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Neutron-proton bremsstrahlung cross sections dagO~d Q„and asymmetries at E„b = 200 MeV have been

calculated using the Lomon-Feshbach and Hamada-Johnston models. The cross sections from these models

difFer by about 10%%uo at 8~ = 8„=30' after approximate adjustments are made for elastic scattering
difFerences. The cross sections integrated over only the larger peak in the 8~ distribution difFer by about
16'. The calculations are based on an expansion of the electromagnetic current in powers of the photon

energy rather t1mn an expansion of the complete bremsstrahlung matrix element. The calculation includes the
external emission amplitude to all orders in the photon energy and the electric dipole part of the internal

emission amplitude. Higher order contributions to the internal emission amplitude are discussed. The
numerical results and amplitude expressions are compared with those of other authors. %'e find numerical

agreement with Brown and Franldin but not with Celenza, Gibson, Liou, and Sobel.

NUCLEAR REACTIONS NN bremsstrahlung amplitudes, nonlocal and exchange
effects; np bremsstrahlung do gd&&d& „and asymmetry calculated at E i~ = 200

Mev with Lomon- Feshbach and Hamada- Johnston models.

I. INTRODUCTION

Nucleon-nucleon bremsstrahlung (NNy) has long
been studied as a possible source of information
about the strong interaction. Most of the wo& has
been focused on proton-proton bremsstrahlung be-
cause that mq)eriment is easiest. Much of the the-
oretical work has been within the potential model
(Schr5dinger equation) because it was hoped thai
one could eliminate some of the phenomenological
potentials which almost equaQy weQ fitted the elas-
tic scattering data. This additional discriminatory
power of NNy is due to its dependence On the half-
off-energy-shell two-body NN amplitude.

Neutron-proton bremsstrahlung (nPy) calculations
within the potential model have been performed by
Brown and Franklin' and by Celenza, Gibson, Liou,
and Sobel. ' calculations by McGuire and Pearce'
were also based on the SchrMinger equation, al-
though these authors used an sd hoe approximation
for the half-off-energy-sheQ NN amplitude rather
than computing it from a potential.

We present here calculations for the Lomon-
Feshbach' and Hamada-Johnston' models. %e find
that for the kinematical regions we explore these
models give nPy cross sections which differ by
about 15% or less, after adjustments for different
elastic amplitudes. For Lomon- Feshbach models
with different 'S,—D, channel parameters the npy
cross section computed with only the external
emission amplitude, rather than the complete am-
plitude, is found to be proportional to the elastic
cross section.

Our calculations with the Hamada-Johnston po-
tential overlap those of Brown and Frgz6rlin' and

FR=(ef~ l[J,(k}+J,(k}])e&' ),
'j, (k) -=(P~e-'" "J,.(x), (lb)

Celenza et al. ,' and we compare our results with
theirs.

The nPy calculations mentioned above are all ap-
proximate since one does not know the correct
electromagnetic current for the interacting two-
nucleon system. In addition to the sum of the in-
dividual free nucleon currents, one in general has
a two-body interaction current which depends on
the strong interaction dynamics.

The existence of the two-body current is espe-
cially clear in nPy where it is large and is neces-
sary to satisfy gauge invariance. The approximate
forms of the two-body current used in most npy
calculations are derived by imposing current con-
servation or gauge invariance and involve trun-
cated expansions in powers of the photon energy.

In this paper we use an expansion of the current
density J(k). We therefore avoid expanding the ini-
tial and final NN wave functions, in contrast to
what would be the case if the bremsstrahlung ma-
trix element were expanded. The expansion of the
two-body current is one in powers of k times
the range of the strong interaction' (no larger
than m, '), whereas one does not know the largest
expansion parameter to be associated with the ex-
pansion of the matrix element. We also use an
expansion of the one-body current which we justify
by comparing with calculations which do not use it.

In the Coulomb gauge the bremsstrahlung ampli-
tude can be written to first order in the charge as
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$,(x)=
2

Q(}&„[p„(&'(x-r)+5'(x-r„)p„]

p~xV. &' x-r (2a)

where 4'y'] are NN scattering states, k is the pho-
ton momentum, and Z, and 3, are the one-body and
two-body current, densities. There should be no
confusion caused by using the same symbol for J(x)
and its Fourier transform J(k). We take the one-
body current and charge densities to have their
usual forms

ond, one has the two-body current part

6tr,,=&+(-)
I J,(k) Ie( &} . (6)

The external currents S(,' and J,' will not con-
tribute to the amplitude if it is computed in the
center of mass frame. We wiU, therefore, ignore
the external currents from this point on. We will
also refer to these amplitudes with a momentum
conserving 6 function removed:

It= (2&y)'6'(P, + k- P, )M,

where Pf Wd P; are the final and initial total NN

moments, .
p, (x)=e g(I) 6'(x —r ), (2b)

where Q„ is unity if nucleon 0. is a proton and zero
if it is a neutron, and p.„is the magnetic moment
of nucleon a. The p and r are the momentum
and position operators. We have assumed the nu-
cleons have equal masses, m. We will refer to
those parts of J, which are proportional to p as
the convection current. For later use we define
the matrix elements

(r"R"
I J(x) —Z ' (x) Ir'R')

= V(R" -R')J(r",7', x-R'),
(r"R"Ip(x) Ir'R') =5'(8" -R')p(r", r', x-R'), (8)

where the external current is defined in terms of
the total momentum operator P as

J ' (x) = [Pp(x)+p(x)P],
and, as usual, r' = r,' —r,', R' = —,

'
( r,'+ r,'). These

expressions hojd for the one-body and two-body
densities. Translation invariance demands that
the martix elements depend only on the variables
r", r', 8"-R', and x-a, ', and the G~&f&ean trans-
formation properties require that the dependence
on P is only that which occurs ip the external cur-
rent.

The bremsstrahlung amplitude may be computed
in two parts, called the external and internal emis-
sion amplitudes. The external emission amplitude

II. APPROXIMATIONS TO N2 AND NR

The amplitude SR,, cannot be calculated exactly
without introducing (and solving) a fundamental
theory of the- strong and electxomagnetic interac-
tions since one does not otherwise know J, from
theory. One does, however, know its divergence
from the continuity relation provided that nonrel-
ativistically the charge density has the one-body
form in Eq. (2b); that is, if there is no p, . The
divergence of 7, is sufficient to obtain an approxi-
mation to 6L, as will be shown below. The crucial
point here is the observation that the one-body
charge and current densities are not conserved if
the nucleon-nucleon potential contains nonlocality
or charge exchange terms, but that the additional
term required for conservation is uniquely deter-
mined in the long wavelength limit. ' "

Our approximation to 6g, is obtained by expanding
exp(ik ~ R)J,(k), where R is the NN c.m. position
operator, in powers of k. 'Ibe exp(ik ~ R) guaran-
tees that momentum conservation is preserved.
The first term Of this expansion is then written in
terms of the divergence of J,.

We remove a momentum conserving 5 function
as follows. In terms of the coordinate space wave
functions E(l. (6) reads

r
%,= d'r "d'r'd'R'd'y e

x@y(-)*(r",R')e '"' y J,(r", r', ~)4&'(r', R') .
6g. =(41 I J,(k) lx'I') &x' I&,(k)IC&, (4)

(6)

where C y ( are noninteracting NN states and X'y';
4 f ' 4f j is the easiest to compute since each

term of it is simply the product of a strong inter-
action T matrix element, a Green's function, and
a matrix element of S,. The second part of most
calculations is the internal emission amplitude,
which itself has two constituents. First, one has
the rescattering amplitude

F%„=&X;)I J,(k) Ix( &),

By writing the wave functions as products,

~j+)(-,I -')=sip@I( ~(+)(~rI)

@(-)(~&i RI) city R ~( )(~&})-

N, = f rpr "&"d'y }}"(r"}

xe-&k yj (r r ~)(I}(+)(r ) (8)

which, although difficult, can be computed. ' Sec- Since S,(x) is associated with the strong interac-
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tion, its matrix element must vanish when x is far
from the center-of-mass position of the two nu-
cleons, that is, when y is large. Thus it is rea-
sonable to introduce an expansion of the exponen-
tial function,

gkey+ ~ ~ o (9)

which produces an expansion of M2 in powers of k
times the range of the two-body current. Clearly
the expansion is useful only if every term of it
yields convergent integrals in Eq. (8). The Yukawa
asymptotic behavior expected for J, is certainly
sufficient. ' The error one incurs by keeping only
the first term is probably fractionally largest for
the longest range part of 3„although no definitive
statement can be made without actual calculation.
The approximation of keeping only th@ hrst term
has been checked for the longest range (one-pion-
exchange) part of f2 and was found to be good. "

If only the first term of the expansion, Eq. (9),
is retained then current conservation aljows us to
approximate M, compactly in terms of the poten-
tial. Upon replacing the exp(-fK. y) in Eq. (8) by
unity we may partially integrate with resyect to y
to obtain M, in terms of the divergence of 52:

where the superscript E1 is to remind us that this
is the electric dipole approximation. From the
continuity equations

0 [J,(x)+J (x)]2+f[H)p, (x)+p2(x)]=0, (11a)

J,(x)+i[H„p,(x)]=0, (111)
and the explicit form of p„Eq. (2}, we find, when

p2 =0,

V, ~ J,(r", r', y)

2e&r" I [-v, @,5'(y —2r)+025'(y+ 2 r)]l r )

(12)
whereH, is the kinetic energy operator V =H -H„
and r is the relative coordinate operator. Com-
bining Eqs. (10) and (12}yields the following result
when p, =0:

M, ' = -,'(f 8) &(/(/
'

I [V, Q] I q' (13)

where

=e '"' d'x J x —J' x @i 15

where the subscript (c) means that the equation ap-
plies only to the convection current, and R is the
NN c.m. position operator. Furthermore, we have
the exact equation

d'x J1x Jl x (p) pie hoQ (18)

where h2=p'/m and p —,(p, —p,). The rescattering
amplitude, from Eq. (5), is then approximately

Using Eq. (15}in the external emission amplitude
would lead to serious error because J, is not of
finite range. Equation (15) is acceptable for use
in the rescattering amplitude because of the (short
range} strong interaction preceding and following
the radiation. We have checked the accuracy of
Eq. (1V) by comparing it numerically with the exact
result. This comparison is shown later.

We obtain an approximate internal emission am-
plitude by adding Eq. (13) and Eq. (17). Using the
definition of the T matrix Vg = T((.') Q and the rela-
tion Vg= (e —,h, )}i we find

+ M 2( 2~)44 f IQT(&;) I 0;&-&y, l T(ty)Q I P(&

-((a; —~,) J d'~ "d'r'((, '(r")

d'yyp, r", r', y r', 14)

where c; and &z are the initial and final internal
enei gies.

We now introduce an approximation to the re-
scattering amplitude. This approximation involves
an expansion of the one-body current in powers of
k. This simplifies calculation of the lowest order
internal emission amplitude while leaving as a
more difficult calculation a small, order k correc-
tion. We justify it ultimately by showing that it
gives a small numerical error. Liou" has com-
mented on the advantage of simultaneously consid-
ering both parts of the internal emission ampli-
tude.

The approximate rescattering amplitude is ob-
tained by using the following approximate expres-
sion for the one-body operator:

Q=(Q, -Q2)r .
Note that Eq. (13) vanishes for proton-proton
bremsstrahlung since G is proportional to the dif-
ference of the individual particle charges. If p,
is nonzero then one must add the following to Eq.
(13):

The Q; for nPy is explicitly

(18)

(19)
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and similarly for Qt, where I psti) is an eigenstate
of relative momentum p, spin s and spin projection
p, . The 4 are proton-neutron isospin functions for
isospin I. It is convenient to define the T matrix
elements of definite isospin by

&pcs~ u~I Tr(~) I p;s;t i)
= (pf f ) f I $ i T( ) 4[1+(-1)'i' "Il] I p;s;p, i)

the third argument of T and T by a similar vari-
able defined in Ref. 3 and (3) assuming 8~ = 0„
mhere terms proportional to p; p& may be dropped.

To this point we have included J, only in the E1
approximation. The second term of the expansion,
Eq. (9), cannot be included without specifying the
solenoidal part of J,. This can be seen by using
partial integration:

where II is the parity operator. The internal
emission amplitude can now be written from Eqs.
(18)-(20) as

d'y ik ~ yJ, (r", r', y)

=~i
I

d'yyy ~ k V ~ J,(r", r', y)+ikxm, (r", r')

M '=—M '+M~'=M ' +MR + g l + I (21a) = (') eQ(» (r" I ['V, r r k] I r') + i k x m, ( r", r'),
s" =

pi (pysf tip I [T.(ei)+ T((ei)] I pis, ((i;)

pi (pfs f 0fl [T'.(&f) + Ty(~ f)] I p;s; u; &

(21b)

Ml 2( ie)(~i sf)&Xt 'I~IX,' '& ~ (21c)

This amplitude is sensitive to the short distance
NN wave functions via the half-shell T matrix ele-
ments in Eq. (21b) and the state vectors in Eq.
(21c). We have written the internal emission am-
plitude in terms of M&' and M~" to facilitate the
discussion. We will also refer to a third part
which is the error introduced by the approximation,
Eq. (17), for the rescattering amplitude:

Mz s = Ms(exact) —Ms' . (22)

The relation to the amplitudes used by other au-
thors is as follows. The internal emission ampli-
tude used by BF' is M&' +M&' +M&, R. This is just
the sum of Eq. (13) and the exact rescattering am-
plitude. The internal emission amplitude used by
Celenza et al (CGLS)' is. very similar to Mqt'). In
our notation the CGLS amplitude is

eVpf (( pt —&k)sf )i& I [T,(&;) + T, (s;)]I p;s; tt i&

+ e V~,(pz sf ti f I [T,(e~) + T,(c~)]

"I (pi+ —.k)s, p, ,) . (23)

Numerical comparisons with these authors will be
given below. In the notation suggested by McGuire'
Eq. (21b) reads

( I.)M, ' =eVitT(p, .', p,.'-p~', p,. p~)

+ eV
i T(pf, pt -pi, p; pt) . (24)

The internal emission amplitude of McGuire and
Pearce (within a factor of -2e which is absorbed
elsewhere), in the c.m. frame, is obtained by re-
writing Eq. (24) in terms of derivatives with re-
spect to the second and third arguments of T and T
and (1) replacing p; and pt by an average value ex-
cept where they appear as vectors, (2) replacing

&PJ'S ~&J, r, r, y

which is completely determined by the solenoidal
part of J,. The two terms in Eq. (25) may be rec-
ognized as the electric quadrapole (Z2) and mag-
netic dipole (M1) contributions. The quadrapole
term clearly contributes only for a nonlocal poten-
tial, and is present for proton-proton and neutron-
proton bremsstrahlung. It is useful at this time to
record the first correction to the approximation
given by Eq. (15, 16) for the one-body bremsstrah-
lung operator:

d'x ik (x —R)['J,(x) —J(')(x)]~,)

Q„»(pr k+ r kp)

=seQ„»([ho, r r ~ k]+ (2i/m)kx L), (26)

where L= rxp. The E2 contribution to the rescat-
tering amplitude is then

Ms'=seQ, .~((Xt 'I[h. , rr k]IX';") . (27)

From Eq. (25) we have

M", =-.'sq...„(y' l[V, rr k]I()", ) . (28)

Proceeding in a way analogous to the derivation of
Eq. (18) we obtain

ME'= ME'+ ME2+ R

=-—(')eq,.(a, [((pflrr kT(e;) I(pi&

-(ipfI T(Ef)r r kl(t);)

+(Ei Ey)(Xt Irr klX(')] . (29)

(25)

where eQ„„& is the charge of the system and the &

is taken with respect to y. In Eq. (25) m, is the
magnetic dipole moment

m, (i",P)=l Jd') yxJ, (r",P, y)
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III. NUMERICAL RESULTS

Our calculation shows that the rescattering ampli-
tude is well approximated by its &1 part M~'. In
Fig. 1 we have compared the cross section com-
puted with the approximate rescattering amplitude,
M~', with that computed with the exact rescattering
amplitude. The latter was obtained by computing,
with the Hamada-Johnston' potential, the exact and
approximate rescattering amplitudes and adding the
difference to MI' in Eil. (21). At 8~= 8„=30' re-
placing the exact Mii by Mii' decreases do/dQidQ„

bg 3%. According to Ref. 1 completely omitting
M„decreases the cross section by 10/0, so that
our approximate form is rather accurate. Our re-
sult with the exact rescattering amplitude (and all
iVN partial waves having J ~ 4) is 34.3 p, b/sr',
which is in good agreement with the BF result of
34.6 ib/isr'

We have computed the cross section at three ki-

8
N

1

~6

c, 4

~ 2
b

0 I I I

- 180 -120 -60 0
|9& (deg)

200 MeV

ep = Hp) = 30'
I I

60 120 180

FIG. 1. Neutron-proton bremsstrahling cross section
d o/d0&dQ„d&&versus the laboratoryphoton angle. The
solid curve was computed with M~+ MI ~, the dashed curved
was computed with Mz+M@ +M& z. Positive (negative)
values of 8~ correspond to the photon on the final proton
(neutron) side of the beam axis. The HJ potential with
J «5 was used.

Note that the last term is second order in k. Spe-
cializing to the nPy case and using Eq. (19) and (20)
gives

Mz ——~evi k' &i &pfsi p fi [ T( e) +T,(e;)J ip;s;p, ;)
—~ev& k ~ V& &pfsfJJfi[T (oey)+ 7i(ey)]ipisiP i)

--.'e(e; —e&)&yf 'irr klx' ) (30)

One may write (for npy)

Mg + My e py&( pf + 4k)sf' f i [To(e;) ~- T~(')l l p;s;u; &

+ eV, &p,s,uy i[T,(e,)+T,(e~)] i(p; --'k)sip i)

+ MP'+ 6(u') . (31)

nematical points for the Hamada-Johnston poten-
tial' and for several versions of the Lomon-Fesh-
bach model. ' The Lomon-Feshbach models differ
from one another only in the 'Sy Dl channel and
are labeled by the deuteron d-state probability.
The cross sections from our calculations are listed
in Table I in columns under the amplitudes used in
the calculations. The number q in this table is the
ratio of the elastic differential cross section at
200 MeV, 8„,= v/4+-,'(8„—8i,) for the model to the
same iluantity for the Hamada-Johnston (HJ) poten-
tial. This number allows one to compare approxi-
mately the agreement in the on-shell amplitudes
of the models.

The Lomon-Feshbach (LF) iiPy cross sections
are correlated with the elastic cross sections in an
unexpected way. The difference between the cross
sections given by any two of the LF models is
mostly due to external emission. One finds that the
ratio of the external emission cross sections for
any two of the LF models is equal to the ratio of
the elastic cross sections.

This behavior would follow if the 1/k dependence
arising from the square of the external emission
amplitude were to dominate. From the low-energy
theorem one knows that the external plus internal
emission unpolarized npy cross section is deter-
mined by the unpolarized elastic cross section if
terms linear and higher order in the photon

energy in an expansion of the cross section are
dropped. "" However, the internal emission am-
plitude is found to be almost independent of which
LF model is used. (We found that the external and

internal emission amplitudes add, in effect,
almost incoherently in do/dQ~d Q„, the cross term
contributing about 10'fo at 6~=30, 0„=10 and about
170 or less in the two symmetric cases. The cross
term is more important in do/dQ/Q„d&, at most
8„.)

This correlation suggests that if the LF interac-
tion were adjusted to agree with the HJ elastic
cross section then the npy cross section would be
increased by about 0.6 p, b/sr' at 8~ = 8„=30', 2.7
ii, b/sr' at 8~ = 8„= 36', and 0.5 ii, b/sr' at 8i, = 30',
8„=10'. These values are obtained by applying a
factor of q(HJ)/q(LF) to the LF external emission
cross sections. The LF cross sections would then
be 11%, 7/0, and 1%, respectively, greater than
HJ.

Most of the difference in the cross sections oc-
curs around the peak centered near 8&= -75'. The
cross section at 8~= 8„=30' integrated from 8&
= -135' to -30' is 14.3 ii, b/sr' for HJ and 16.3
gb/sr' for LF (7.55% d state) using Me+ MI '. The
corresponding numbers for M~ alone are 5.2 and
5.5 ii, b/sr'. Thus, there is a 16/0 difference in the
cross sections integrated over this peak, after ad-
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TABLE I. Coplanar neutron-proton bremsstrahlung results at 200 MeV lab kinetic energy
from the Hamada-Johnston and Lomon-Feshbach models including all partial waves through
J=4. The LF models are distinguished by their deuteron d-state fraction. The number rt

is the ratio of the elastic differential cross section to that of HJ. The fiRh, sixth, and seventh
columns give the cross sections der/dO&dO„ in pb/sr2 computed from the amplitudes shown.
Columns BF and COLS contain the cross sections from Refs. 1 and 2. 8 is the npp asym-
metry.

Hp H„

(deg) (deg) Model ME ME+ MI ME+ M~ + Ml BF COLS 8

30 30

38 38

30 10

HJ
LF (7.55)
LF (5.20)
LF (4.57)
HJ
LF (7.55)
LF (5.20)
HJ
LF (7.55)
LF (5.20)

1.00 14.5
0.95 15.0
0.84 13.2
0.80 12.6
1.00 51.1
0.95 51.2
0.84 45.0
1.00 8.8
0.94 8.6
0.83 7.7

32.0
34.6
32.5
31.7
68.2
69.8
63.3
14.4
14.4
13.8

33.4
36.3
34.0
33.2
68.7
70.7
64.1
15.7
15.3
14.6

34.6 30 0.204
0.160
0.146
0.143

69.8 49 0.091
0.075
0.063

justment for elastic scattering differences. An ex-
periment which accepts events only in this region
may be as useful as one which measures the entire
e~ distribution, provided the 8& acceptance is well
established.

The experimental data are not precise enough to
prefer one of the models considered here. The ex-
perimental values at (e~, 8„)= (30', 30') and (38', 38')
are 35+14 and 116+20 pb/sr', respectively. "
The latter value is in moderate disagreement with
theory. To obtain agreement with this value would
presumably require a potential which is much dif-
ferent from the ones used to date or a large two-
body current which is itself conserved. Whether
any (energy-independent) potential can produce this
value without a J, in addition to the one considered
here is unlmown. We may note that h, similar situ-
ation exists at 130 MeV.""

Our result at (9~= 8„=38' using the HJ potential is
consistent with that of BF' but not with that of
CGLS'. One sees in Table I that the value found by
BF is close to the result we find using M&+ Mz'

+ MI', which indicates that M» is very small.
The result of CGLS at this angle is in serious dis-
agreement with our results and those of BF. It is
immediately clear that the term MI" cannot ac-
count for the discrepancy between CGLS and BF as
has been suggested. ' The internal emission ampli-
tude of CGLS, given in ~. (23), differs from Mi'
only in the points at which the derivatives are eval-
uated. Since —,'k is about 0.1 fm ' at 38 we would
not expect that the difference between MI ' and
Ml(' could account for the large discrepancy in Ta-
ble I. Therefore, we have computed the cross sec-
tion at 38'using the CGLS amplitude. The result
is 68.4 pb/sr', which, as expected, is close to the
68.2 pb/sr' found using Mz~' .

The relativistic effects included by CGLS are
significant but do not resolve this discrepancy.
Taking the convection current to be ~(p/E~+ p/E, ),
rather than p/m, where E, and E, are the nucleon
energies immediately before and after radiation,
and including the relativistic spin corrections de-
scribed by CQLS reduces the 8~ = 8„=30' cross
section from 32.0 to 28.0 pb/sr' and the 38' cross
section from 68.2 to 61.0 p.b/sr'. ln all of our
calculations relativistic energy differences are
used for the Green's functions in the external
emission amplitude.

The last column of Table I contains our results
for the neutron-proton asymmetry (for the proton
target polarized normal to the scattering plane)
computed from the amplitude M = M&+ MI'+ MI".
The definition is

TABLE Q. The ratios of the cross section
der/dA&dO„(cr) and the asymmetry (8) computed with all
4~5 partial waves to those with all J~4 partial waves,
using the HJ potential.

Hp Hn

(deg) (deg) 0' 8

30
30
38

30
10
38

0.973
1.014
0.998

0.989
~ ~ ~

0.979

where o~ 6 is the component of the target proton
spin normal to the scattering plane. The positive
values of 8 indicate an excess of protons when p&

&&p„ is in the normal direction, where p~ and p„are
the final state proton and neutron laboratory mo-
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menta. At 8~=8„=30'the HJ and LF models differ
by more than 20% in their asymmetry predictions.

The results in Table I were computed including
all partial waves with J & 4 in the nucleon-nucleon
T matrix elements and wave functions. In Table II
we show the effect of adding the J= 5 partial waves
to the HJ calculations. Limited computation time
prevented our including the J= 5 partial waves in
all the results of Table I. From Table II one can
see that the effect on the cross section of including
the J=5 partial waves is small but at 8~=8„=30'it
is about the same magnitude as the effect of includ-
ing ivy ol M~g.~ r(2)

IV. SUMMARY

The only approximation required to obtain Eq.
(13), once we decide to employ a nonrelativistic
potential model, is to keep only the lowest order
term in the expansion of the two-body interaction
current, and to neglect p, . Ignoring the second
order term in the expansion may be a good approx-
imation since successive terms are expected to be
smaller by factors of k times the range of J»
which is no larger than m, '. In the case of single
pion exchange, neglecting p, is equivalent to neg-
lecting terms higher order in u/c. (This was
shown, for example, in Ref. 6.)

By introducing an approximation to the rescat-
tering amplitude we obtain an expression, Eq. (21),

for the bremsstrahlung amplitude which is linear
in the NN T matrix except for a term of order 0
which we find to be numerically small. This ex-
pression is easily related to the amplitudes used
by other authors. The error introduced by this ap-
proximation is about 3% at 8~ = 8„=30' and smaller
at larger angles. Nevertheless, quantitative com-
parison with experimental results (when precise
data are available) may require an exact calcula-
tion of the rescattering amplitude, particularly at
angles smaller than 30'. We expect that it is not
crucial to include the exact rescattering amplitude
when comparing model calculations since the mod-
el dependence of the relevant T matrix elements
is usually not large.

Where our results can be compared with those
of BF' we find good agreement. We do not agree
with COLS, ' especially at 8~= 8„=38'.

More precise experiments are needed to provide
a stringent test of current NN models and to help
determine the interaction current. Careful mea-
surements over a limited range in 8& would be
useful. However, experiments would have to be
very precise to distinguish the models considered
here and in Ref. 1. Such precision has only recent-
ly become possible for PPy experiments. When
additional nPy experiments are performed, verifi-
cation of the present large angle measurements
would be very desirable.

f This work is supported in part through funds provided
by ERDA under Contract EY-76-C-02-3069. *000.
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