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The constraints of unitarity and analyticity on four-body final state amplitudes are studied in the quasi-two-
body scheme. The implementation of unitarity with total energy analyticity yields the minimal set of
scattering equations for the problem consistent with constraints of quantum mechanics. The minimal set we
obtain gives a dynamical scheme which is distinct from the full four-body scattering scheme. Nevertheless,
with the assumption of separable approximation for two- and three-body interactions we get simple
Lippmann-Schwinger type equations for four identical bosons for the following two-to-two processes: nt — nt,
nt—dd, dd —dd, and dd — nd. Here n, d, and t refer to nucleon, deuteron, and triton type states. The
amplitudes for the breakup processes can also be related to these amplitudes.

[NUCLEAR REACTIONS Four-body final state interaction theory. Useful scat-
tering equations derived from constraints of quantum mechanics.

I. INTRODUCTION

Recently it has been shown'*® that the elementary
constraints of quantum mechanics, unitarity and
analyticity, when applied to three- and four-body
final states in the quasiparticle or isobar picture
force singularity structure and interdependence of
amplitudes usually taken as independent and con-
stant inphenomenological analysis. Implementation
of these unitarity constraints by a dispersion re-
lation, along with some simple ideas about total
energy analyticity, leads to a set of integral equa-
tions for few-body amplitudes. In the nonrela-
tivistic three-body problem?® the Faddeev equation
can be recovered as a result of implementation.
Similarly the relativistic three-body problem?
yields a set of equations, which is similar to the
usual Blankenbecler-Sugar equation.® In the four-
body problem—both in relativistic® and nonrela-
tivistic* cases—one can similarly recover the full
dynamical scheme as a result of implementation.

Recently*® we formulated the problem of four-
body final states in terms of quasi-three-body
states. This is because in the quasiparticle picture
the four-body problem can be formulated in terms
of these quasi-three-body states. The equations we
obtained are in two vector variables and would be
very difficult to solve even after partial wave de-
composition. Here we formulate the problem in
terms of quasi-two-body states, apply unitarity on
these amplitudes, and derive important unitarity
constraints on these amplitudes. The dynamical
equations we get after implementation of unitarity
constraints are in one vector variable and will be
easy to solve after partial wave decomposition.

Here we apply unitarity to these quasi-two-body
states focusing particularly on a special type of

two-body unitarity, “independent pair two-body
unitarity,” which depends on the interaction be-
tween independent pairs in four-body final states
and on three-body subenergy unitarity. There are
two-types of two-body fragmentation channels in
the four-body problem. In the first type, the quasi-
particles are each two-body correlated states and
in the second type they constitute a free particle and
a three-body correlated state. Unitarity constraint
on the first type of amplitude is derived by a con-
sideration of independent pair two-body unitarity
and that on the second type of amplitude is derived
by considering three-body subenergy unitarity. As
in other similar few-body problems'-® we find that
unitarity forces the amplitudes to vary over their
phase spaces, be singular on their edges, and be
coherent and interrelated. The unitarity relation
itself can be used to determine the numerical im-
portance of these effects in any problem. If they
are important, they must be implemented by con-
sidering analyticity as well. Since we are con-
sidering a part of the full four-body unitarity,

the implementation of unitarity is ambiguous.? Out
of these various ambiguous ways, we choose the
one that preserves total energy analyticity as well,
in view of various problems one faces upon neg-
lecting it.! In this way, we get a set of equations
for four-body amplitudes.

Very little is known or understood about the
structure of four-body final states—especially how
the two- and the three-body information is dis-
tributed over these states. The present and a pre-
vious analysis* will throw some light on the struc-
ture of four-body final states—especially the dy-
namical aspects of the problem. In the three-body
problem, unitarity corrections are crucial in
cases’ where there are strong overlapping reson-
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ances in a certain region of phase space or where
there are threshold enhancements. This is true in
the case of three nucleons. In the case of three a
particles interacting in the final state, unitarity
corrections are negligible.® There are also cases
where the unitarity corrections are reasonable.®
No doubt a similar spectrum of four-body examples
exists and the present plus previous work give the
techniques to analyze them. Systematic exam-
ination and study of four-body final states by the
present method should lead to useful approximation
techniques in the future.

Though formally correct four-body equations ex-
ist in the literature,'® their complexity is so great
that it is difficult to solve the equations even with
separable two- and three-body interactions. Here
we have a simplified model for the four-body pro-
blem which we derive from the general constraints
of quantum mechanics. This simple model will
give us an idea about the important dynamical as-
pects of the problem, whereas the full dynamical
scheme is very complicated and hence is difficult
to visualize.

To illustrate the usefulness of the present equa-
tions, we apply these equations to the problem of
four nucleons. To simplify the algebra, we work
with four identical bosons. If needed, it is possible
to introduce spin and other internal quantum num-
bers in our formalism.! In addition to the nucleon
n, two composite particles meant to approximate
the deuteron and triton are introduced with the cou-
plingsd —~n+nandt—d+n. Withthe separable ap-
proximation for two- and three-body interactions,
we obtain four-body integral equations for the pro-
cesses nt -nt, nt -dd, dd—-dd, and dd -nt with a
certain assumption about the Born or the driving
term. This is because implementation of unitarity
constraints gives only the dynamics and cannot give
the Born term. The Born term does not have the
unitarity cut and hence is not defined by the unit-
arity relation. Different approximation schemes
that emerge from implementation of unitarity con-
straints are discussed. After partial wave decom-
position, these equations reduce to one-variable
partial-wave Lippmann-Schwinger type equations
which can be easily solved numerically.

In the case of four identical bosons, the equations
we get are very similar to the dynamical equations
obtained by Fonseca and Shanley,'* who considered
a simplified version of the generalization of the
Lee model*? to the four-body problem. We compare
our equations to those obtained by Fonseca and
Shanley.

In Sec. II we define two- and three-body separ-
able ¢ matrices that we shall be using in subsequent
sections. We also develop the unitarity relations
for independent-pair two-body unitarity and three-

body subenergy unitarity in four-body final states.
In Sec. I we derive the unitarity constraints for
the four-body amplitudes. In Sec. IV we discuss
their implementation and their relation to dy-
namics, stressing the importance of the “arbit-
rary” choices that are made there. In Sec. V we
discuss the problem of four identical spinless bos-
ons, derive the useful approximate equations for
the different amplitudes, and compare them with
the four-body soluble model of Fonseca and Shanley.
In Sec. VI we summarize our results and discuss
possible applications.

II. UNITARITY
A. Two-body unitarity

Before applying unitarity to three- and four-body
systems, we review some of our conventions and
definitions. (For a more complete review, see
Ref. 1.). We define the S and the T matrix by

S=1-21i6(E)T (1)
so that

Im(a|T|B)=~7 D (a|T |9y |T|B)*6(E,- E,)

(2)
as long as E = E;. For the two-body ¢ matrix, we
write (neglecting spin, isospin, etc.)

(ﬁnﬁz IT lﬁi,ﬁé) = (21")3561'*‘52 - ﬁ; -2
X @12 |2]dl), 3)

where (m, + m,)d,, =m,D, - M,p,. In partial wave
form, we have

@ltlan = }: Y, @)t (@2 /20)Y 5@, (4)

where u(m, +m,)=m,m,. Unitarity (2) gives
Im#,(E) = - =k |,(B) |2, (5)

where k2=2uE,

The two-body separable ¢ matrix is written in the
form

(| t(B) @y =v,(p) ﬁE—)v,(q) (6)

and consequently the unitarity relation takes the
form

1

1k 2(k)
D,(E)"~ 8n%

v
k D,(E)[*" ™

In the four-body amplitude there is a term which
involves no interaction between two independent
pairs and hence is disconnected. The unitarity re-
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lation for this disconnected piece of the amplitude
is just a manipulation of two-body unitarity and can
be written for four particles of equal mass as

: ]
m[D,I(El)D (E-E,-p°/40)
_ 1 vy, 2 (k)12 (R,)
T ( 81rz> ki, |D,1(E1)D,2(E- E, - p?/4u)[?
(8)

where k,2=2uE,, k,2=2u(E-E,-p*/4u), E is the
total four-body energy, and P is the relative mo-
mentum between the two pairs. Here /, and 7, de-
note the partial waves for each pair, respectively.
This unitarity relation is diagrammatically repre-
sented in Fig. 1. With this definition and conven-
tion for the two-body unitarity we turn to the pro-
blem of three-body unitarity.

To make the algebra simple, from now on we
shall be considering the case of four distinguishable
particles of equal mass m (2m=1). This restric-
tion keeps the algebra simple but otherwise has no
effect on the result. If needed, this restriction can
be removed very easily.

B. Three-body unitarity

To proceed to the four-body problem with no fur-
ther approximation would lead to the numerical dif-
ficulties inherent in multivariable integral equa-
tions, so that to keep the algebra managable, we
introduce the three-body separable interaction at
this point. We assume that the three-body ¢ matrix
is dominated by the presence of an S-wave pole.
We introduce the correlated state of three particles
with vertex form factor w and propagator D’ in S
wave as shown in Fig. 2. The separable { matrix
T, for the 3 -3 process can be written as

@1)&1‘T3,3(E)|ﬁz,az>
V(P1)
E ;" d-ei;ax _.,:-%WT a, (@)
Vgq(D2)
X Ww“,;((h) D—-q(—zTgy

Dof =
[

a, ;, c=1

m U“(p1)
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FIG. 1. Schematic representation for independent pair
two-body unitarity. This is a disconnected part of the
four-body unitarity, where each of the disconnected
pieces involve a two-body ¢ matrix. The vertical line
represents an energy conserving & function.

Here we assume that the two- and the three-body
correlated states occur only in S wave. General-
ization to other partial waves and to cases of par-
ticles with spin and isospin can be done in a sim-
ilar way as in Ref. 1. In this paper, we shall con-
sider only spinless bosons, with no isospin, inter-
acting in relative S-waves only. In this model, as
shown in Fig. 2, in the initial state two particles a
and b in a relative momentum state p, form a
quasi-two-body state ab, which then interacts with
particle ¢ in relative momentum state §, with re-
spect to ab and forms a three-body correlated
state. The state then propagates and decays first
to a free particle f and a correlated state de, which
subsequently decays to particles d and e. Here
Wgp, ¢ 18 the vertex function for interaction between
particle ¢ and correlated state ab in S wave and
D’(E) is the three-body denominator function at en-
ergy E. v and D are the corresponding quantities
for the two-body system and have been already de-
fined. An expression for D’(E) can be easily found
by summing the series of self-energy bubbles. It
has been discussed in detail elsewhere!! and hence
we shall not consider it here. The factors of 3 in
front of summation in Eq. (9) are there to take care
of symmetries like v , =v,, OF W,, . =w,, . for dis-
tinguishable particles.

The connected three-body unitarity relation for
the amplitude (9) has the form

. V(D)) Vge( D)
a,;sx [Dlsc(Dab(2p1 5 an, (1) D'M(Elh )v“ a3 Dy(2p,° j>

T Veel@s) v _ =
=5 2 Dt ela) B i) Dty OB P

8y tyu=1

X 6(ﬁj+§.+ﬁ| _ﬁ;— ﬁ“ ﬁ;)ﬁ(pgz"'p]z*'pkz +P;2—P$2 -p;2 -

1
X T i ]

¢-pp)

r y Ualal) V4e(2)
) GGl DEER e Dot 1o
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This unitarity relation is shown diagrammatically'® in Fig. 3. A similar unitarity relation has been con-
sidered elsewhere.!* Equation (10) represents the discontinuity across the three-body cut. For the two-
body D function D, we have used the identity D =D*, because it does not have the three-body cut. Here g},
is the relative momentum of particles a and b,q;b'c is the relative momentum of particle ¢ and the cor-
related state ab, and E,, is the energy of the correlated state jkI. Canceling common factors from both
sides of Eq. (10), we get

3
s m
DlSC—-——————-— =

1 1 (a3,
4‘—’-‘-5-}6
D;kl(EjM) 2 s,§=1 @n)° f D;"(Em) w,t,u(qat, ) ‘(2‘1;‘ (P i~
x‘a(ﬁj+ﬁk+ﬁl - ﬁ; - pg - p;)G(E,“ —P —p;:z —P;Z)

? ? ’? ’ 4 ( ) 1
X d3pldpidpld’piw (@, ) -,54&(;;:3— Y DEE a1)

With these conventions and definitions for two- and three-body unitarity we turn to the problem of four-body
unitarity in the next section.

IIl. FOUR-BODY UNITARITY

Let us consider the amplitude T,,4 for a reaction going from a two-body state to a four-body state. Here
we postulate a simple form for T, . This form is suggested by the sequential decay or quasiparticle model
of nuclear physics and isobar model of particle physics. We assume that the four-body final state is dom-
inated by correlated states of two or three particles in S wave. The four-body state is then a sum of two
types of terms. In one type, two correlated states of two particles each are formed and they subsequently
propagate and decay. In the second type, a free particle and a three-body correlated state is formed. The
three-body correlated state propagates and decays to a free particle and a two-body correlated state, which
propagates and decays to two free particles. We then have for a reaction of two particles of relative mo-
mentum { going (in the center of mass frame) to four particles of momentum ﬁ, and center of mass energy
E

J

(al T2.4(E) |51:52s53)ﬁ4> = (2m)38 (5, + D, + Ds + D)

4 - . (@y)  vylay)
% LR E + Vyi\dyy r1\dry
gz;ﬂ(““|‘*“(”“ P9 5,,@a,7) Dyy@an

@ v (q )
+3(dle wm>JMJT (12)
2 l i, IR1 | i D;. (€ju Ik(quh
Here q,; and q,, , refer to relative momenta as in =F i 1 =F s, m, €tc., and vy;=v,,,D; =Dy, gy,
Eq. (10). This relation is diagrammatically repre- =Wy, s etc. Consequently there are 3 terms of the
sented in Fig. 4. The factors of 3 and 3 in front of first type and 12 of the second type in the sum-
the two terms account for the fact that F; ,,=F,,; |, mation in Eq. (12). Here Fy, ,, is the quasi-two-

body amplitude for going to a state of correlated
pair 7 and kI. The propagation and subsequent de-
cays of these correlated pair for four particles 7,
4, k, and I are represented by the two factors of
v/D multiplying F in Eq. (12). Similarly G, ,, re-

, X*
40— = O+
FIG. 2. Schematic representation of the three-body FIG. 3. Schematic representation of connected three-
t matrix. The crossed line means that the corres- body unitarity in four-body space. The vertical line

ponding propagator is fully dressed. represents an energy conserving é function.
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FIG. 4. Schematic representation of Eq. (12).

presents the quasi-two-body amplitude for going to
a state, where the particle ¢ is free and the three
others form a correlated state jkI. The factors of
w, v, D, and D’ multiplying G represent propa-
gation and subsequent decay of the three-body cor-
related state to a free particle and a two-body cor-
related state, which then propagates and decays to
two free particles as shown in Fig. 4. Other forms
for the quasiparticle amplitude involving the full
two-body ¢ matrix, rather than v/D type functions,
have been used in the three-body case.! The var-
ious problems they cause, primarily with total en-
ergy analyticity when implementing unitarity, led
us to consider only the form presented in Eq. (12).

The unitarity relation for T, ,, which has been
discussed in detail elsewhere,*5 contains many
terms. Assuming that only two-, three-, and four
body intermediate states are energetically allowed,
unitarity for T, , can be written as'®

ImT, ,=-7)_ T, ,0(E-E,)T%,
-
-7 ; T, ¥0(E - E,)T%, ,

- ; T, S(E - EJ)TE, ;. (13)

Contribution to the special types of four-body dis-
continuity we are interested in will come from the
disconnected parts of unitarity. Hence we decom-
pose the amplitudes in Eq. (13) into disconnected
and totally connected parts. Eq. (13) and this de-
composition is shown in Fig. 5. Each term in unit-
arity represents a singularity at the threshold of
that term. Strictly speaking, each term in unitarity
contributes to the discontinuity across the singul-
arity beginning at that particular threshold. We are
interested in finding the constraints of unitarity on

OICE + :
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FIG. 5. Schematic representation of the unitarity
relation in Eq. (13). The second line shows the ampli-
tudes decomposed into fully connected (represented by
a C) and disconnected parts.

the amplitudes F and G defined by Eq. (12). Be-
cause the two terms in Eq. (12) have distinct sing-
ularity structure, Eq. (13) will be satisfied sep-
arately by the two terms in Eq. (12).

A. Unitarity constraints on F

First let us consider constraints of unitarity on
F, This is a quasi-two-body amplitude, where two
independent pairs interact in the final state. The
information about independent pair interaction in
the final state will be contained in the last term in
the last but one line in the unitarity relation in Fig.
5. In this term, a given pair threshold depends on
the energy of the other pair. As this involves only
a two particle interaction, the last term in Fig. 5
also appears to contribute to this singularity. We
can neglect this term from our consideration, be-
cause this term has a different threshold—the pair
subenergy threshold which was considered in detail
in previous work,*® where we concentrated on this
term to analyze the problem of four-body final
states. Hence, to consider unitarity constraints on
F, we shall be limited to the consideration of the
peculiar term—where two independent pairs inter-
act in the final state— of four-body unitarity.

If we keep only this term in four-body unitarity
(13) we have for the discontinuity across this cut
schematically

DiscT, ,==-T T, .0(E-E')T% ,T% ., (14)
2,4 2, 4 2,27 2,

where T, , is the two-body amplitude. We now sub-
stitute the first term of Eq. (12) into Eq. (14) to ob-

by

tain
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(2m)°6 2B, ol - V@) vy (ay)
8 i 1.2-.':1:1 [D1sc <<q‘F”'“(E) |p,+p,) D, (2qu ) D,,(2q,, )>

=- %f i: (G| F gy, oo E) |B;+ B5) 1;) ((q Larlda) —-::(—(gﬁ%ﬁ(pﬁp, Bi - D)0 @, + B, - By - B

a,0,¢,d=1

o(-gore) e (Thowt) st sty 9

where
f=1+ [5(2‘1412 -2q%) - 1](5a¢5w +04;055+ 040051+ 04105, (16)

and takes care of the fact that g,;=q}, when ab =ij or ab=%kl. In other words, it accounts for the fact that in
the unitary relation in Fig. 1 relative energies of the two independent pairs are separately conserved. The
extra factor of § on the right comes from the symmetry pnder interchange of the pairs ¢ and kI as well as
ab and cd. Using

F 1 1
Disc ( ): FDis¢ ——— + —g—=5DiscF (17)
DDy, DDy, ~ DiD}

as in the three-body case and noting that Disc[1/(D,, B,)] = Im[1/ (D, D,,)] and using Eq. (8) for Im[1/
(DUD“)] we find that Im[l/(D”Dk,)] terms on the left of Eq.(15) just cancel the terms on the right with ab
=4j, cd=kl, ab=Fl, cd=1ij, and permutations. Equating appropriate coefficients, taking account of sym-
metries, and canceling common faetors, we derive

. - > > T 1 - > > s > >
Disc(d |F ;i (B) |By+B,) =- 3 5 d*p; ) 6@, +D, - By - D@, +D; — By - BPO(E - ) p3% | vuilaiy)vylaty)
8 (2m) .4 ~

U@l Vea(qts)
X QIF,, L(E)|D+D%) —*“'————yc" (18)
akg_g“’—il I ab, cd l a b ab(zng) cd( 2

For the special case of identical particles, we make a transformation of integration variables to p}=3 (§
+k+8), pj=3 0 -k-3), Dj=2(-P+k-3), and p}=3 (~P -k+35). Here, we take P, +p,= - (§,+D,)=5 to
evaluate two integrals with the two momentum 6 functions and obtain

Disc({ |F (E)|B) =-

(Zz)sfdskdasé(E—pz— K — s2)o( |3 &+ 3) ) o(|3 ®=3))

- = o([36+3)]) v([z6-3)]) 19
x(@Ir@ 8 o2 R (19)

v<|2<p+kl> o(|3G-K))
@@ 2EESS i) -

It is easy to see that the two terms in Eq. (19) are equal to one another and in the special case of identical
particles Eq. (19) becomes

Disc(@|F(E) D) = - 55 | d°k({|F (E)|K)
(21r)

[ arso(e- - sl G35 ) SEETDD ABEDD g

Before going into detailed discussion about implementation of Eq. (20), we turn to the consideration of unit-
arity constraints on G.

B. Unitarity constraints on G

Next we would like to find the constraints of unitarity on G. This forms a quasi-two-body state, where
one of the four particles is free and the three others appear in a correlated quasiparticle state. The infor-
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mation about the interaction of these three particles in the final state will be contained in the three-body
subenergy term of the four-body unitarity relation. This is the next to last term in the last but one line
in the unitarity relation in Fig. 5. This has the three-body subenergy unitarity cut, which will give the
correct unitarity constraint on G.

If we keep only this term in four-body unitarity, we have for the discontinuity across this cut schematically

DiscT, ,=-7 T, O(E~-E"T% .6, (21)
2,4 2, 4! 3,3

where T,., is the connected three-body amplitude and 6 refers to the “fly-by” particle. We now substitute
the second term of Eq. (12) into Eq. (21) to obtain

(2m)°6Q08,) }; s (i =\ W (@5,  vulas)
B Wi - [DISC <<q|G,.,,,,(E) ‘p¢> D;kt(ejkj_ le(ijkz)>

T 3 g Vnol@h) «ie  anmie = = o =
- Efa,b.ci,Ll(qIGa'wd(E)‘ —M—LTD;“(GM: .__::(—l’-——-z ) B(p{—p‘)ﬁ(pl+pk+pl_pl_pk_pl)
347 ' v 4,(q k) 1
< X}p > (2,")6 <rId p{>wjk';(‘11k,;) —“&—L‘Q—lh(zqn —-——,F———)—;M(ejm

(g4)
X W 1@, 1) —;ﬁ%‘b} (22)

Hereas inEq. (10) we have used D =D * across this cut. Now using Disc(G/D’) =G Disc(1/D’) + (1/D’*)DiscG
as before and using Eq. (11) we find that Disc(1/D’) term on the left just cancels the term on the right with
a=1i. Equating appropriate coefficients and canceling common factors, then gives

< > T 1 - > > > o w :
Disc(d| Gy, wi(B) [B:) =~ 5 ys f (Hdspi>6(Ps—5i>°(pj+m+pz—p§—pi—p§)6<E— ;p?)

U(q) ? 2 - ,,w (q'.) U(q')
o 00, 3 10t Griling ity

aybycyd=1
a¥t

In the special case of identical particles the nine terms in the summation in Eq. (23) will reduce to five
terms, because four of them are repeated twice. Then we have for identical particles (see Appendix for de-

tail)
Disc(ﬁIG(E) |5

fdf*kgi,l(g(E)D fdsa(E P oK —s?— (F+E+8)?)

(21r)"

Kw(ls(k+35)|>v(l2(p+k+2s>|) , o3 @5+35+2K) ol G-3))
D(; P+k+28)°) D(z ® -9

w(l—;—<s§+ﬁ)I)v(lé(zﬁﬂag)l))
* D(3 2P+ Kk+9P)

B E-DDe 3 @B+3E39)) | w(i@Ek+28) 0 3E+3B])
D(IE-39) D(X @ +k+287)

(24)

o (22 EE28) o (|5 5B v(lz(2p+k+*)|)w(la(k+3‘>|))]
( 2D(Z @+k+25)°) D(z (2 +k+5))
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Before we go to actual implementation of these con-
straints of unitarity (20) and (24), we give a brief
discussion about their physical significance.

As in other similar problems unitarity relations,
Egs. (20) and (24) show that constraints of quantum
mechanics introduce coherence and variation on
amplitudes usually taken as independent and con-
stant in phenomenological analysis. In particular,
the amplitudes F and G have complicated branch
points at the edge of the phase space. As in Eq.
(8), F has two square-root branch points, where
the argument of one square root depends on that of
the other square root. The term G has the well-
known €2 log(—€) singularity where € is the three-
body subenergy. This comes from the phase space
consideration of the unitarity relation in Fig. 3 and
has been discussed elsewhere!® for the three-body
problem. In the case of the four-body problem, the
same algebra goes through with three-body energy
replaced by three-body subenergy. A test of the
importance of the unitarity constraint in a par-
ticular problem is easily made with Eqgs. (20) and
(24). The F’s and G’s are assumed constant and
the right-hand sides of Eqs. (20) and (24) are cal-
culated. If they generate small discontinuities for
F and G (measured against the assumed scale of F
or G, respectively) the assumption of constant F or
G is a good approximation. If Disc F or Disc G are
large by the scale of F or G, the constraints of un-
itarity are important and must be implemented.

IV. IMPLEMENTATION

In the last section we saw unitarity forces F
and G to be singular with the discontinuity across
the singularity given by Eqs. (20) and (24), respec-
tively. In order to be able to implement the con-
ditions of unitarity (to make the algebra simple) we
shall be limited to the consideration of four iden-
tical bosons each of mass m(=3). The best way to
implement unitarity (20) and (24), so that it will
give us information about the discontinuity is to
disperse in EasinRefs.2-5. Because theessential
feature of the discontinuities of Eqs. (20) and (24)

@IFE)[5)= AR BB + oy [ 4GEIFE)[E)

3
% d’s
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is a simple 6 function in E, it is then trivial to dis-
perse in E and maintain total energy analyticity.
This method of implementation will not interfere
with other singularities of the functions F and G.

We write the dispersion relation for F(E) or G(E)
in schematic partial-wave form. Let us call the
function A (E) and assume that A(E) goes to zero
sufficiently rapidly as E~«~. Then we can write
the dispersion relation for partial wave A(E) as

DiscA(E'),

dE’
— (25)

1
A(E):R(E)+—"—f =
where R(E) is a term, that does not have the dis-

continuity. Schematically the discontinuity is re-
presented by

DiscA (E’)=- 1Q(E’)6(E’ - E,). (26)
Substituting (26) into (25) we get
A(E)=R(E)+w X))

E-E,

where a(E,, E,) =0 and hence does not contribute to
the discontinuity of A(E). The function a is arbi-
trary except for this condition and could be included
in the definition of R, but it is more convenient to
keep it explicitly. For example, if we take a(E, E;)
=Q(E) - G(E,), Eq. (27) becomes

A(B)=R(E) + o) (28)
‘In general, if in Eq. (26)
G(E’) =G, (E")@,(E")G,(E") * + + Qy(E"), (29)

then after implementation with proper choices of
a(E,E,), we can have E as an argument in some of
the factors and E, as an argument in the rest of the
factors of @ in Eq. (28). The way to achieve this
hasbeenillustrated in Refs. 2,4. The dispersion in-
tegral essentially puts the argument of the 6 func-
tion in the denominator and in the multiplying fac-
tors we may or may not implement the constraint
of the & function (i.e., write in terms of E, or E).

From this it is clear that if the discontinuities of
Eqs. (20) and (24) are dispersed in E, we get

(|3 &+8) Dot @-8)Do (i G+ Do Ui E-9])

E—_p?-Fk_-s*

and

e 3

D(E- F-1 G+ 3IDE - P-1 G- D)

(30)
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@IG(E)|B) =G |R.(B) D) + (22)6fd3k @le®) k)

d3s
D'(E-%F%) E_R_5s? - (k+5+Dp)*
Kw(la E+3B) Dot @+E+28)) w5 @F+38+ 2B ) o3 G-

D(E—zpz sz p K)
, @3 EER o %(2i5+1?+§)|)>
DE-IRP-3s’-k-9)

->,

JoE@+R+28) Do (3 @+30))
DE-3p*-3F-D %)

|} v(lz(p+k+2’)l>w(| @R

*DE-2

SIGAR+ PPk GrE+D)

o(|2 & -3))w (|3 @5+3k+33)])

2 D(E - 3p° - )

The choice of implementation in Egs. (30) and (31)
is motivated by the fact that in the final integral
equations we wish to get D, D’, F, and G as func-
tions of E, while v’s and w’s should not depend on
E. In other words in the language of Eq. (29) we
have taken v’s and w’s as functions of E, and D, D’,
F, and G as functions of E. We write v’s and w’s
as functions of momentum and that is what is phy-
sically expected of them. This has the added ad-
vantage that the left-hand cuts of v’s and w’s do not
get involved in the % and s integration of Egs. (30)
and (31) at a fixed value of E. These choices are,
of course, all equivalent at the zero of the 6 func-
tion so that the discontinuities (20) and (24) are in-
dependent of these choices. Any way of imple-
menting unitarity by the dispersion relation satis-
fies that particular “subenergy analyticity,” but our
particular choice also satisfies total energy analy-
ticity. Another motivation for this choice is that we
get a set of dynamical equations for F and G and not
just an integral representation for them.

Equations (30) and (31) are the “minimal” imple-
mentation of unitarity and analyticity, provide use-
ful phenomenology for F and G, and do not contain
any spurious singularity in E. However, this sim-
ple minimal implementation of unitarity and analy-
ticity gives the minimal four-body dynamical
scheme with the specific assumptions we made
about the interaction. The only assumption made
about the interaction is that contained in Eq. (12)
through the introduction of v’s and w’s. In the de-
finition of F, we introduced only two-body separ-
able interactions and in that of G have both two-
and three-body separable interactions. Here, un-
like in other similar implementations, the limited
consideration of unitarity and analyticity does not
give the full dynamical scheme.!*5 It is clear from
other similar implementations that if we formulate
the N-body problem in terms of quasi-(N - 1)-body
amplitudes, simple implementation of unitarity and
analyticity will give the full dynamical scheme, but
may not necessarily give simple equations to solve.
But the present analysis shows that other form-

o[ ( zp+k+s)|)w(la(k+3’)l))] (31)
D(E k*s)

]

ulations of the problem are possible which do not
give the full dynamics, but give useful equations
for making approximations. It is interesting to re-
call that for the three-body problem there is’?Z only
one way of implementing unitarity and analyticity
which gives the full dynamical scheme, the Faddeev
equation with separable interactions, or the Amado
model.'® In order to fully understand the content of
Eqgs. (30) and (31), we need to make some assump-
tion about the Born terms R,(E) and R,(E). We do
this in the next section and try to develop certain
useful approximation schemes for the problem.

V. USEFUL MODELS

If we look at Eqs. (30) and (31) we see that they
are really integral equations in one vector variable
and after partial-wave decomposition are simple
equations to solve. Equations (30) and (31) are dia-
grammatically represented in Fig. 6. Here the in-
cident state is either an nt or a dd type state. Dia-
grammatically the structure of the equations is
very similar to the Amado model'® for the three-
body problem. Hence the complexity involved to
solve these equations is similar to that involved to
solve the Amado model. To build up any calcu-
lational scheme, we have to make assumptions
about the incident state and also the Born term.
Let us suppose we take the incident state to be an
nt type state. Then we can easily rewrite the equa-
tions in Fig. 6 with certain assumptions about the
Born term. For R,(E) we take a simple one par-
ticle exchange term, which is the so called driving
term for the process. For R,(E), we do not have
one such simple term. But the important driving
terms for the process nt -nt, if unitarity effects
are important, are given by Eq. (31) itself or by
Fig. 6(b) and are exhibited explicitly in Fig. 6(c).
So we make the assumption that R,(E) is given by
Fig. 6(c). Then the equations for the processes nt
—nt and nt —dd are given by Fig. 7(a). In the first
term on the right in Fig. 6(c), there is a bubble in
the already dressed two-body propagator. This
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means a repetition of the two-body ¢ matrices.

This is redundant and in Fig. 7(a) we replace this
term in Fig. 6(c) by a simple d particle exchange
without any bubble. This term is shown in Fig.
7(b). In Fig. 7(a) the circle is the amplitude for the
process nt -dd and the square represents the am-
plitude for the process nt —nt.

At this point we have in principle completed the
construction of 2 -2 reactions initiated by nt
states. We can similarily construct the reaction
amplitudes initiated by a dd state. Now R,(E) is
dictated by the dynamical equation in Fig. 7(a) and
the simplest form of R,(E) is the one particle ex-
change term. This is pictorially represented in
Fig. 8. Here the rectangle represents a dd type
final state and the rotated square represents an nt
type final state. Figures 7(a) and 8 give all the
equations for the 2 - 2 process.

The equations in Figs. 7 and 8 are derived from
limited consideration of unitarity and analyticity.
But they suffer from an obvious defect. In one
type, only the dd intermediate state is allowed and
in the other only the nt intermediate state is al-
lowed. It is easy to develop a calculational model
for these amplitudes in such a way that for each of
them, both dd and nt type intermediate states are
allowed. This can be achieved by introducing some
ad hoc coupling between the two equations in Fig.
7(a) and in Fig. 8. This is represented in Fig. 9,
which gives the equations for all possible 2 - 2 pro-

- {B“"k’{g’\

F K 2 ’.;
10RO GONE
(a) .
cer— VWA P
IO
p

(b)

(c)

FIG. 6. Schematic representation of (8) Eq. (30) and
(b) Eq. (31) with (c) as the driving term of Eq. (31). The
curly lines represent that they could be either an dd or
nt type states.

=+ X
L=\

(a)

e

(b)

FIG. 7. (a) Schematic representation of 2—2 reac-
tions induced by a nt type initial state. (b) The maind
exchange driving term in nt —nt reaction (see text for
detail). Here the circle refer to a nt —dd amplitude and
the square to an nt —nt amplitude.

cesses. These equations can be easily solved after
partial-wave projections. Fonseca and Shanley!*
solved very similar equations for four identical
particles. They found their model from a con-
sideration of a simplified version of the general-
ization of the Lee model to the four-body pro-
blem.!? They completely neglected the interaction
mechansim shown in Fig. 6(a). Their equations are
a special case of the equations shown in Fig. 9 and
are exhibited explicitly in Fig. 10. Apart from the
obvious difference in the nature of the equations in
Figs. 9 and 10, the driving term in nf —-n¢ process
to be used in Fig. 10 is quite distinct from the one
we obtained from consideration of unitarity and
shown in Fig. 6(c). The first terms on the right in
Figs. 6(c) and 10(c) are the same; of course, we
have to consider the modification suggested in Fig.
7(b). The next two terms in Fig. 6(c) are the first-
order vertex correction to the two vertices of the

A0 = X+ 10X

FIG. 8. Schematic representation of 2— 2 reactions
initiated by a dd type initial state. Here the rectangle
refers to a dd—dd amplitude and the rotated square to a
dd —nt amplitude.
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first term on the right. This first-order correction
is the first of an infinite series of correction to an
w vertex. This has been discussed by Fonseca and
Shanley and is shown in Fig. 11. The first-order
correction to this w vertex is to be included if uni-
tarity effects are important and will be included in
our dynamical scheme. The second and third terms
of Fig. 10(c) are not included in Fig. 6(c) but it is
easy to see that they can be easily generated by
iteration of the equations in Fig. 9. The fourth
terms of Figs. 8(c) and 10(c) are the same and the
last term of Fig. 6(c) is the exchange diagram cor-
responding to this term. Hence Eq. (9) is superior
to Eq. (10) in driving terms as well as richer in dy-
namics. Of course, there are more complicated
terms in the dynamics, which are not included in
Fig. 9. Numerically the dimension of equations in
Fig. 9 is twice that of equations of Fonseca and
Shanley. Otherwise the two sets of equations are
similar. Fonseca and Shanley solved their model
for all possible processes including breakups. The

AONERNNE O n)
i I Ay
L=\t
+ U

i

el

T = O
 1L7-

(b)
FIG. 9. Schematic representation of the following:
(@) nt ~dd, nt —nt; (b) dd—dd, dd —nt reactions. The

circle, square, etc. have the same meaning as in Figs.
7 and 8.

e

CX—

va
1l

FIG. 10. Schematic representation of the following:
&) nt —nt, nt —dd; ®) dd —nt, dd—dd reactions; and
(c) a driving term to be used in them according to a
unitary model of Fonseca and Shanley. The circle,
square, etc. have the same meaning as in Figs. 7 and 8.

present sets of equations can be solved exactly in a
similar way.

VI. SUMMARY AND DISCUSSION

We have considered the effects of unitarity, in-
dependent pair two-body unitarity and three-body
subenergy unitarity, and analyticity on four-body
final states. In the framework of the quasiparticle
or isobar model, the four-body states are thought
of as quasi-two-body states, where the quasi-par-
ticle states are either 2 two-body resonances or 1
three-body resonance and a free particle. Though
the amplitudes for forming these quasi-two-body
states—F and G—are usually taken to be constants

FIG. 11. First few terms contributing to the nd ver-
tex correction. The two terms shown in the figure are
retained in our formulation.
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(up to kinematic factors) and independent in pheno-
menological analysis, we have seen that unitarity
constraints force them to have branch points and be
interrelated and coherent. The different F am-
plitudes taken together contain any information
about independent-pair interactions in final states.
Similarly the different G’s unite coherently to con-
tribute to three-body interactions in final states.
When the resonances in four-body final states are
narrow and nonoverlapping, constraints of unitarity
are not important, Otherwise the constraints of un-
itarity should be implemented by writing a dis-
persion relation for the amplitudes in terms of
their discontinuities. This automatically satisfies
“subenergy” unitarity and analyticity. We also show
how to maintain total energy analyticity. This
yields the minimal four-body equations consistent
with unitarity and analyticity. The equations are in
one vector variable and are easy to solve after par-
tial-wave analysis. Similar equations have been
constructed and solved by Fonseca and Shanley. We
apply our equations to the case of four identical
bosons and get very useful equations for the pro-
blem. We calculate the amplitudes for all possible
2 -2 processes and the breakup amplitudes can be
related to them.!

At the expense of computer time and algebraic
complexity the present model can be generalized to
include spin, isospin, etc. We did not include that
in our present formulation. We developed our
model stressing unitarity and analyticity and this
must work well when unitarity effects are impor-

tant. We expect these effects to be important for
two classes of strongly overlapping final state in-
teractions, threshold enhancements as one en-
counters in the nucleon-nucleon system, parti-
cularly for s wave pairs, and resonance inter-
actions. Thus these effects could be important in
reactions leading to four nucleons in the final state
and other similar problems.

The equations shown in Figs. 7(a) and 8 arose
from the minimal implementation of unitarity and
analyticity. The suggested equation in Fig. 9 con-
tains more information than required by unitarity
and analyticity. But all of them suffer from the de-
fect that the three-body scattering amplitude is ap-
proximated by a single separable amplitude. To do
a realistic calculation the effects of higher partial
waves and more terms in each partial wave have to
be included at least in a perturbative way. Some
finite rank method for solving the equations is de-
sirable because that minimizes the computer time
substantially. One such method developed by the
present author and Sloan'” for the three-body pro-
blem appears to be very attractive for this pro-
blem.

The author would like to acknowledge gratefully a
critical communication from Professor R. D.
Amado and some informal discussions about few-
body problems with Professor W. Gléckle, Pro-
fessor H. T. Coelho, and Professor F. A. B. Cou-
tinho.

APPENDIX

Equation (23) can be written as

Disc<q|Gi.Jkl(E)lﬁl>=’ (2_:)‘6'“fdapjdspka(E-Piz-P:Z—Pnz- @ +5,+5,)%)

_ﬂ(l (P; P}.)Dwm,(h (3p1+3pk+2p )‘)

g( (P, Pk))

[ (G016 pys(B) I5,)
> 4
x {[ DLE-1p)

wu,{(l 1(35{ +§,)‘)v., ('%(zﬁg +ﬁ1+5¢)|-)

”(E——- _%pf—ﬁ{ 'ﬁj)

+ @4, {1 535, + By, (1225 + 5, + Bpl)

Dy(E-3p,° - %1’12 - D '51)

s B 55 Dy UGB )
le(E° %pj - E(p¢+p1+ph +P; (p;+p,+p. )

<qIG,I§§:l(E)I_§£‘ B, -y
+{k ]}+ 3(P¢+P,+Pk )
x(w (3@, + B, — 25,00, 3@, - B
D,JE(P,-D;) )

‘*’u.n(l B, + B, = 2800, (36, - BB

U( (p, P;))

_!_M(I (pg+Pk 2P1)|)vua(l2(pk pi)|)>} (A1)

.( ®, - pi)



where {£ —j} denotes the first three terms with
and j interchanged. So the two sets of terms,
whose coefficients are G, ,;; and G, ;;;, when taken
together are symmetric with respectto k- j inter-
change. Similarly the last two terms, whose coef-
ficient is G, ;,, are symmetric with respect to k£~
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interchange. But {5, and {,, are integration vari-
ables. For identical particles only the distinct
terms in Eq. (A1) are supposed to be taken. That
is what has been considered in Eq. (24), after a
change of integration variable in some of the
terms.
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