r) = -(7+iW)l(1+ exp[(r -R,y, )la]).
The quality of the fit is excellent, as can be seen
on the excitation functions at 179' shown in Fig.
1. However, none of the parameters defining U(r)
can be unambiguously determined by the fit of the
elastic scattering cross sections. We are going
to show that only a relationship between V, R,~„
and c can be established on the basis of these data,
but that it turns out to be possible to extract a well
defined interaction distance from the data.

First, the results are very insensitive to the
value of W, as can be seen in the examples shown

16 18 20 22
Ec~(MeV)

FIG. 1. Typical excitation functions measured at
179'. Solid lines are optical model fits.

i i l I I I I I

DEPENDENCE OF )( ON THE IMAGINARY POTENTIAL

12& g
150 ~
206

Pb

1Qt-
CV

10 20 30 40 50 60 70 80 90 100
IMAGINARY POTENTIAL DEPTH (MeV)

FIG. 2. Variation of the X when the imaginary part of
the potential varies, all other parameters being kept
fixed.

in Fig. 2, where the X' for three typical cases is
shown as a function of W, all other parameters
being fixed. It can be seen that the quality of the
fit is changed very little provided W is larger than
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10 MeV and not larger than about 80 MeV. This
pattern is very general for all nuclei under study.
For S' smaller than about 10 MeV, the X' has a
very rapid increase, and a very slow increase
after a flat minimum at around 10-40 MeV. Con-
sequently, we fixed W at 20 MeV for all analyses.

Secondly, when 8' and a were kept fixed, it was
found that the Igo ambiguity' is extremely well
satisfied for a continuous family of R„, and V, i.e.,
the fit is maintained provided

0
C)
CO

1-

b
'bbb. Q5

— Q5

V exp(R„,/a) = const.

For example, best fits obtained on '"Sn for 8'
= 20 MeV, a = 0.57 fm, and, V ranging from 100 to
300 MeV yielded values of R„, such that the value
of Vexp(R„, /a) varied by less than 0.3%. This
simply means that the scattering cross sections
are sensitive only to the far-out tail of the real
part of the nuclear potential, where r»R„„so
that exp[(r -R„,)/a]» 1, therefore

V{1+exp[(r —R„,)/a]j '= Vexp(R„,/a) e px(-r/ )s.

Thus all combinations of V and R„, that satisfy
relation (1}define constant potentials with the
same tail for distances r»R„,. The fact that
relation (1) is well satisfied in the present case
therefore implies that the scattering process de-
pends only on the fringe region of the real part
of the projectile-target potential whose radial
shape varies like exp(-r/a). Such is the case for
a real potential of Woods-Saxon shape in strong
absorption situations.

Third, after having observed the Igo relation-
ship and the insensitivity of the fits to the precise
depth of the absorptive potential W (that is kept
equal to 20 MeV), we are left with the problem to
choose a, after having fixed V to the plausible,
but to a large extent arbitrary, value of 200 MeV.
A choice of a implies one of R„, through the valid-
ity of the lgo relationship (1}. However, the pre-
sent data do not favor any particular value of a
among the ones we have used, and which comprise
the most commonly accepted ones. This point is
illustrated in Fig. 3, where calculations with dif-
ferent values of R„, and a are compared to a
standard calculation (full line) of the "'Pb excita-
tion function at 180'. The parameters of this
standard calculation (which give a good fit to the
data) are V = 200 MeV, W = 20 MeV, R„,= 8.03 fm,
and a = 0.5V fm. The upper group of curves shows
that a change of R„, or a introduces only a shift
of the excitation function towards higher or lower
energy. An identical shift towards higher energies
is obtained by changing a by +0.05 fm or R„,by
-0.32 fm. A corresponding shift towards lower
energies is obtained by changing a by -0.05 fm
or R„,by +0.33 fm. The lower curves of Fig. 3

then show that if one compensates a change of a
by an appropriate change of R„„the resulting
curves are almost identical to the standard ones.
It is therefore expected that the optical model
analysis of the data contains an ambiguity between
combinations of R„, and a. Indeed, we have ob-
tained for each nucleus equivalent fits to the 179
excitation function for a whole family of combina-
tions of R„, and a, some examples of which are
shown in Fig. 4. Actually we observe here a re-
markably stable linear relationship between ac-

I ~

1
0 ~ ~

1

~ ~ ~

1
~ ~ ~ f

1
~ I ~ ~

0.60

0.55
O

0.SC
a ~ I I t ~ ~ 1 I s a I 1 a t i I I

FIG. 4. TyPical examPles of combinations of Rpp1. and
a which give equivalent fits, the parameters V and ~
being fixed to 200 and 20 MeV, respectively.

I I

18 20 22
C.M E NERGY (MeV)

FIG. 3. Calculated excitation functions at 180 for the
o Pb case. The values of p and ~ have been kept fixed

to 200 and 20 MeP, respectively. The full curves cor-
respond to the standard values of Rppf and a, 8.03 and
0. 57 fm, respectively. The upper set of curves shows
that almost identical results are obtained either when a
is changed by + 0.05 fm, or when R~~ is changed by
—0.32 or+ 0.33 fm, respectively (dashed lines). The
lower curves show that when these changes are done
simultaneously, one gets excitation curves almost iden-
tical to the standard one. The dashed curve corresponds
to a =0.52 fm and R~& ——8.36 fm while the dotted curve
corresponds to a = 0.62 fm and R~~ = 7.71 fm.
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ceptable values of R,~ and a, namely

R, ~+ ea-8 . (2) TAIL OF

Here a= 7.0 with slight variations from nucleus
to nucleus, and the par@meter R, is specific for
each nucleus.

Relation (2) in a situation where the lgo relation-
ship (1) holds can be expressed as

ReU(R ) —-V exp
R --Ro

0 a

Vexn( n)= 0.2Mev.

T'his means that all Woods-Saxon potentials that
fit the data have the same depth in the rachal re-
gion around R,. At first sight this seems to de-
pend on our particular choice of V= 200 MeV.
However, had we taken a different choice V' for
the real potential depth, this conclusion would hive
remained unchanged. Equation (2) could indeed;
have been replaced by

X

1—
lL
4J
Q

LtJI-

LLI

g
0.1—

z

118
Sn 152 ' 20S

R' ~+ a'a =Ro (4) 0.01

with the same a and R„but, following the Igo re-
lationship, with R,'„=R„,+aln(VjV') and then
a' = n —In(V/V'). We still would have

-1
ReU(R, ) = —V' 1+ exp

a
= -V' exp(-a') = -V exp(-n) ~ -0.2 MeV.

Here again it has been essential to make use of the
condition

0 09'

'The choice of V has therefore no effect on the in-
terpretation of ambiguities (1) and (2). They ex-
press the fact that at energies near the Coulomb
barrier, the a-pa, rticle scattering data are fitted
by any Woods-Saxon potential whose depth at r =Rp
is 0.2 MeV.

We ean now summarize the relationships be-
tween V, R„„and a in the simple equation

Vexp — "' ' = 0.2 Mev
R -R

which expresses both above-mentioned ambiguities,
Eqs. (1) and (2).

Figure 5 i}.lustrates this situation by three nu-
merically calculated examples. The tails of real
nuclear potentials that fit a+Sn, a+Sm, and
a+ Pb data are shown on a logarithmic scale. Each
potential curve in this figure represents a whole
potential family for a fixed parameter a, and where
the parameters R„, and V are connected by thy Igo
relationship. All potentials give equivalent fits
to the 179' scattering cross sections. It is clearly

FIG. 5. Typical examples of Woods-Saxon potential
tails for three values of the diffuseness a, namely, a
=0.52 fm, a=0.57 fm, anda=0. 62 fm. Each line
represents a whole family of Woods-Saxon potentials
connected by the Igo relationship. For each nucleus,
the tails cross in a narrow region where the potential
depth is close to 0.2 MeV. The distance Ro 2 at which
the potential dept& is exactly 0.2 Me& is clearly deter-
mined without ambiguity for these Woods-Saxon poten-
tials.

borne out that a11. real potentia, ls that fit the data
for one target nucleus have a common depth at
r =R„namely, Vexp(-a).

However, since a is slightly different from one
nucleus to the other the depth V exp(-n) is not
exactly 0.2 MeV but varies somewhat from nu-
cleus to nucleus. It facilitates the comparison
between nuclei (in the framework of the optical
potential model we are using) to define a distance
Rp 2 between the centers of target and proj ectile,
by the requirement U(R, ,) =0.2 MeV. The values
of Rp p will then be close to R, to the degree that
Eq. (5) holds exactly. The quantity R, , is ex-
tremely well defined in the framework of our pa, -
rametrization of the scattering potential. Table II
gives the values of R, , for the 23 target nuclei
investigated in our work.

We have made an attempt to determine the ex-
perimental uncertainty on each value of R, „by
using the fact that the theoretical curve is simply
shifted towards higher or lower energies when

Ro 2 is dec reased or increased, respectively, while
the slope of the exponential descent remains con-
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stant. Therefore, a single experimental point in
the descent of a/o'a is sufficient, in principle, to
determine R, , We then have determined, for
each nucleus, the value of R, „ independently for
each point of the exponential decrease of o/cr„and
calculated the standard deviation from the best
fit value

i/2
R(r& R(petri, t) 2

i~1

The value of 4R thus obtained appears in Table II.
We point out that the errors 4R do not contain

any contribution that would take into account the
degree of arbitrariness in our parametrization
of the potential.

The conclusion of the optical-model anajysis
is therefore:
(a) There is no sensitivity to the imaginary po-
tential, provided its value is larger than about
10 MeV and smaller than about; 40 MeV, Physi-

cally, this can be interpreted as follows: There
is essentially no absorption of the e-particle flux
outside the barrier, and a total absorption once the
barrier is surmounted.
(b) The only statement that can be made on the
three parameters characterizing a Woods-Saxon
real potential is that they a,re linked by the rela-
tionship

R,~ -Ro
Vexp '~ ' = const= 0.2 MeV.

a

Alternatively, we can define a new size param-
eter, namely, the distance R, , where the real
Woods-Saxon potentia1 depth is 0.2 MeV, by the
relationship

Vexp -' " =0.2 MeV.
R -R

a

It is quite remarkable that at energies near the
Coulomb barrier there exists a size parameter

TABLE II. Values of the O. -nucleus distance where the nuclear potential (of Woods-Saxon
type) is 0,2 MeV deep. Our results are shown and compared with those of other authors. The
R0 2 values from Refs. 5-7 have been calculated from the potentials given by these authors.

Nuclide
Present

work

Goldring
et al.
{ref. 5)

R02 (fm)
Eisen
et ai.

(Ref. 6)

Tabor
et al.

(Ref. 7)
Werdecker

(ref. 9)

110( d
112Cd

"'Cd
iiecd

112sn
114s

"'Sn
118Sn

120Sn

'"Sn
124Sn

122Te
124Te
128Te
128Te
130Te

142Nd

144Nd

146Nd

Nd
"'Nd

'4'Sm
Sm

'"sm
'"sm
204Pb

208pb

208pb

10.44 + 0.03
$0.53 + 0.03
10.61 + 0.03
10.68 ~ 0.03

10.42 + 0.03
10.46 + 0.02
10.53 + 0.02
10.59 + 0.02
10.63 + 0.02
10.66 + 0.02
10.79+ 0.03

10.71 + 0.03
10.77 + 0.03
10.80 + 0.03
10.84+ 0.03
10.87 + 0.03

11.04 4 0.02
11.19 + 0.03
11.81 + 0.03
11.52 + 0.07

11.92+ 0.03
11.91 + 0.03
11.97+ 0.03

11.91
11.91
11.96

11.48
11.57
10.60
10~ 62

10.76
10.82
10.79

10~ 57
10.61
10.66
10.68
10.73

11.01
11.11
11.16
11.23
11.36

10.54
10.54
10.62
10.62

10.76
10.80
10.81
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which plays the role of the strong absorption radi-
us at higher energies. This size parameter turns
out be ah O. -nucleus distance at which the real
%oods-Saxon potential has a given value. This
depth appears to increase with energy. ' The
average A dependence of B, , as found from a
straight line least squares fit to all values of B, ,
from Table II gives the following A dependence

R, ,= (1.36A'~'+ 3.96) fm. (Va)

If one takes into account only the nuclei known
to be spherical, namely, the Sn and Pb isotoyes
and "48m, the straight l,ine fit gives

Ro"2~' = (1.355k'I '+ 3 93) fm (Vb)

A quite interesting comparison can be made here
with the recent work of Christeusen sad%inther. '
These authors show that most heavy-ion elastic-
scattering data can be fitted by a potential having
an exponential tail of the form

ReU(x)= 50 ' ' exp — ' ' MeV
B B2 y-B, -B~

B. Discussion: Is Ro & the best defined size parameter?

Goldring et a/. ' have measured elastic scattering
of n particles at several angles and at energies
close to the Coulomb barrier on '~ 6' SPb and

wj,th Bg = ]..2333,)' —0.9'7~$' fm and ty = 0.63
fm. Values of B, , deduced from such a potential
fall on a straight line

B~',"~=1.29m'~'+4. 34

which is indeed very close to the average straight
line fits to our data (Va) and (7b).

As g, result of their optical-model analysis,
they define the Rutherford tadjus Ra as the ra-
dius where the maximum of the Coulomb bar-
rier is looated, and consider B„as an inter-
action distance characteristic of the a scattering pro-
cess and free of the optical-model parameter
ambiguities. However, as i8 shown in Table DI
for the three 1.ead isotopes, a variation of a from
0.52 to 0.62 fm induces a variation of B„by 0.3 fm,
and a variation of V, the yotentig at the top of
the barrier, by 0.36 MeV. In contrast, values of
B, , change by at most 0.01 fm whet a varies from
0.52 to 0.62 fm. Furthermore, values of B, , cal-
culated from the set of parameters given by Gold-
ring et al. ' (V = 100 MeV, W = 10 MeV, a = 0.58 fm)
agree with those calculated in this work within
0.01 fm. We then conclude that R, , is a size pa-
rameter which is defined less ambiguously than
BR ~

%erdecker" has measurea 0. scattering at ener-
gies close to the Coulomb barrier on four Cd iso-
topes and. three Te isotopes. He also uses the
Rutherford radius B„as size pat argeter. Values
of B, , that we have deduced fram (by potentials
that he has obtained g,r e listed in Table II. The
agreement is good except for '"Cd where the dif-
ference of 0.1 fm is 3 times our error bar of +0.03
fm.

Other O. -particle scattering measurements at
energies close to the Coulomb barrier have been
per'formed on "i'""'"Cd and '"Te by Risen eg a
These authors defige gg interaction, radius on the
basis of the incoming wave boundary method (1%8)
as Bz =B~+ 3.5e, where B„is the Rutherford ra.-
dius and a is the same as our diffuseness param-
eter a. The nuclear potential at Bz is close to

TABLE III. Dependence of the Rutherford radius R~ on optical-model parameters. In the
present work, values of Rz and of the total potential at the. barrier V~ have been calculated
by adjusting the optical-model radius for three values of the diffuseness e, and for V =200
MeV and TV=20 MeV. Equivalent fits are then obtained. They are compared with the results
of Goldring et al. (Ref. 5) obtained for a=0.58 frn. Values of B& and Vz are found to be much
more sensitive to the diffuseness e than Bo ~. A good agreement for all values is found for
a =0.58 fm.

B~ {fm) a,.) (fm) V~ (Mev)
Nuclide a (fm) Ref. 5 This work Ref. 5 This work Ref. 5 This work

204Pb 0.52
0.58
0.62

0.52
0.58
0.62

0.52
0.58
0.62

10.88

10.89

10.94

11.09
11.90
11.77

11.08
10.89
10.76

11.14
10.96
10.83

11.91

11.91

11.97

11,92
11.92
11.91

11.91
11.91
11.90

11.97
11.97
11.96

20.54

20.52

20.42

20.31
20.52
20-.67

20.33
20.54
20.69

20.21
20.42
20.57
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0.6 MeV. However, as we have shown above, an
intergction radius such as Rz depends en a some-
what more than R, , In Table II we have listed
the values of RQ, that we have deduced from the
parameters given by Risen et aL 'The agreement
with our results is very good.

Another 0.'-scattering experiment was performed
by Tabor et al.' on the tin and neodymium iso-
topes. These authors have used a standard optical
model to analyze their data, and conclude that they
can deduce an interaction radius R~ which is very
insensitive to variations of the optical-model pa-
rameters if they impose the, condition that the gN-

cleor potential at B„bea constant fraction c = 0.02
of the Coulomb potential at R„. It appears that in
the cases they have studied, the nuclear potential
at R„ is 0.27 MeV. 'This value is rather close to
the depth of 0.2 MeV which defines our interaction
radius R, , %e find, however, that for mass 208,
the radius at which the nuclear potential amounts
to 0.02K& = 0.4 MeV is not determined with the
same piecisBN g,s RQ» since the curves in Fig.
5 corresponding to different values of a intersect
at a point where the depth is close to 0.2 MeV, a
value which does not appear to vary with mass
number. In Table II we have listed the values of
RQ, that we have calculated from the potentials
given by Tabor et el.' They agree quite closely
with our results.

Finally, the a scattering on '"Sm has also been
measured by Bruckner et cl." They give elastic
cross sections at 150 and 170' between 10 and
16 MeV. 'The comparison with the present re-
sults is difficult because of the coupled channel
treatment that they have used to analyze their
da,ta.

The excellent agreement of the present results
expressed by the values of RQ, with results of
Refs. 5-7, 10, 11 shows that RQ 2 is indeed a good
size parameter in a Woods-Saxon analysis of a-
particle scattering at energies close to the Cou-
lomb barrier. %ithin this parametrization, it
shows that the only statement that can be made
on the usual Woods-Saxon parameters V, R„„and
a is contained in relation (6).

Finally, it is interesting to remark that this
agreement has been obtained in spite of the fact that
we have measured excitation functions at a single
angle close to 180'while other authors 5 '" "have
measured excitation functions at several angles.
'This result seems to indicate that no additional infor-
mation is gainedby measuring the excitation func-
tions at several angles. Figure 6 shows that in-
deed angular distributions calculated with different
sets of parameters which give equivalent fits to the
180' excitation function yield almost identical an-
gular distributions. %ithin the framework of such

0.9—
1.0

~
1.0

I I
/

I ~ 1 l I I f
I I

0.5
2

b

an optical-model analysis, it appears therefore
that it is sufficient to measure excitation functions
at a single large angle. ActuaOy, the same in-
formation would probably be obtained by measur-
ing a sing le angular distribution at a given energy
2 to 3 MeV above the Coulomb barrier.

IV. ANALYSIS IN TERMS OF NUCLEON DENSITY
DISTRIBUTIONS

A. Summary of folding procedures

Bernstein, "Jackson and Kembhavi, "Morgan
and Jackson, ' and Budzanowski et al."have shown
that alpha, -nucleus real potentials obtained in single
or double folding procedures can give fits to the
data as good as conventional %oods-Saxon poten-
tials do. 'This approach is very similar to the
one proposed by Slanina and McManus'6 and by
Greenlees, Pyle, and Tang" for proton potentials.
It has since been used by many authors. An ex-
tensive review of this subject has recently been
given by Jackson. " Recent references can be
found in the review papers of Rebel. '~

This approa, ch consists in using the multiple
scattering expansion of Kerman, McManus, and

Thaler, 'Q and neglecting all terms in which inter-
mediate states correspond to excited states of the
nucleus. " The two-body interaction between the a
particle and a target nucleon is then explicitly non-
local, energy-dependent, and different from the
free interaction. It is replaced by an effective,

~ t I I i I ~ I I I I I I I

30 60 90 120 1~ 180

C.M. angte(degrees)

FIG. 6. Calculated angular distributions for the Pb
case. The values of P and S' have been kept fixed to
200 and 20 MeV, respectively. The full curves corres-
pond to the Standawd values of R~~ and a as defined in
Fig. 3, i.e., 8.03 and 0.57 fm, respectively. The dashed
and dotted curves represent angular distributions ob-
tained from the values of R~ and a which give the
same 180' excitation functions (Fig. 3). The dashed
curve corresponds to a =0.52 fm and +~&=8.36 fm
while the dotted curve corresponds to a = 0.62 fm and
g~t=7.71 fm.
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local, energy-dependent interaction. The Q. -nu-
cleus potential is then

(6)

U+ '= 2600 MeVfm'. (10)

This is in fair agreement with the values found by
Bernstein" in his calculation of V,« from the mat-
ter distribution of the a particle and a phenomeno-
logical nucleon-nucleon interaction, namely, U,
=37 MeV, K=0.5 fm ', giving U+'=2368MeVfm'.
Morgan and Jackson" have found very similar
values, U, = 36 MeV and K=0.5 fm ', from a fit
to the e-"Ca and e-"Ti elastic scattering by a
folding potential obtained with a fixed density dis-
tribution and a variety of V,fjt.

A Woods-Saxon shape for V,«was, on the other
hand, chosen by Mailandt, I.illey, and Greenlees"
who deduced the parameters from an analysis of
low-energy scattering of protons and neutrons off
4He. They give

R
V,«(r) = -U, 1+exn

aeff

Here p„(r) stands for the radial nucleon distri-
bution of the target nucleus, V,«(~r —8~) is the ef-
fective a-nucleon interaction, R being the coordin-
ate of the n-particle center of mass, and r being
the coordinate of a nucleon in the target. 'The en-
ergy dependence of V„,(R) is explicitly given by
X(E). Finally, V,«(~ r —R~) is taken to be real, so
that V„,(R) is the real part of the optical poten-
tial.

'Tatischeff and Brissaud"- have studied the be-
havior of X(E) at various energies and found that
it decreases slowly with energy. For practical
purposes, it is sufficient in the present case to
incorporate X(E) into the normalization of the ef-
fective interaction. The role of exchange has been
considered by Brissaud et a/. "who used the pseu-
do-potential approach of Petrovich et al."and
Schaeffer. " They show that it modifies the a-nu-
cleus real potential in the interior but very little
in the tail. We therefore ignore it in the present
work.

The effective force V,«(r) is generally taken to
be of Gaussian form

V„,(r) = U, exp(-K'r'). (~)

Jackson and Kembhavi" have shown that a Yuka-
wa form yields potentials that are much too dif-
fuse to allow good fits to the scattering data.

In a study of a-particle scattering on "Ca and"¹at 42 MeV, Batty, Friedman, and Jackson"
have shown that equivalent results are obtained
when K takes values between 0.5 and 0.6 fm ',
while U, is then fixed according to the relationship

B. Simplified analysis of the present data

Here we take the value of R, , at its face value
and neglect, in particular, its possible dependence
on the detailed shape of the optical potenti. al.
Furthermore, we restrict ourselves to a Gaussian
effective force with U, = 127 Me+ and K=0.6 fm ',"
and to Fermi density distributions of the form

r —C„p„(r) = p, 1+exp
aN

(12)

This results in the following constraint on the nu-
cleon density distribution p„(r)

p„r Upexp — ' r-R, , ' 'r= -0.2 MeV.

After integration over angles, this reduces to

(13)

p„(r)(exp[ K'(r —R,-,)']
p. 2 p

—exp[-K'(r+R, ,)']]re=0.2 MeV. (14a)

The central density pp should in principle be deter-
mined by the condition that

p„(r) d'r =A. (15)

However, Rp 2 ls'always about 5 fm larger than the

with U, =42.5 MeV, R,«=(2.35-0.0014E) fm, and

a«=0. 34 fm, where E is measured in units of
MeV.

Finally, in a study of 42 MeV a-particle scatter-
ing from nuclei ranging from "Ca to "'Pb, Sum-
ner2' has determined an a-nucleon effective in-
teraction from the study of &-particle scattering
from "Ca. For that purpose he used the density
distribution of Negele" and determined which &-
nucleon effective forces reproduced the potential
deduced from the analysis of his data. Negele's
densities were chosen because: (a) they result
from density-dependent Hartree-Fock calculations
which should have the correct tail behavior and

(b) Negele's proton density fits the best electron
scattering data. The best choice of effective force
from Sumner's work is then either a Gaussian
force with U, = 127 MeV and K=0.6 fm ' (UQ'
=2722 MeVfm') or, equivalent(y, a Woods-Saxon
force with Up 42 5 MeV, R„f= 2.35 fm, and a,«
=0.35 fm. It is quite remarkable that he obtains
a result so close to the one of Mailandt et al."

We have performed (1) a simplified analysis of
our data by determining what a given value of R, ,
for each nucleus implies for a Fermi-shaped nu-
cleon density distribution and (2) a more complete
analysis for two nuclei.
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FIG. 7. Integrands of the folding integral (14a) are
shown for 208pb, along with the corresponding density
distributions and the n-nucleon effective force Gl. The
three density distributions shown yield the same nuc-
lear potential of 0.2 MeV at Ro 2=11 9V fm All three
take the value 6x 10 nucleon/fm3 at 9.58 fm. One
can see that the integrands always have their maximum
near RFD 0 0()06-—9.58 fm, and that in turn the folding
integral (14 a) is sensitive to the value of the density in
that region.

fleeting small variations of &~. At first glance
this result seems to depend on the value of p, . We
have found, however, that for different values of
p„ the constant a„determined inthewaydescribed
above takes different values such as to keep p, /
(1+expn„) constant. This can be qualitatively un-
derstood if we consider that the exponential tail
po exp[(C& —~)/a„] of the nucleon density distribu
tion p„(r) plays a domina. nt role in Eq. (14a). In-
deed such a tai1. is not changed when p, is changed
provided a„ is kept fixed and C„ is changed in such
a way as to keep p, exp(C„/a„) constant.

Since the values of p„(C,) are slightly different
for different nuclei, due to variations of &N, it is
convenient to define for each nucleus a radius
R»., ~~ (FD= fixed density) at which the density
takes the value 6.10 ' nucleon/fm'. This radius
is close to C, and is then defined without ambiguity
for any given choice of C„and a& within the frame-
work of the present treatment. We have calculated
R»~ p~, for all nuclei studied in this work. It
turns out that the difference between Rp 2 and

R»~ ~, is nearly constant

C„+&&~=Co (14b)

where a„=5.54 + 0.01 for the nuclei under study.
The nucleon density evaluated at C, is therefore

p„(C,) = p, (1+expo,'„) ' = 6.3 x 10 ' nucleon/fm'

with small variations from nucleus to nucleus re-

half-density radius C„. Since the range (-K ') of
V,« is about 2 fm, the integral in Eq. (14a) re-
ceives no appreciable contribution from radial re-
gions with r &C„and is thus insensitive to the den-
sity distribution in the central region of the nu-
cleus. This is illustrated by the examples given
in Fig. 'I where the integrand of Eq. (14a) is shown
as a function of r for different values of the pa-
rameters C„and a„ for which p„(r) satisfies Eq.
(14a). Therefore the nucleon density p„needs to
be defined only in the outer part of the nucleus.
The normalization integral (15), on the contrary,
depends so sensitively on the interior part of the
nucleon density distribution that it is irrelevant
in the present context. We have accordingly fixed
p, at the reasonable value" of 0.16 nucleon/fm'.
We shall indeed show later on that the particular
value of p, has actually no influence on the results
of the analysis.

The parameters Up K and pp now being fixed,
Eq. (14) reduces to a relationship between C„and
a„. Actually this relationship is nearly linear in
the range of a~=0.45 fm to a„=0.60 fm, which
comprises generally accepted values. This re-
lationship can therefore be approximately written
as

R»., „,6 —-R, , —(2.37+0.01) fm. (16)

In other words, Eq. (14a) can approximately be
written as

Cz+ 5.54a~=Bp, —2.37 fm. (14c)

C. Detailed analysis of the ' SPb and ' Te nucleon distributions

or a modified Gaussian form (MG)

1+cv(r '/Cz')' 1+exp[(r ' —C„')/a„']

'The simplified analysis described above suffers
from two drawbacks: (a) The value of R» may de-
pend on the analytical form of the potential and
therefore be different for a potential obtained by
the folding method and (b) the results obtained may
also depend on the analytical form of the nucleon
density distribution and on the type of effective
force that has been chosen. We have examined in
detail these points for the c3se of 'P Pb.

We have analyzed the ' Pb data by performing
a complete optical-model calculation using real
potentials obtained by the folding method. Two
different types of nucleon density distributions
and four different effective forces have been em-
ployed. The analytical forms of the nucleon den-
sity distributions were a Fermi-two-parameter
form (F2)

pp

1+exp[(r —C~)/ag]



988 I. BADA% Y et al.

The latter wes used by Heisenberg et al." in
their analysis of "'Pb elastic electron scattering.
We adopt their value of au=0. 338. In their analysis
of 166 MeV scattering from "'Pb, Tatischeff,

Brissaud, and Bimbot" have also used this pa-
rametrization. We kept pc fixed to 0.16 nucleon/
fm for the reasons explained in Sec. IV 8.

We have considered four different forces:

(1) Gaussian, with U, = 127 MeV, K=0.6 fm ' (denoted Gl),

(2) Gaussian, with U, =42. 5 MeV, K=0.5 fm ' (denoted G2),

(3) Gaussian, with U, =37 MeV, K=0.5 fm ' (denoted G3),

(4) Woods-Saxon, with U, =42.5, R,«=2.35 fm, a,«=0.34 fm (denoted WS).

The radial dependence of these forces is shown
in Fig. 8. The two Gaussian forces G1 and G2
represent the two extremes among the Gaussian
forces obeying the relation (10) of Batty et af."

The Gaussian force G1 and the Woods-Saxon force
WS are equivalent to the extent that for a given den-
sity distr ibution they give rise to potentials which
differ by less than 1.5 keV outside the Coulomb bar-
rier. In strong absorption situations, they ought to
give identical scattering cross sections. This is ac-
tually confirmed in our optical-model calculations as
was the case in the work of Sumner. "

We have then performed optical-model calcula-
tions with the density distribution F2 for a„=0.45
to 0.60 fm in steps of 0.15 fm for the three forces
G1, G2, and G3. Actually, force G3 gives results
which are intermediate between those of G1 and
G2, and are in fact closer to those of G2. We found
it therefore sufficient to restrict the calculations
with density distributions MG to forces G1 and
G2. In the case of density distributions MG, cal-
culations were done for a„=2.7 to 3.1 fm, in steps
of 0.1 fm. In all cases a value of C& was found
which gave a satisfactory fit to the data.

In all these optical-model calculations, we have
used a Woods-Saxon imaginary potential with a
radius R~= 8.03 fm and a diffuseaess a~= 0.57 fm.
These values correspond to actual results of the
phenomenological analysis of Sec. III. However,
real potentials obtained by the folding method may
have central depths of 400 to 500 MeV. We had,
therefore, to increase the central depth of the
imaginary potential to 25 to 40 MeV in order to
maintain a total absorption of the o-particle flux
inside the nucleus, since this absorption. is at each
point proportional to W(r) and to the reciprocal
of the particle velocity. "

The results of all optical-model calculations ap-
pear in Figs. 9 to 12. In Fig. 9 the tails of nuclear
potentials corresponding to the different combina-
tions described above are shown. It is seen that
for each combination of density and force the re-
sults are fairly insensitive to the precise value of
a„. However, all tails corresponding to different
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FIG. 8. Radial dependence of the 0'-nucleon effective
forces used in the BPb(e~) analysis. Ql, Q2, and G3
are Gaussian shaped, with central strength of 127, 42.5,
and 37 MeV, respectively, and range parameter & of
0.6, 0.5, and 0.5 fm ', respectively. WS is the Woods-
Saxon force —Pox (1+exp[{r—Rzt)/aett)} ~, with Uo
=42.5 MeV, Reff 2 35 and+eff

values of a„cross in a narrow region. The posi-
tion of this crossing region appears to depend very
little on the analytical form of the density distri-
bution. In contrast, the variation of the range of
the force (from Gl to G2) has a stronger effect.
These results are summarized in Fig. 10 where the
hatched area comprises all tails of the potentials
of Fig. 9. Also shown in Fig. 10 are the Woods-
Saxon potentials corresponding to values of a of
0.52 and 0.62 fm, respectively. From this we con-
clude that, although the value of the potential of
0.2 MeV at R, , = 11.97 fm lies within the hatched
area, the &-nucleus distance R, , is not as pre-
cisely given as in the Woods-Saxon analysis. On
the other hand, the &-nucleus distance at which the
potential is 0.5 to 0.6 MeV deep is fairly well de-
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FIG. 10. Limits to the e-208pb nuclear potential tails.
All tails shown in Fig. 8 lie within the hatched area.
The maximum of the Coulomb barrier lies between the
two arrows for the cases shown in Fig. 8. The two
dashed curves represent the two extreme potentials ob-
tained in the Woods-Saxon analysis. They correspond to
diffuseness parameters a of 0.52 and 0.62 fm, respec-
tively.
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FI6. 9. Tails of nuclear potentials giving equivalent
fits to the 2 Pb data and which are obtained by folding
several effective forces into various density distribu-
tions. Five combinations of density distributions {F2
or MG) and effective forces (61,62, 63) are shown.
In each case, the value of the radius parameter CN has
been adjusted for values of gz ranging from 0.45 to
0.60 fm in 0.15 fm steps (F2 densities) or 2.7 to 3.1 fm
in 0.1 fm steps (MG densities). The value of Ro 2 of
11.97 fm obtained in the Woods-Saxon analysis is
shown for comparison.

force than on the analytical form of the density
distribution. Figure 12 summarizes the results
concerning the tail of the nucleon density distribu-
tion of "'Pb. The ha,tched area comprises all such
distributions for which 0.50 ~ a„-0.55 (F2 distri-
butions) or 2.8 ~ a„~3.0 (MG distributions). Those
distributions for which 0.45- a„~0.60 (F2) or
2.V ~ a„c3.1 (MG) are comprised between the
dashed curves.

The hatched area as well as the area between
the two dashed curves show a necking at density
values aroung 2 x 10 ' nucleon/fm' so that we can
define a fixed density radius -R»„«, where the
nucleon density takes the value of 2 x 10 ' nucleon/
fm'. For "'Pb, we have

termined. For example, the distance at which the
nuclear potential is 0.5 MeV is 11.45 fm + 0.05 fm
if we take into a.ccount all potentials that we have
considered in the present section as well as the
Woods-Saxon potentials discussed in Sec. III.

Likewise, the nucleon density distributions from
which these potentials have been calculated are
shown in Fig. 11. Here again, there is a fairly
well determined crossing region for all curves
corresponding, for different values of a„, to a
given combination of effective force and density
distribution. The location of this crossing region
depends much more strongly on the choice of the

RpD 0 ~ 0 8 86+0 14 fm

The uncertainty of +0.14 fm that we assign here
is half the distance between the two dashed curves
of Fig. 12 at the density of 2 x 10 ' nucleon/fm'.
We consider it as a measure of the model-depen-
dent uncertainty on RrD (in the following we will
use Rro for Rro~, »). Figure 12 shows that this
uncertainty is due to the uncertainty on the range
of the effective force rather than to the uncertainty
on the slope parameter a„.

We have performed the same analysis for the
"'Te data and have found potentials and density
distributions identical to those of "'Pb, except
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FIG. 12. Limits to the tail of the 2 Pb nucleon den-
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~ 0.55 (F2 densities) or 2a8 ~a~ &3.0 P/lG densities)
lie within the hatched area. It is clear that the main
cause of uncertainty comes from the uncertainty on the
range of the effective force since the hatched area is
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for all nuclei considered in this paper
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FIG. 11. Tails of the nucleon density distributions
corresponding to the potentials of Fig. 8. Each curve
represents a density obtained by adjusting the radius
g~ for a set of values of a~ (0.45 to 0.60 fm in steps of
0.15 fm for F2 densities and 2.7 to 3.1 fm in steps of
0.1 fm for MG densities).

for a shift of 1.20 fm towards smaller radii. 'This

holds for each individual curve in Figs. 9 and 11,
and in particular for 8». 'The 1.20 fm difference
between the tmo BFD's is exactly equal to the differ-
ence between the R, , values of '"Te and "'Pb.

In other words, me have

R, ,('"Te) —Rpo ("'Te) = R, ,("'Pb) -R zo ("'Pb)

= (3.11+0.14) fm.

Indeed such a result is not surprising if we con-
sider that: (i) the nuclei considered here have
A ~ 110 and have therefore a radius which is large
compared to their surface thickness, (ii) the data
are sensitive only to the surface region of the den-
sity distribution (Fig. 7).

It is then fair to assume that in general we have

D. Present data and the choice of the effective force

It is interesting to note that among the density
distributions that were used here (Fig. 11), two
are very close to the Negele calculstion" in the
radial region of 7 to 10 fm. One is of F2 type with
a = 0.55 fm and the other one is of MG type with
a= 3.0 fm. Both give good fits to the data in con-
junction with force 61. Had we used Negele's den-
sity distribution to determine the effective force,
we mould find a force identical to the ones of Sum-
ner" (61) or Mailandt sf al."since the latter is
very close to%8, which was found to be strictly
equivalent to 61. A priori, there is no strong
reason why Negele's calculations, which give
equally good results on the charge distributions
of "Ca and ' 'Pb would give a poorer neutron dis-
tribution for "'Pb than for 'Ca. We have, more-
over, two evidences that they are equally good:
(i) the density distributions obtained by Sumner
with a 61 force fit equally mell the Negele calcula-
tions of "Ca and "'Pb; (ii) Negele's density dis-
tribution of "'Pb is in very close agreement with
a quite different calculation made by Royer, Dost,
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Rrn=RO, —(3.06+0.03) fm. (18b)

We therefore conclude that the value of RFD is
very probably given by (18b) although the larger
spread of (18a) cannot be excluded.

Finally we note that the result of the simplified
analysis [Eq. (16)] described in Sec. IV 8 and which
gave within +0.01 fm the radius at which the den-
sity is 6 x 10 ' nucleonlfm' was too optimistic. In-
deed Fig. 13 shows that this radius can only be
determined within A. 1 fm if the choice of the ef-
fective interaction is limited to G1, and to +0.23
fm if interactions G1 and 62 are considered.

data lie in the hatched area of Fig. 13. It is clear
that the value of R» is then defined more pre-
cisely; now we have

Rrn(' 'Pb) = (8.91+0.03) fm

and more generally

I t s»» I c
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10

E. Variation of the nucleon fixed4ensity radius RF D —p.p p 2

with mass number

I'IQ. 13. Tails of density distributions of SPb. Cal-
culations of Negele (Ref. 28) and. Royer et pl. (Ref. 33)
are compared with the present cwork. The hatched area
comprises all pb densities compatible with the pre-
sent data and the effective force 61. All densities com-
patible with the present data and all forces shown in

Fig. 8 lie between the two dotted curves.

Figure 14 shows the variation as a function of
A' ' of RF that we have defined in the preceding
section as the radius at which the nucleon density
equals 2 x 10 ' nucleon/fm'. The full curve rep-
resents a straight line fit through the R~ values

9 I I I I I I I

and Doubre. " These authors have calculated a
nucleon density distribution for "'Pb from a shell
model potential which they fitted to both the nu-
cleon separation energies and nucleon transfer
cross sections in the neighborhood of "'Pb. The
density distribution is then calculated by summing
over the squared wave functions of all occupied
shell model orbits. It depends mainly on the nu-
clear interior (through the nucleon separation en-
ergies) and the surface region in the vicinity of
=10 fm (through the nucleon transfer cross sec-
tions). The tails of these two calculated density
distributions are shown in Fig. 13. We therefore
consider that there is a definite evidence in favor
of an effective force of type G1, namely, a Gaus-
sian force with Up=127 MeV and K=0.6 fm '.
Moreover, at the very low densities considered
here, the effective a-nucleon interaction is ex-
pected to be close to the free one. This is indeed
so for 61, which was found to be equivalent to%8.
The WS force is in fact the low-energy limit of the
a-nucleon interaction of Ma.ilandt et a/. ,"who de-
duced it from an analysis of free proton-+ and
neutron-& low-energy scattering.

If this effective force is used, the density dis-
tributions which are compatible with the present
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of nuclei Imown to be spherical (Sn and Pb iso-
topes, '~Sm):

(R~~~~"') (1.355A~ ~ + 0.8V) fm. (19a)

A similar fit to all R~ values gives a rather sim-
ilar result:

(Rp ) = (1.361A~ ~3+0.90) fm. (19b)

(R' "')=(1.248A' '+1.V2) fm. (22)

One can observe a nearly perfect agreement
between the droplet-xnodel and the observed rms-
equivalent charge radii. As for R~, the droplet
model gives absol'ute values which are 0.32 fm

This result is, however, of lesser significance
because of the influence of R~ values of deformed
nuclei which strongly differ from the average be-
havior.

In Fig. 14 are also plotted the values of the rms
equivalent, radii of charge distributions that can
be found in the literature. Vfe have used the re-
sults of Ficenec et al.~ for Sn isotopes, of Heisen-
berg et al.3' for '~Pb, and of Cardman et al.3' for
'~8m. The rms-equivalent charge radii R of

Pb and ~ 5 ~sasm were calculated from the
isotope-shift measurements of Lee and Boehm."
For Cd and Te isotopes, we have used the muonic-
atom measurements of Backenstoss and Goebbels'
on naturg targets and calculated the variations
within each series of isotopes from isotope-shift
measurements. " A straight line fit through the
points gives for the average (R~):

(R )=(1.10VA'~'+0. 565}fm. (20)

In order to discuss the difference in the slopes
of (R~) and (R~), we find it convenient to compare
each of them to the values given by the drop/et
rnodeL. 39 This is an extension of the Bqmid drop
modeL where the surface is no longer required to
be sharp, and the nuclear compressibility is al-
lowed to have a finite rather than infinite value.
We have used the Fermi-type approximations to
the droplet-model densities of spherical nuclei
as given by Myers, 40 to calculate R~~"' values, al-
though this extrapolation of the droplet model is
not expected to be valid at densities as smaO as
2 & 10~ nucleon/fm'. However, since the same
surface diffuseness of 0.55 fm is used for all nuc-
lei, the variation of R~"' vrith mass number is
parallel, to that of the hnif-density radius. Droplet-
model values of the rms-equivalent charge radius
R'~"' have been calculated as well (and corrected
for nucleon size). Straight line fits to these values
give

(R'n"') = (1.081A' ~'+ O.V2) fm (21)

(Sn region) to 0.22 fm (Pb region) too high, a quite
good result iadeed. Consideriag the sLope of R~
versus 4'~', the droplet model gives a value which
is 0.107 fm amu ' ' too small, which corresponds
to a variation of -0.12 fm from '"Sn to ~Pb, of
the difference between our value of R~ and the
one calculated in the droplet model. To the extent
that the droplet model described correctly the
average "bulk" properties of nuclei (like in par-
ticular R'~'), we have here a good evidence that
the surface thickness of spherical nuclei does not
vary appreeurbly in the region 118—4 ~ 208.

As can be recognized from Fig. 14, the slope
of R~ versus A. ' ' within each series of isotopes
differs in most cases from the average value of
1.361 fm amu ' . Vfe note that the cadmium radii
R~ follow a slope of 2.8 fm amu ' ', a fact that
appears to point to the "soft" character of cad-
mium isotopes. A more pronounced case is that
of the samarium isotopes, where the slope of R~
is 4.8 fm amu ' '.

R~ values deduced from the results of Tabor
et al.' on Nd isotopes ~e also shown in Fig. 14.
It is remarkable that the variation of R~ with
increasing number of neutrons is very parallel in
Sm and Nd isotopes. Tabor et c$. have shown that
the large variations of radii which are observ'ed
can be accounted for by taking explicitly into ac-
count the deformation of these nuclei in a coupled
channel calculation. This holds probably for th' e
Sm isotopes as well.

V. DISCUSSION: COMPARISONOF PRESENT RESULTS
TO EXPERIMENTAL INFORMATION ON THE NUCLEON

DENSITY IN THE REGMN AROUND RF 0

A. Comparison of the present values of RF D to the results

of K absorption by heavy nudei

A number of authors have tried to relate ex-
perimental information On K" capture in the nuc-
lear periphery to the extension of matter density
into regions far beyond the ke&f-density radius.
Burhop~ and Burhop et al.~ have interpreted the
experiment of Davis et cl. ' on K capture in emul-
sion nuclei and concluded that in the radial region
of Ag where the capture occurs, the ratio p„/p~ of
neutron and proton densities is higher than N/Z
Ericson and Scheck concluded, on the contrary,
that K absorption from K atomic orbits, as borne
out by the cutoff in the x-ray cascade, "is consis-
tent with p„"'/p~" =N/Z at all radii out to the cap-
ture region. This region extends over several
fm, but the maximum K" capture probability oc-
curs in the heaviest nuclei at about 2 fm beyond
the nuclear half-density radius, i.e., only slightly
inside our fixed-density radius R~.4"47

It is therefore quite interesting to compare these



E LAS T IC SCATTE RING OF A LP HA I'ARTIC I ES ~ ~ .

results to ours, which can be done for '~pb. In
Fig. 15 the hatched area comprises all taOs of
nucleon density distributions compatible with our
data, as was discussed in Secs. 1V C and IVD. On
the same figure are shown the tails of density
distributions found to be compatible with E ab-
sorption data~ by Bethe and Siemens ' and Ericson
and Scheck.~

B. Relation to other types of information on the nuclear

density distribution

%e are now going to attempt to relate the pres-
ent results to other existing information on the
density distributions. It should be noted, however,
that in some cases such comparisons can only
be made in an indirect way, by means:of some
extrapolation, which introduces a certain arbi-
trariness. We shall consider the following types
of experimental information:

1. Comparison to charge distribgÃons
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It is interesting to compare the present data to
charge distribution data and see if they show any
evidence for a neutron halo in neutron-rich nuclei.
For that purpose we have used the charge dis-
tributions determined from electron scattering
measurements for tin isotopes and for ~'Pb.3

Proton densities (corrected for proton size) cal-
culated for these nuclei at R~ are shown in Table
IV. Also shvwxx in Table IV are the values of the
total density at B~ that one finds by multiplying
the proton density by (N+ Z)/g, i.e., assuming
the same radial distribution {and hence same rms
radius) for protons and neutrons, with densities
in the ratio Z/N at all radii. The estimated error
on our R~ values [Eg. {18b)jcan be expressed

FIG. 15. Comparison between the present analysis
which restricts the nucleon density distribution of 20 pb
to the hatched area and various other results (see text).

in terms of an uncertainty on the density at R~,
which is then (2.0 +0.1) x 10 ' nucleon/fm' without
excluding a larger spread of (2.1+0.8) && 10 ' nu-
cleon/fm' [corresponding to Eq. 18(a)]. The sta-
tistical error of &.03 fm gives in addition an un-
certainty of %.1 nucleon/fms. Table IV then shows
that, except for the most neutron-rich nuclei, ab-
solute values of the densities estimated from elec-
tron scattering data are higher than our results,
especially if we consider that the neutron-to-pro-

&A+I.E pf. Proton densities calculated at RFD from charge distributions given by Ficenec
et g$. (Ref. 34) for tin isotopes and Heisenberg et aE. (Ref. 30) for 2 Pb. Corrections for
finite proton size have been included. In column 3 are shown the total nucleon densities that
are deduced from the proton densities by assuming the same radial shape for both types of
nucleons.

RFD
(Present work)

(fm)

ppwrg)
x 103

C'protons/'fm3)

N+Z
ppw x))

x 103
(nucleons/fm3)

iigsn
i14sn
iigSn
iisS

Bosn
iRRsn

124sn

7.36
7.40
7.45
7.53
7.57
7.60
7.73
8.91

1.39
1.32
1.13
1.02
0.93
0.89
0.67
0.70

3.11
3.01
2.62
2.41
2.23
2.17
1.66
1.78
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ton ratio at R~ is probably higher than N/Z T. his
discrepancy can be due to the fact that charge
distributions extrapolated to these large distances
may be rather uncertain, as model-independent
analyses of electron scattering data have shown. "
It can be noted, however, that the proton density
at R~ decreases monotonically with increasing
neutron number in the tin isotopes, and takes
almost the same value for '~Sn and '~Pb which
have nearly equal N/Z ratios (1.48 and 1.54, re-
spectively) M. oreover, the error on the variation
of R~ is closer to that of R~~, i.e., M.03 fm.
There is therefore an evidence that the neutron-to-
proton density ratio at R~ is increasing faster
than N/Z.

2. Companson to n-particle scattering at energies between

42and 104NeV

These experiments are sensitive to not quite
as remote a region of the surface of the nucleon
density distribution. Bernstein and Seidler4' have
analyzed the 104 MeV data of Hauser et al.so using
Fermi nucleon densities and the effective force
63. They have shown that the nucleon density is
best known at a distance r =R~~ o» where it takes
the value p„(r) =1.5 && 10 nucleon/fm'. In the case
of Pb, they find RFD.p p» = 7.90 +0.06 fm, in ex-
cellent agreement with our data (see Fig. 15).

Sumner" has used a Woods-Saxon optical model
to analyze 42 MeV data on a range of nuclei. He
used the effective force 01 to unfold the tail of
the real part of the potential, thus obtaining the
tail of a nucleon density which fits his data. We
can compare his results fo ours for xxsSn and 2osP

For '"Sn, he finds a nucleon density of 2 x 10~
nucleon/fm' at 7.65 fm. However, along the lines
of our discussion in Secs. XVC and IVD, the pres-
ent data give for "'Sn a very probable value of

R~ = V.53 +0.03 fm (with a statistical error of
&.02 fm) without excluding values as high as V.62
fm. Thus we do not have here a real disagree-
ment. As for "'Pb, Sumner finds p„(x=9 fm)

=1.75 & 10~ nucleon/fm' and p„(t =10 fm) =2.4
&& 10 ' nucleon/fm', in excellent agreement with
our results (Fig. 15).

X Comparison to p -meson photoproduction

Experiments of p'-meson photoproduction on
nuclei have been given an interesting interpreta-
tion by Alvensleben et al.s' in terms of strong in-
teraction radii. They can explain their results
in terms of a Fermi-type matter density distribu-
tion having a surface diffuseness a=0.545 fm and
a half-density radius compatible with R(A) = (1.12
+0.02)A' ' fm. The most sensitive radial region
in these experiments is close to the balf-density
radius. Yet the data are compatible with variations
of +10% of the diffuseness parameter a. They ob-
tain for "SPb R(A) = 6.82+0.20 fm and for a natural
cadmium target R(A) = 5.40 ~0.14 fm. We have
calculated for these two cases the radii R~~ pp2

at which the density is 2 x 10~ nucleon/fm' for
values of a ranging from 0.5 $o 0.6 fm. For 2~Pb,
we find for R~ values between 8.97 and 9.38
fm to be compared with our value of 8.91+0.03 fm,
while for Cd we find for R~~.p ~, values between
7.58 and 7.99 fm, tobe comparedwith our average
value of 7,44+0.ll fm. These values are not ig real
disagreement, although our values seem tobe lower
than those of Alvensleben et a/. Indeed this
should be considered as a good agreement in view
of the fact that the two measurements test a dif-
ferent radial region of the density distribution
and depend on completely different elementary in-
teraction cross sections. Furthermore, the pp-
photoproduction experiment was done with targets
of natural isotope composition, which makes the
comparison with our data somewhat involved for
the Cd case.

4. Comparison to experiments sensitive to the rms radius

of the nucleon density distribution

Brissaud et al.22 have measured g-particle scat-
tering at 166 MeV on a range of nuclei. They ob-

TABLE V. Root-mean square radii of density distributions from Refs. 22, 17, and 52
(columns 3 to 5). Comparison to the present work is made by calculating RFD 0 002 values
from the- densities of Ref. 22.

Nuclide
Present

work

RFD~0. 002 ~m)
Brissaud

et al.
(Ref. 22)

Brissaud
et al.

(Ref. 22)

rms radius gm)
Greenlees

et al.
(Ref. 17)

Boyd
et al.

(Ref. 52)

i 18Sn
ii8sn
i20sn
i24Sn
208pb

7.47
7.53
7.57
7.60
8.91

7.59
7.81
7.85
7.72
8.87

4.58 + 0.05
4.65 + 0.05
4.70 + 0.05
4.68 + 0.05
5.59 k 0.05

4.66 + 0.11

5.52+ 0.15

4.77+ 0.10
4.77 4 0.10
4.87 + 0.10
4.96+ 0.10



E LASTIC SCATTERING OF ALPHA PARTICLES. . . 995

tained good fits to their data by folding the effec-
tive force G3 into a density distribution of the fol-
lowing form. They have taken a proton distribu-
tion from the literature" and used the same dis-
tribution for neutrons, except that they aLlowed
the radius parameter C„ to vary. Their analysis
shows that their data are most sensitive to the
radial region of the density distribution close to
its rms radius. In Table V we compare their re-
sults to ours for some Sn isotopes and for 208Pb

In the first two columns, R~ values calculated
for the density distributions of Brissaud et al. are
compared to our results. While the agreement is
perfect for 'O'Pb, Brissaud's values for Sn iso-
topes are 0.2 to 0.3 fm higher than ours. In view
of the fact that the two experiments test completely
different radial regions of the density distribution,
this agreement is quite satisfactory, and hence
the rms radii of Brissaud et al. are compatible
with our results.

Proton scattering at various energies has been
shown to be sensitive to the rms radius of the
nucleon distribution. " In particular Boyd et al.'~
have given rms radii for some Sn isotopes and
Greenlees et a/."for "Sn and ' 'Pb. These re-
sults appear in Table V. To the extent that Green-
lees's results agree with those of Brissaud et al.,
they are compatible with the present work. The
rms radii of Boyd et al."are 0.1 to 0.3 fm higher
than those of Brissaud et al." In view of the fact
that Brissaud's values of R~ are already 0.2 to
0.3 fm higher than ours, it seems that the present
data would favor the results of Brissaud et al. and
Greenlees et a/. rather than those of Boyd et al.

VI. CONCLUSION

For n-particle scattering in the vicinity of the
Coulomb barrier on 23 nuclei with atomic num-
bers between Z=48 and Z=82, we have shown by
means of an optical-model analysis with Woods-
Saxon potenti, als that the data yield unambiguously
the interaction radius R, , This interaction radius
is the distance where the real nuclear potential is
0.2 MeV deep. It expresses the fact that all values
of the depth V, half-way radius R~„and diffuse-
ness a of the real potential which obey the rela-

tionship Ve xp[(R„, R, ,)/a]=0. 2 MeV give a good
fit to the data. Typical uncertainties (essentially
statistical) on R~, are +0.03 fm.

An analysis of the same data in terms of density
distributions and effective n -nucleon interaction
permits us to define for each nucleus a "fixed-
density" radius R» at which the nucleon density
is 2 x 10 ' nucleon/fm'. In addition to the error
on Ro „ the fixed-density radius R~ is subject
to a model-dependent uncertainty which originates
in the uncertainty on the n-nucleon effective force
as well as in the uncertainty on the functional form
of the radial density distribution. In the case of
'~Pb, the Hartree-Fock calculation of Negele"
agrees with our data if we use an effective force
of Gaussian shape -U, exp(-K'r') with U, = 12V

MeV and K=0.6 fm '. These values were found

by Sumner" to give a good agreement between
the Negele calculation and 42 MeV a-scattering
data on 'Ca and '"Pb. Considering only this ef-
fective force gives then

R~ =Ro 2
—(3.06a0.03) fm,

while considering all effective forces given so far
in the literature gives

RrD =R~, —(3.11+0.14) fm.

The comparison to other experimental informa-
tion on nuclear densities is on the whole satis-
factory though incomplete. The most direct com-
parison is with the analysis of K absorption in
the nuclear periphery, but it is not conclusive.

Finally the average variation of R~ with mass
number is found to be in good agreement for spher-
ical nuclei with the predictions of the droplet mod-
el,"which is taken as evidence that the surface
thickness of spherical nuclei does not vary ap-
preciably in the mass region from tin to lead.
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