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Perturbation forrraalism for the complex poles and widths of the transition matrix

with an application to intermediate structure phenomena»'
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The complex poles and widths of the transition T matrix are determined by the
trajectory equations whichconsistof a set of first order nonlinear differential equations.
A hierarchy of approximate solutions to the trajectory equations is developed by iterative
methods. The results of this formalism are compared with exact solutions for the case
of some strongly interacting pairs of resonances in two iron isotopes. 1n the presence of
intermediate structure the average neutron reaction cross section is interpreted in terms
of a resonant strength function which exhibits peaks at neutron energies corresponding to
"doorways" levels.

NUCLEAR REACTIONS Complex poles and widths, intermediate structure.

I. INTRODUCTION

The study of nuclear structure from neutron
cross section information is performed by suitable
paragnetrizations of the cross section data interms
of either R-matrix parameters (Wigner and Eisen-
bud') or the poles and residues of the collision ma-
trix (Kapur and Peierls, ' Humbiet and Rosenfeld').
In the first approach, one goes from the R matrix,
via Wigner's level matrix, to the calculation of the
collision matrix, and then the cross section. In
the latter formalism the collision matrix itself is
expanded in partial fractions with residues and
poles which are related to the R-matrix parame-
ters. '

The R-matrix parameter set, is of a more funda-
mental nature than the collision matrix parame-
ters, because the former set is directly related to
general properties of the nuclear Hamiltonian. In
contrast the Kapur-Peierls and Humblet-Rosenfeld
formalisms lead directly to the cross section ex-
pression, dispensing with the inversion of large
level matrices. '

Clearly there are two ways by which one can pro-
ceed. That is, one can perform the level matrix
inversion by some approximation technique to ar-
rive at the collision matrix, or alternatively one
works out approximate relations between the R-
matrix parameters and the poles and residues of
the collision matrix. In either instance the con-
vergence of the perturbation method depends on the
value of the degree of level interference H„defined
as the ratio of level coupling to level spacing. For
nuclei in the actinide region, 8„ is rarely over O. j..
In this region the level interference effects are

well described by the addition of a level interfer-
ence correction to the Breit-Wigner resonance
formula. ' Application of the Bethe approxima-
tions to the calculation of the neutron '"U
total cross section has been discussed by de Saus-
sure, Qlsen, and Perez. ' Perturbative calcula-
tions of the collision matrix parameters from the
corresponding set of R-matrix parameters have
been performed by Harris' in the aetinide region.

However, recent total neutron cross section
measurements in iron by Pandey et a/. ,

' have
brought up evidence as to the existence of highly
interfering resonances (8~ = 1), hence providing
incentive for tPe development of improved pertur-
bation approaches for the calculation of the colli-
sion matrix parameters.

As will be shown later in this work, the main
idea is to improve the convergence of the pertur-
bation series expansion by starting from a per-
turbed system which already contains the diagonal
elements of the interaction matrix, rather than
from the usual unperturbed configuration. In this
manner the convergence criterion is determined by
the ratio of the off-diagonal interaction matrix ele-
ments to the spacing of the complex poles of the
"diagonal" initial system. Qne acquires in this
way a damping factor proportional to the difference
of the level widths of the interacting levels. In the
language of the propagator formalism, this is
equivalent to a partial summation of the perturba-
tion series.

We shall also consider the application of the pre-
sent formalism to the study of intermediate struc-
ture phenomena of Hobson, "Weigmann, "Lynn, "
and Lane" and derive formulas for average reac-
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tion cross sections especially geared towards the
interpretation of intermediate structure in both the
fission and capture cross sections of the heavy nu-
clides (see Difiliypo ef a/. ,

"Perez and de Saus-
sure").

Finally a word about nomenclature: in this work
we shall use the concept of the transition T matrix
rather than the collision matrix (U matrix) because
the former matrix is devoid of inconvenient factors
arising from the hard sphere scattering functions.
The complex poles in both matrices are of course
the same, and the widths (or their combinations
thereof to form the U-matrix residues) are easily
related to one another.

II. GENERAL THEORY

In this section we shall use a formalism previ-
ously developed by Perez and de Saussure, ' to ob-
tain expressions for the partial widths and complex
poles of the transition T matrix.

Let Q&jbe an eigenset of R-matrix states which
satisfy real, momentum independent boundary con-
ditions at the nuclear surface, i.e. ,

d
p„,(r—) = (b,/a, )(f&„,(g,),

where a, is the channel radius and b, the boundary
condition numbers of R-matrix theory. " In terms
of these R-matrix states one defines, in the usual
manner, the reduced level widths, partial widths,
and level shift factors as follows:

(10)

where E„and —,'I'„are the real and imaginary com-
ponents of the complex poles z„. The complex
widths are given in terms of the R-matrix states
by

Z.,= n. P 6,.A. .(s,),
V I

where I3, are modal amplitudes, to be computed
later, and

q, =A,(2P,/a )'~~.

The modal amplitudes g„„,and complex poles
satisfy the following set of first-order differential
equations":

a)
P I Wvlivt PVtv N Pvltv

d7 ""
V "AV'

d—.g =-P
V VV

(13)

(14)

where & indicates any parameter in the Hamilton-
ian or boundary conditions describing the nuclear
system. We have also defined

W„„,=z„-z„,

and the matrix P

(15)

P, = g P .n„.,„,.f(...„. ,
V

lt Volt

(16)

where we have introduced the interaction matrix 0:
r„,= (A,/a, '")y„,(a,),

vv 'c crvcrv 'c (~vc~v 'c}

n...= (s. &,)r-.,r. —.
vv' g vv'ci

VV ~ VV C

with

A =(I'/2~ )'~'

(2)

(8)

(4)

(6)

0„„.= —P dr 6(r —a,)6„.Q„,(r) B, —d

Cy C

x p„...(a,.}——V„"„.(7'}
d&

The first term in the right-hand side of Eq. (1V)
corresponds to the variation in the boundary con-
ditions and the second term describes the effect of
switching on of the interaction channel potential's
matrix elements. The matrix P itself satisfies
a differential equation, "i.e. ,

cc =' Q v Zvcg'vc (8)

with

D„=g„—E,

where the channel subindex c includes the pertinent
set of quantum numbers, M, is the channel mass,
P, the channel penetration factor, and S, the chan-
nel shift factors and where v is the level subindex.

The transition matrix is given in terms of the
complex widths and poles of the collision matrix by
the expansion

—P„„.= Z W„„P„„-P„-„.d7'
V~gv

+ Q Wv-„. P„„P„-„.,
v "A''

(18)

—g„=~~ W„'.„P„„,g„.
d7 v'~

which turns out to be very convenient for the cal-
culation of the modal amplitudes P„„and the com-
plex poles g„. In Ref. 16 it was sholem that the
complex widths g„, also satisfy a set of differential
equations
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Hence the complex widths of the transition matrix
can be obtained, either by solving Eq. (13}for the
modal amplitudes P„„, followed by utilization of Eq.
(ll) or by direct solution of the trajectory Eqs.
(19).

Let us now examine the physical meaning of the
previous developments. The initial set of R-ma-
trix states satisfies the boundary conditions (1},
whereas the appropriate eigenset for the collision
matrix g„g must. satisfy the complex momentum
dependent boundary conditions

and the final configuration of still uncoupled T-
matrix states (only the diagonal elements of 0 are
considered) satisfying the correct boundary con-
ditions (20). In the next step one keeps r, =1 and
one identifies v, with 7'. In this instance the pa-
rameter 7' turns on the off-diagonal elements. By
the time that & reaches unity, one obtains the
final coupled T-matrix states. By means of the
introduction of the two arbitrary parameters w,

and ~, we have defined two initial value problems
which we shall study now in detail.

(20)d 4,.(r) = - (B,./a, )4,.(a.),
C

where the eigenfunctions Q„,(a,) are related to the
complex widths by the relation

g, = r/, 4', (a,) (21)

Trajectory equations for the diagonal case

In this instance, t, =0 and w, = l. Upon taking
derivatives with respect to r in Eqs. (24} and (28),
one obtains

B„=-(A,'/a, )I,„
=8 +iP .

(22)

(23)

—B,(r, 0)=(Bi —Bo )8p,
d

d
dT
—V"~ (r r 0) = V"~(r)8o.t

(29)

(30)

B,(r„r,) = [rx(B„-Boo)+Booj(8//+ r, 8//),

where e~ and 8„are operators such that

r dr F(r)Q„,(r)8op„.,(r) =0 (ve v'),

/fr F(r)y„,(r)8„4„,,(r) =0 (v= v'),

(24)

(25)

(26)

where F(r) is an arbitrary function.
In analogous fashion one introduces the channel

interaction potentials

The change from the boundary conditions (1) to the
I/-matrix boundary conditions (20) is carried out

by the use of the boundary condition function B,(r)
defined as

The results (29) and (30) are then introduced in

Eq. (1 I) for the interaction matrix. After use is
made of Eqs. (22} and (23} and the relations (2) up
to (6), one obtains

0„„=-(o„„=-(n„„+V,„„)+i/21'„„,

0„„,=0 (ve v').
(31)

(32)

Equations (31) and (32) determine the interaction
matrix. The initial conditions correspond to un-
coupled R-matrix states. Hence, the complex
widths and poles become real and equal to the
square root of the partial channel widths and the
R-matrixpoles, respectively, i.e.,

g(v)(0) p 1/o

&(D)(0)

(33)

(34)

Next from Eqs. (33) and (11) one concludes that
the initial values of the modal amplitudes P„„.are

with
P(/))(0) (35)

V"' (r, r„r,)= r, V"' (r)(8D+ &,8„). (28)
which after utilization of Eq. (16) shows that the
initial values for the matrix elements P(~)(0} are

For ~, =0, one identifies &, with ~ in the trajec-
tory equations where now only the diagonal ele-
ments of the interaction matrix Q will be present
in the equations. The initial condition in this case
wiQ correspond to 7', = T =0, in which case the
function B,(0, 0) reduces to Bo„and V"'(0,0, r) = 0.
This situation corresponds to a configuration of
uncoupled R-matrix states. Now while one keeps
v', =0, the change of 7', =v between 0 and unity de-
fines a family of intermediate configurations be-
tween the initial set of uncoupled R-matrix states

Now inspection of Eq. (18) for the evolution of the
P matrix reveals that for the present diagonal
case, all the successive derivatives of the P ma-
trix vanish; hence, this matrix remains invariant
and equal to its initial value. As for the modal
amplitudes P„„„the lack of level coupling keeps
them invariant and equal to their initial values.
In view of these results for ~, =7'=1, the solution
of the "diagonal" problem yields (r, = 1,r, =0}
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g„,(1,0) = I'„,' ',
P„„,(1,0) = 5„„.,

(37)

(38)

Trajectory equations for the nondiagonal case

In this instance we have &, = 1 and 7', = 7'. From
Eqs. (17), (24), (27}, and (28} the interaction ma-
trix is now given by

Q„„=— (jb„C QC B1CQ„C QC + V„„V4V

(40)

(41)n„„=o,
with

1

f (180)=fP (0) — (fvPPP(v)=fP (0) —(8)PP 8

0
(39)

where in obtaining the result (39) use was made

of the trajectory Eq. (14). Clearly, the results
(37) and (39}reproduce the single-level Breit-
Wigner approximation.

parameter w, with w while keeping 7', = 1, one has
to solve the trajectory Eqs. (14), (18), and (19)
subject to the initial conditions (37), (39), (45),
and (46).

III. APPROXIMATE SOLUTIONS FOR THE TRAJECTORY

EQUATIONS FOR THE COMPLEX WIDTHS AND POLES

OF THE TRANSITION MATRIX

The initial value problem posed in the previous
section can be solved numerically by any of the
various techniques currently available, such as
the Runge-Kutta technique" and the Lie series
method, "among others. However, for either low

or even moderately strong level interference, it
is both convenient and instructive to develop ap-
proximate perturbation formulas for the complex
poles and widths of the T matrix.

Starting from Eqs. (14), (18), and (19) one ex-
pands the poles and widths in Taylor series around
an arbitrary 7 = ~„ i.e. ,

f.(v) = f.(r.) —(v —v.)P..(v.)

Ct CV„„= V1'„„..
Cv C

(42)
-2 (v —v.)'P..(v.),

g..(v) =g..(v.)+ (v v.)d.,(v—.)
(47)

0„„.=-V„„.+S„„.+ ~iI'„„~

with

(43)

Next after use is made of Eqs. (22} and (23} and

the set of results (2}up to (6) one obtains

+ —,'(v —v,)'g'„,(v,), (48)

where the Taylor series was truncated at the
second-order terms and where the dot notation in-
dicates the operator d/dv Also fr. om Eq. (19)

s„„.= P s,v „.v „,,
C

The initial value of the P matrix is obtained from
its definition [Eq. (16)], the values (41) and (43) of
the interaction matrix 0, and the initial values of
the modal amplitudes given by Eq. (35). One ob-
tains

with

+ P„„.(v'())g„.,(v'()) ]

-W. . '(v.)P,. (v.)g. .(v.)e.. (v.)}
(49)

P„„,(0) = fl„„. (vs v'),

P„„(0)=0.
(45}

In summary, after identification is made of the

e.. (v.)=P..(v.)-P. . (v.). (50)

For the calculation of f„(v,), g„,(v,), and P„„,(v,),
we convert Eqs. (14), (18), and (19) into a set of
coupled Volterra equations:

'r

f„(v}= f„(0} dv'P„„(v''), (51)

'r 7' 1

d„",' =d„,(0) + Q dr ' 88 „.„+ dr "8„„~ ( ") P„„.(r ')d. ..( ')} ,
u'eu 0

7' -1
( )=p P' 8dr' t)8,„.„8 dr "8„„.( ") p„„.(8 )8 .(r')}'„,

0 0

'r 7' e1 e 7' 1

+ p dv''P„„,.( )P„v.„,( }vW,„.„+ dv"e„„.(v") + W,„..„,+ dv "e„,„., (v")
v" Ar v' 0 0 r

(52)

(53)
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where

WD„~„=« „i (0) —«„(0) (54)

and where «„(0), g„,(0}, and P„„,(0) are given by the initial conditions (O'I), (39), (45}, and (46).
The first-order approximation is obtained by setting r '= 0 in the integrands of Eqs. (52) and (53). In this

ease we have, in view of the initial conditions of the problem,

Pt&)(r)= fI„,+~ p n„„,n.„„,(W,„.„-'+W,„.„.-'),
v fv~v

(55}

v'fv

Next, from Eq. (55}for v= v', one obtains

(56)

z&'„)(~)=2m g n„„,'w, „.„-'.
v'fv

Finally, introduction of the result (51) into (51) yields

(5'I)

«„")(v)=«„(0)—r' g w,„.„-'Q„,„'. (58)
v 'fv

In order to obtain the second-order approximation for the complex widths, one introduces the results (55)
and (56) into the Volterra equation (52). One obtains

))g'{r)=)„.'"+ I I s~'{())„„.r„..'~'+v'x„. „+r"))„.„){))',„.„{)+r'*n„.„))'),
v'fv

where

(59)

Q„)„=W0„„~ Q„„,F„&/2+ g W&N te„& n„„~n„s „u I „na + I'„~ g (Wa„~„+W0„„„~ }Q„„„Q„~
v fvqv v fv~v

(60)

a„,„=i„,"' g n„„,n„„.n„.,„,w,„„,-'(w,„.„-'+w,„.„. '}
v fvqv

+ g n„.„.n„„.n„.„.w,„.„.-'(w, „., „-'+ w,„.„,-&)1„„,~/2

vtlfv VI
Q„„.Q~-. Q„-.„.W0„„, ~(w . &+ W „, , &)I" „&/2 (61)

n„.„=8,„„.)/w „.„,
a) 2 280- = Q wo. -. n-- —~~ wa. -" n".-

ts fv V

The final expression for g„",' is obtained from Eq. (59):

(62}

(63)

+&2)(r) —I' 1/2+ g vv' v'c tan 1(r&«&/&)+ )' )' In(I+ n) y2)
&„,„' 'WO„.„"'" 2 ~„,„WO„,„

Ov'v

For the calculation of the poles one needs to obtain an expression for &&2)(r) to be inserted in Eq. (51) for
the complex poles. We have from Eq, (53) for v= v'

(64)

(65}
T

~&»(~)=2 g dy'[w&~) ].&[~&»(~')]2
v'fv

where in the integrand of (53) we introduced the pertinent first-order approximations. Upon integration in
Eq. (65) one obtains
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2 „, tan '-(o„,„'~'r)+ "'" ln(1+ o.„.„v')8'~. VafV. „

where

OVI VQVeV
(66)

Vltg V Vg

n„„.n„,„„n„„„(w~.„'+w«, ~ '), (67)

M„,„= Q n„„., n„„,(Wo„„+W~ „. ')
V ~VeV

V VeV V iEV eVeV

n~"n "&nv ne" (Wow + Wo " ' )(Woe + Woe" ' (68)

Next insertion of the result (66} into Eq. (51) yields the second-order approximation to the complex poles
2

e„"'(r)=e„(0)-2 g W~, „"~ ',
&, [stan'(o~„' 'T) —2o.„,„' 'In(l+n—„,„r')]

~'
[7 In(1+ (y r ) 2/+ 2(y && tan ((y & r)]

L
V'V

VV& 1 2 1/2
W,„„.„* "'" rta '( „.„'~'v)+-,' „.„'1n(1+ „v')lI.

The calculation of the off-diagonal matrix elements I'",' to second order is carried out in similar fashion
to obtain

P'~,'(r) = n„„,[1 —ln(l+ a„,„r')]—2X, [7' —n„,„'~' tan '(o„,„'~'r)]

where

V~& V, V'

+ 2 Y'~„[wo~,„'a„,.„'ln(1+ n„„v') + Wo„.„, 'n„.,„, ' ln(1+ o„~7')]
+ Z„"„",f (W«, „~„„„)-'[r o.„„„-"'tan-'(o.„„„"'r}]

+(W,„,n„„„,)-'[r o„„„,-"'tan-'(n„. .„."'r)]]), (70)

X„V, = &„„, Q„„„Q„„„,8'O„„„~+8'0~, „, ' (71)

I "„,"„=n„„., g n„„„,.n„„,(w, .„..-'+ w,„„,,-')+Q . g n ...Q„„,„„(w,„,.„-'+@;„.,„,.-'), (72)
Vl N It Vlt Pl VI& g Vtt V

Z„,„= Q Q~...n~ „n~„g„n„(y„,(w«„„'+Wo~ ~, ')(Wo„)u„+ Wo„(„~ ').

The result (70) gives an expression for P„'„'! which
coincides as expected with Eg. {66)for v = v'.

Introduction of the results (64), (66), (69), and
(70) evaluated at v = r, are then inserted in Egs.
(47), (48), and (49) for the calculation of the com-
plex widths and poles. We obtain in this manner
a hierarchy Of perturbation formulas for the com-
plex widths g„, and complex poles c».

The convergence of the present perturbation
method depends on the condition

8 V'V (]0,
R S'~,„

for the ratio of the off-diagonal elements of the
interaction matrix to the spacing of the poles in
the complex plane.

(74)

IV. COMPLEX POLES AND WIDTHS OF THE T MATRIX
IN THE PRESENCE OF INTERMEDIATE STRUCTURE

In this section we shall derive expressions for
the complex widths and poles of the T matrix for
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the special case of two subsets of interacting
states, a case which represents the common fea-
ture of all the intermediate structure phenomena.
In accordance with the current physical interpre-
tation'"~ of the intermediate structure, thih ef-
fect appears whenever there are two subsets of
eigensthtes which are eNxpled via a residual
force. In the spirit of this hypothesis, starting
with a v-level set, one considers it being split
into two subsets: (i) the X-level subset which in-
cludes the "normal" compound nucleus levels and

(ii) the p-level subset which includes those states
characterized by Lane" as "special" eigenstates.

'These special states are endowed with the fol-
lowing properties (Lane" ): (a) Their level widths
I' are larger than the average level width of the
compound nucleus states; (b) the levels in the
p, subset are not eigenfunctions of the total nuclear
Hamiltoniari but of a slightly different Hamiltonian,
which deviates from the former by a residual in-
teraction, which couples the levels belonging to
different subsets; (c) the "special" levels satisfy
the boundary conditions of 8-matrix theory, Eq.
(1).

One faces then a situation in which both the
boundary conditions and the Hamiltonian have
been perturbed. In consequence one can apgly the
formalism developed in the previous section.

Under the assumption that both the residual
interaction and the level interference effects are
weak, it suffices to utilize the first-order ex-
pressions (56) and (58) for the complex widths and

poles, respectively. Yo this end after setting
r = 1 in both Eqs. (56) and (58), one splits the
summations involved in the above expressions
into the two level subsets to obtain

+z ~'0~ ~ ~~~ I'~"i/2 xls

en„=e„(1,0)=en(0) —&o (v=X, p,). (79)

Next we write the complex widths and poles in the
form

Ac +Roc+ ~+Eke & (80)

Z I
2 (81)

witB similar expressions for the widths and poles
of the p, -level subset. By separation of real and
imaginary parts in Eg. (76) up to (Vs) one obtains

g„„,=g„„gr„,"'[v,„(E,-E,') - ,'r „-
x(r„-r„)]I w,„„I-', (83)

gI& g1 lac

x(r, - r„)]Iw, „„I-', (83)

—,'r„„)]
I w,„„I-',

1
gIgo glIg Q Q Xc [ Ills( ll lk) All'

X

(84)

where

~p)i, ~)tg ~gX )lu &
(86}

g, lpga= 3~ roc [ xv(Ev-
)l'8)t

j.
g,„„,=r ~~2 gr„„»*[s,„,(z„, E,)+ , r„„, -

h'0 X

x(r' - r.}]I w.

+Q wo~i 'fl, i~,."'
gP )t

(75) with similar expressions to Egs. (8V) and (88) for

g»„, and g,~„,by )ust replacing the X subindices
by p subindices. For the poles one obtains

+Q Won~ 'fbi, r~"' (Vs)

E„'=E,„-g[f„„(E„-E„)+,' z„„(r.—r„)]I
w-, „,I-',

~nz —~ ""ox )t

-1~ 2

uP

(77}

(90)

E~ +2 ~A, ~X ~ ~ok

(91)

where from Eq. (39) we made

r„=r,„+g[f„„(r„-r„)—2z„.(E„-E.)] I w. .I

'

(92)
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where

r„„=r„„= r„r~ "', (93)

E~= E~+ ~»

~)t= ~)t+ ~)t'

(103)

(104)

1 2

l
w, „„l'=(E.-E„)'+-.'(r „-r„)',

E»=E~+»-Q [I» (Ev-Ei)+o~» (ri -ri}]

(94)

(95)

(96) m o~ )r + I i~Eu-Ei) (105)

The level widths in turn acqu, ire an extra term,

These results indicate that the R-matrix poles of
the compound nucleus levels a,re shifted by a reso-
nant shift factor

"I go'il ' (97)

with similar expressions for E,„and I'„and
where we defined

(98)

r;„=r„+Q [f»,(r„, —r)) —2J». (Ev-Ei)]l If/oi il
'

(106)

which will also peak at E„=E~.
The terms proportional to the factor (E„E„)-

introduce an asymmetry In both the resonant shift
factor &» and level width Q„. Finally the following
sum rules for the complex poles and widths are
direct results of Eq. (75) up to (78):

I»' = Sggi —4 a v'

J»=-S» I'» .
(99)

(100)
g)tc+ gf c = 1)tC '+ (107)

Inspection of Eq. (82) up to (92) reveals some
interesting features. For example, let us rewrite
Eq. (82) for the real part of the complex widths,
belonging to the compound nucleus states. We
have (after neglecting level interference effects)

1/o ~ uk( u x) uL u I' (/2
gRkc xc ~ (E E )o+~r o

p, )t 4

(101)
where we neglected I'„versus I'„. In a similar
manner the imaginary part will be given accord-
ing to Eq. (83) by

~)+ ~w = ~D) + ~a~ ~ (108)

V. REACTION CROSS SECTION IN THE PRESENCE

OF INTERMEDIATE STRUCTURE

o(& e(&- .g lz'(7, ~ ()l
CC' P

2' J' CC'
C

(109)

In this section we shall derive expressions for
the reaction cross section ip the presence of in-
termediate structure. 'The reaction cross section
between channels c and c' is given for a particular
spin and parity tpy

1~ I [r»(E,—E„)—v„„r„]r.,»'
l (102)

Clearly the coupling between the two subset of
levels results from an interplay between "internal
mixing" due to the residual force and the "exter-
nal. mixing" which arises from level interference
terms between the two level subsets. "

The former is proportional to the matrix ele-
ments V„„while the latter depends on the "off-
diagonal" level widths I'„„and the factors S„„.
The maxima exhibited by the reduced widths at
E„=E„are damped by the quantity (1 „/4}' in the
denominator, an effect already discussed by Lane"
as a reduction in effective mixing power. The
mixing between the two subsets of levels results
[Eq. (76)] in the generation of a partial decay width

for the special levels to channels where 1 „,was
initially zero.

Within the same approximations used above for
the complex widths, the complex pokes can be
written from Eqs. (89) and (90) in the form

i/2
C

2M C

(110)

~ g)tCAC~+ ~ gf Cg C

Introduction of Eq. (111) into Eq. (109) yields,
after some manipulations, the result

vga ~ oG~' I'„'+H'„' (E(—E)
cc' y 2 ~ (Er E)2+ L(r i}2

~ oG'„"I"„'+Hu (E„—E).
(Et E}o t(rid)o (112)

The symmetric and asymmetric parts of the U-

where M„E„and g~ are the channel mass energy
and the statistical spin factor, respectively, and

where for clarity sake we shall drop the superin-
dices (J', I) in the developments that follow. In the

present instance the transition T matrix can be
written from Eq. (8) in the form
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matrix residues R„,R„are represented by G„,(G„)
and H„(H, ), respectively. ' They are given in the
present formulation by the expressions

In view of these results and Eqs. (103), (104),
and (112) one obtains for the cross section the re-
sult

HCC gQ CC r„,r„„
cc' P 2 gJ' ~ (El E)2+ 1(rt}2 ' (122}

= 2 Q ger gg~iggsr glori/(&gi —&g)

ZArAr~ggr g~r /(~~ —~~) ~

Rcc' Hcc' &ace~
V

=2 g Z„,g„,g+„g+,„/(e+, —e„)

(113)

Hence, neglecting level interference effects
within each subset of levels, the cross section
given by Eq. (122} exhibits the customary Breit-
Wigner line shape with total level widths I'„' and
effective R-matrix poles E„' given by Eqs. (104}
and (103), respectively. The effective partial level
width I",, is given from Eqs. (119) and (112) by

r„,.=r„,.+(D,)e, „ (123)

+ 2 g g„,g„,g~+, g~+,, /(~ f —e „) . (114)

It is apparent from Eq. (112) that the reaction
cross section splits into two components arising
from contributions by the compound levels and by
the special states. The line shapes are asymmet-
ric by virtue of the terms in H~'" and H„"". Also
the coupling between the two subsets of levels in-
troduces resonant terms in the residues R~ and R„
as expressed by Eqs. (113) and (114). We shall
now look in more detail into the structure of the
complex residues R„and R„.

For this purpose, we again neglect level inter-
ference terms within each subset of levels and as-
sume 1„,' '=0, i.e., only exit channel doorways
are considered. Then from the general Eqs. ('I5)
and (76) one obtains

the spreading level width

r,'„=(v, „'+—,'r. „')/(D„),
the internal mixing partial width

(125)

4 ~ c=(r)crier) iD i
11

(126)

with

8,, = P ~w,„„~-'(r„,.rl„-2[g,„..(E„-E„)

+ v, „„r„]J,
(124)

where (D,) is the average level spacing of the com-
pound nucleus levels and we define the following
parameters:

1/2
Ac = ~)tc (115) the external mixing partial width

g„,=r„,"'+ g w,. fI„r„,'~', (116)

1 1/2g„,=~~ w, „„-n„,r„ (117)

g...=r„„'~'+g w, „„-'fl„,r (118)

Gcc~ 2 &c p 2 p I 1/2

x [v.,(E„E,)+ —,'r. ,r„-](w,„„)-'

H""=0

Rcc~ 0

+P (tr,„„)-'r„,tr„;+-',r„;)I, (n9)

(120)

(121)
where we used the expressions (43) and (86).

Further, we assume g„, to be negligible and obtain
after introduction of the above equations into the
relations (113) and (114) for the residues the result

r„„,= (r„,r.,)"'(r„„/(D,)) . (127)

The results (123) and (124) indicate that there is an
asymmetry in the magnitude of the effective level
partial widths which is introduced by the location
of the compound nucleus level relative to the en-
ergy eigenvalue of the unperturbed special level
F.„. The sign of the asymmetric contribution de-
pends on the combination of signs attached to
I'„,,' ' and I"„,,' ', as well as on the sign of the
factor (E„E„).The combination of damping and
asymmetry effects could drastically reduce the
size of some of the compound nucleus resonances
interacting with a given "special" level. This ef-
fect could in principle provide an explanation for
the observation" that some of the subthreshold fis-
sion resonances in the ('"U+n) compound nucleus,
clustering around 721 eV (which are of the correct
spin and parity to interact with the 721 eV class II
level) exhibit vanishingly small fission widths. We
consider next the case in which the compound nu-
cleus resonances are no longer resolved. In this
instance the information available is the average
cross section defined as
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E1/2 -1/2 g~ 1c 1C'r r,
cc & P n Q (E E)2 1(rl)2

(128}

(129) (141)
where the energy interval &~, given by

&„=I)I„(D„&, (130)
dr p8 dI dy r228XC

2 (r )(8 ) 1 1c 1 2 r +y

is chosen such that it comprises a large number

N„of compound nucleus levels, but is smaller than

the broad cross section features due to intermedi-
ate structure effects (i.e., 4„(I"„).The result of
the integration in E11. (128) with the assumption
that [(E„'-E)/r2]» 1, when evaluated at the limits
of integration, yields

(E '(rI) '= E' ~' ' ")cc (I)g

with

o=2 g gz. (132)

(E1/2g ) — c E-1/2
cc (I»

In order to recast the result (131) in terms of the
averages of the parameters within the bracket in
the right-hand side of (131)we introduce the statis-
tical fluctuation factor (see for example Schmidt" }.
One obtains, after use is made of E1ls. (123) and

(104) and of the fact that in the unresolved region
the high density compound levels allow us to re-
place E„by the neutron energy E, the result

(142)

Although the probability distributions I', and P,
are not known, one can arrive at an estimation of
the statistical fluctuation factors by Monte Carlo
techniques via the generation of ladders of reso-
nances.

Upon introduction of the strength functions

s„=r„/(Dg, (143)

(144)s„,= r~. /&DD .

The average cross section in E11. (133) can be
written in the form

z'
(E1/2 ) op 1/2» 1C r S gz)sec~ o (r ) cc t (145)

where we introduced the generalized strength func-
tion

S„,(E) = S~M, (E)

and where the modulation factor M, ,(E} is given by

M, ,(E) = M1, ,(E)/M2(E) (14 I)

„&r,.& («,.», +&D3«,.».)

&r„&+&yg
(133)

with

M»1, ,» = R1+R2 (81&/S~„

M1»=1+(y„&/(r„&.

(148)

(149)

with

&8„,.&= p l w,„l 2[r „U„, z-„,, (z„-z}-],
(134}

(135)

l
w,„l-'=(z„z)'+-,'r„', (136)

U„,, = " I'„,, —2(I'„„,,) (eV),r„ (137)

If,. =2($. & (eV),

(I„2&=(V„„&--,'(r„& (eV}',

(J„Q=(V„„r„g (eV)'.

(138)

(139}

(140)

The statistical fluctuation factors, R, and R„are
given by

The result (145} shows that in the presence of in-
termediate structure one can interpret the aver-
age cross section in terms of a "resonant"
strength function S„,(E), showing local enhance-
ments of the cross section at bombarding energies
in the vicinity of the resonance energy of the un-

perturbed "special" states. The fit of the experi-
mental data to E11. (145) will yield the parameters
E„, I'„U„., Z„,„(I»&, and (J„2&, for each
"special" state. 'The last four parameters are
related to the internal mixing parameters V„~
and the external mixing parameters S„„and I'„~
by the relations (13V) up to (140). It is to be no-
ticed that the asymmetric terms in the average
cross section are controlled by the factors K„,,
and (J„„)which depend in turn on cross terms be-
tween internal and external mixing.

The relations (13"/) up to (140) between the "ob-
servable" parameters U„,, K„,„(I»&, and (J,„)
and the nuclear parameters of interest can be
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simplified in extreme cases: (i) For pure internal
mixing, (8„„&vanishes and one obtains

«.,'&= «.,&, (150)

(151)

lated to the T matrix by

U„„=e"nfl+ T„„}, (161)

where for s-wave neutrons the hard sphere scat-
tering factor U„ is

(162}
1 K„,

nk& 2 &(F F )1/2)Q x& (152) with

(ii) For pure external mixing one obtains the fol-
lowing relations:

(nv„)"' (163}

«.,)= -&8,.1.,&,

V„,.= [-,'&r„„'& 2&r „„&&(r,r„„)'~'&]/&I}„),

H„,.= 21„„"~'&I,~'&&8„„&/&D„&.

(153)

(154)

(155)

(156)

The result (153}shows that for the pure external
mixing ca.se &I„„&should be negative. (iii) For the
case in which the decay of the special level takes
place mostly to a single channel c' one can write
l „=I'„,„and the following relations are then de-
rived in the presence of both internal and external
mlXlng:

(157)

«.,&
= «.p'. ,),

~ o =&0) '(&p ~)+ 9', ')
+ 2&r„,&&r,'~'&r„~') .

(158)

(159)

o, = qP"'g, E,[(1—V„„)], (160)

where U is the collision matrix, which is re-

VI. DISCUSSION AND SOME APPLICATIONS

OF THE PRESENT FORMALISM

In order to evaluate the formalism developed in
this work for the complex widths and poles of the
transition matrix we shaQ compare the results
from the present formalism with exact calcula-
tions for the simple example of two interacting
resonances. Comparison will also be made be-
tween the total neutron cross section computed
from the T-matrix widths and poles, both exact
and approximate, with the calculation of total
cross sections by the Bethe approximation. ' The
purpose of this comparative study based on cross
section calculations is twofold: First, one de-
sires to know how well approximate values of the
complex poles and residues will do in predicting
cross sections, and second, one likes to find out
the range of applicability of the Bethe formula-
tion which is a widely utilized approximation in
many cross section calculations. '

The total neutron cross section is given by

and, a„, the channel radius. In turn the transi-
tion matrix element T„„is given from Eq. (8) by

2

V

Introduction of Eqs. (164) and (161) into (160)
yields

(164)

a'r = o~+ o,rg ~ W„~ '[-,' I"„'Gr + (E„'—E)H„] (165)

with

a~= 2' 'gJ sin'Q„,

G„=a„cos(2&„)+P„sin(2&„),
Hr = P„cos(2$„)—u„sin(2$„),

(E„E) —,'(I'„)',

(166)

(167)

(168)

(169)

and where the real and imaginary parts of the T-
matrix residues have been defined as

+v ~(gv, n ) gva, n gvl, n

Pv= lm(gvn }= 2gvs, nor. n

(170)

(171)

Exact expressions for the residues ~„,P„and the
complex poles E„=E„'-&l„have been derived by
Garrison" for the two level case.

The total cross sections in the Bethe approxima-
tion is written in the form'

No. {keV} (keV) (keV) (keV) OR' Remarks

317.0
356.9
246.8
356.9
326.0

331.2
362.0
258.0
362.0
332.0

8 8 0 32 0 11
1.8 3.35 0.48

19.7 3.36 0.59
3.6 6.7 0.92

20.0 24.0 3.46

"Fe
b

54Fe
56Fe
54Fe

~Neutron capture is negligible.
The neutron widths in this case are one half of the

neutron vridths in ease 4.
'See Eq. (179) in text.

TABLE I. Parameters of the various sets of two inter-
acting resonances examined in the present study.
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TABLE II. Comparison between the exact and perturbation calculations for the complex poles of two interacting nu-

clear resonances.

No. TO TO TZ TO

317.05
357.2
248.25
358.07

317.04
357.2
247.73
35S.03
328.73

317.04
357.2
247.69
358.07
328.73

331.15
361.71
256.55
360.83

331.16
361.71
257.07
360.87
329.27

331~ 16
361.70
257.11
360.83
329.27

8.83
1.71

21.82
2.90

8.83
1.71

21.15
2.77
0.83

S.S3
1.70

21.26
2.31
0.83

0.2S 0.29 0.29
3.41 3.42 3.43
1.17 1.84 1.73
7.35 7.48 7.94

42.96 42.96

or= o~+g„z 'gz[.Acos(2$„) -S sin(2$„)]

++„E-~g,g[-,'r„c&"-(E„-E)H„"'1~ w, „~ ',
(172)

where

(174}

E=g~ w,„) ~r„„(z„-z), (178)

t „'s'= —,'Q p„„. 'I'„„I'„,„(I'„+I'„.), (176}

with

p„„,'= (E„—E„,)'+ ~(r„+ I „,)'. (178)

Inspection of Etl. (172) reveals that the Bethe ap-
proximation consists of the addition of a level in-
terference term [the third term in the right-hand
side of Eq. (172)] to the usual single level Breit-
Wigner approximation.

For the purpose of the present comparison we
have chosen five pairs of resonance parameters
taken from the total iron cross section measure-
ments of Pandey et a/. ' The details are given in
Table I where the various sets have been arranged
from low to high level interference. The degree of
level interference is determined by the parameter

e„=r„/[(E, E,}'+-,'(r,„r,„}2]~~2. (178)

Table lI shows the results obtained for the complex

poles, and Table ID contains the results for the
real part A„and imaginary part "„ofthe squared
neutron complex widths, g„„'. In both tables, the
columns labeled "TO" exhibit the results obtained
from the usual first-order perturbation theory of
Adler and Adler. ' The columns labeled "T1"and
"TE"correspond to the present perturbation meth-
od and the exact results, respectively.

Case 1 is an example of relatively low level in-
terference. There is in this instance agreement
between the two perturbation formalisms and the
exact results. The total cross section for this
case is shown in Fig. 1. The Bethe approximation
underestimates the broad peak and overestimates
the narrow peak.

The examples corresponding to case 2 and case
3 in Table I represent situations of relatively high
level interference. The first-order approximation
begins to fail, and there are small deviations be-
tween the exact valges for the "residues" A„and
:-„and the results of the present perturbation ap-
proach. Nevertheless, the total cross section is
still quite well represented, Figs. 2 and 3, by our
perturbation method.

For case 4 the interference parameter is close
to unity and the perturbation approach (T1) reaches
its limit of validity. The residues still have the
correct sign but exhibit substantial deviations from
the exact calculation. One still has a reasonable
description of the cross section, Fig. 4.

For the final e&maple, case 5, the level inter-
ference parameter is larger than unity. In this
instance the perturbation formalisms do not apply
anymore. The results shown in the columns la-

TABLE III. Comparison between the exact and perturbation calculations for the squared neutron complex widths
g~2 of two interacting nuclear resonances.

No. TO
Ag

T1 TO
A2

T1 TO TO

15.63
2.69

38.80
3.46

15.77
2.52

46.67
-0.033
-1.44

15.77
2.45

46.72
-1.68
-1.51

0.50
5.39
1.50
9.75

0.42
6.07

-0.36
16.80
78.10

0.42
6.13

-0.45
18.85
7S.19

0.34
1.96

1%.64
7.86

0.29
1.98
4.22
6.94
0.033

0.29
2.07
3.79
5.46
0.076

-0.34
-1.96

-11.64
-7.86

-0.29
-1.98
-4.26
-7.45
-0.20

-0.29
-2 ~ 07
-3.79
-5.46
-0.076
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$5 T I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I
l I » I I I I »

I
' I I I

I
I I I I

)
I I I I

j
' ' ' '

j

f& = 317.0 kev I"« ~ 8.8 keV

Ep = 33).2 kev F„g=0.32 keV

E$ = 246.8
E~= 258.0

p

J'„~ = 3.36

)0—

30—

0 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

3@0 305 310 N5 320 325 330 335 340
ENERGY (kev)

FIG. l. The total cross section for bvo interacting
resonances. The degree of interference is 8&= O.ll
(continuous line), exact treatment; (+), present pertur-
bation theory; (~ ~ ~ ), Bethe approximation.

I I

0
0
230 235 240 245 250 255 260 265 27

ENERGY (kev)

FIG. 3. The total cross section for bvo interacting
resonances. The degree of interference is gz= 0.59
(continuous line), exact treatment; (+), present pertur-
bation theory; (. ~ ~ ), Bethe approximation.

beled "T1"were obtained by a first-order Hunge-
Kutta solution of the differential Efls. (24), (19),
and (18). The agreement in regard to the complex
poles is good. &he small discrepancies observed
in the residues are due to lack of convergence in
the computational procedure. The results con-
cerning the total cross section calculation are
shown in Fig. 5. Notice the appearance of Lynn's"

"quasiresonance" effects due to the high level of
interference between the two resonances.

One concludes from the previous results that the
present perturbation formalism is applicable with
reasonably good accuracy up to values of O.S for
the degree of level interference. First-order per-
turbation theory and the Bethe approximation are
applicable for ez ~ 0.1.

20 I f 'f I I I I I I I I I I I I I

Ejj = 356.9 1 ( &.8 keV

E~ ~ 362.0 F~ 3.35 kev

I I I
I I I I I

I
I I I I

E, = 356.9 (keV) F& 3.6 (keV)

E~ = 362.0 (keV) F„&~ 6.7 (keV)

$0—

i 10

b
i

b

t t
0 I I I I I I I I I I I I I I I I

350 355 360 365
ENERGY (keV)

I I I I I I I I I

355 360
'ENERGY (keV)

370

FIG. 2. The total cross section for two interacting
resonances. The degree of interference is 8&= 0.48
(continuous line), exact treatment; (+), present pertur-
bation theory. ( ~ -), Bethe approximation.

FIG. 4. The total cross section for bvo interacting
resonances. The degree of interference is ez=0.92
(continuous line), exact treatment; (+), pre'sent pertur-
bation theory ( ~ -), Bethe approximation.
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30 I I I I
I

I I i I
I

I I I I
I

I I I I

25—
E& = 526.0 keV 1"„&= 20.0 keV

E~= 532.0 keV I'„&=24.0 keV

20—

)5

b

io—

0 I

520 525 550
ENERGY {keV)

340

VII. CONCLUSIONS,

On the basis of a previously developed formal-
ism for the transition T matrix, one has con-
structed a perturbation approach for the calcula-

FIG. 5. The total cross section for two interacting
resonances. The degree of interference is 8+= 3.46
(continuous line), exact treatment; {+), present theory;
(~ ~ ), Bethe approximation.

tion of the complex poles and widths of the T ma-
trix, which takes into account both changes in the
Hamiltonian of the system as well as in the bound-

ary conditions. The neer approach applies to cases
of high level interference and correctly predicts
the total cross section for pairs of highly coupled
re sonances.

The present formalism has also been applied to
the study of intermediate structure phenomena.
Lane's" line strength reduction effect, due to the
finite lifetime of the "special" states, is automat-
ically incorporated in the present theory as a
damping factor. The expressions obtained for the
complex widths and residues explicitly contain the
contributions of "external" and "internal" mixing
effects.

The results obtained for the partial level widths
in the presence of intermediate structure show
asymmetric effects depending on the location of
the compound nucleus resonance relative to the
position of the "special" levels and sign combina-
tions of the 8-matrix partial level widths, I'„,'+.
It is suggested that the asymmetry effect coupled
to statistical level width fluctuations may account
for a substantial decrease in the strength of the
fission doorway states. '4

It has also been shown that the average cross
section in the unresolved energy region can be
written in terms of a generalized strength function
which exhibits resonant behavior at the poles of
the "special" levels.
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