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Angular momentum operator identities are used to show that Skyrme’s expression can be written using the
y component of angular momentum only. It is shown that the Gaussian approximation for the matrix element
of J, * leads to the Peierls-Yoccoz expression. A new approximation based on the theory of probability is
introduced. The numerical calculations for the 2s-1d shell nuclei show that the inverse of the inertia
parameter using the statistical approximation is much closer to Skyrme’s value than the one given by the

Peierls-Yoccoz approximation.

[NUCLEAR STRUCTURE Approximations for nuclear inertia parameter.]

It is well known that the low-lying spectra of
many even-even nuclei belonging to 2s-1d shell
and the rare-earth region exhibit rotational fea-
tures.! 'In the theoretical study of such nuclei one
constructs a deformed intrinsic wave function us-
ing one of the many variational techniques like Har-
tree-Fock, constrained Hartree-Fock, or energy
minimization using Nilsson’s deformed single par-
ticle wave functions. Once an intrinsic rotational
wave function [®) has been generated then it is used
to extract the rotational parameters like the inertia
parameter g and the bandhead E,. A scheme
which is used quite often for this purpose is the
one given by Skyrme.? We recall that the energy
E; of a level having a good angular momentum J,
using Skyrme’s procedure is given by the following
expression®?

E,;=E,+AJ(J +1), )

where E; and the inverse inertia parameter A are
given by

_ (HI?) - (H)J?)
A== %)

Ey=(H) = A(J?) . (2b)

In the above the bracket sign, (£ denotes the ma-
trix element of the operator @ with respect to the
intrinsic wave function [®). We see from expres-
sion (2a) that Skyrme’s approximation involves the
matrix elements of the square of total angular mo-
mentum operator. As shown by Peierls and Yoc-
coz* one can also derive an expression for the
parameter A, using Hill-Wheeler integral,® which
involves only the y component of angular momen-
tum.

The purpose of the present work is to show that
angular momentum operator identities can be used
to express Skyrme’s expression in terms of y com-
ponent of angular momentum only. Further, if one
uses the Gaussian approximation' for the matrix
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element of J,%, then Skyrme’s expression becomes
the same as that given by Peierls and Yoccoz. We
also suggest a statistical approximation to calcu-
late the matrix of J,*. As will be shown later, it
provides a much better approximation than the
Peierls-Yoccoz approximation. Let us consider
the ground state band in even-even nuclei for
which the projection quantum number K =0 and
J=0,2,4,.... Expression (2a) can then be written
as

_ (H =(H)J,2)
IS TR =207

A (3)

Using the following operator identity,®

exp(~ipdy) exp(—ivd,)

=exp(—ial,) exp(—iBdJ,) exp(—iy,), (4a)
where
cos®sB=cos’sucos®sv +sin®s usin®sv, (4b)
expli(@+7)|=(coszu cossv +i sins u sinzv)
X (cosh pcoszv—ising psiny) !,
(4c)
exp[—i(a —v)] =(cos3 i singv +i sins 4 cossv) ‘
X (cos i siny v —i sinz ucoszv) ™,
(4d)

it can be easily shown that for the intrinsic wave
function |<I>> which has K =0, the following relation
holds

(T2 =50 +5(0,7 . ©)

Thus Skyrme’s expression for A can be written
only in terms.of ¥y component of angular momentum
as .

((H ={H))],?)
200, +(J,%) = 3(J,2)% "
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If we now put the Gaussian approximation®
(0,9 =3(J,22, (M
in expression (6) we get

3 {((H~-{H)JD
A= — o075,
€= 3 32 +(,0 (8)
Since for the validity of Gaussian approximation
{(J,® must be large, expression (8) reduces to the
Peierls-Yoccoz expression,

1 {((H=(H)JD)
Ap_),:'é— —(‘Wyz>2)—)- (9)

Comparing expressions (2) and (9) we find that in
Peierls-Yoccoz (P-Y) approximation one has to
calculate the matrix of J,% rather than J,%. The
operator J,* is more involved than J,’ since it
needs the evaluation of three and four body opera-
tors. However, it turns out that the accuracy of
P-Y expression is not very high and it is because
of this reason that one either uses™® Skyrme’s
expression?® or an alternative expression given by
Inglis” and also by Thouless and Valatin,® which is
called the cranking model expression. As is well
known, the cranking expression needs the complete
knowledge of the unoccupied single-particle orbits
also and thus is not very convenient to use where
only |®) is given.

The question then arises whether we can derive
an expression which involves only J,? but has
better accuracy than P-Y expression.

Perhaps one could first try to construct a pseudo
Hamiltonian of the form a +bJ,% and determine a, &
by minimizing (®|(H - a - bJ,?)%|®) as is done in ob~
taining Skyrme’s expression.? If we carry out
this minimization and then use the Gaussian ap-
proximation® for J,*, then we find that even though
we have obtained an expression for A which in-
volves only J,%, the value of this A turns out to be
exactly half of that given by P-Y expression and
is thus much poorer rather than better compared
with A, _y.

We now give a different approach based on sta-
tistical theory to achieve our goal. It can easily

ULLAH 17

be shown that (J,?) can be exactly written as

Iy = =312 +3a(J,2)?, (10)
where
CR,
a _W . (11)

Explicitly « can be written as

_ualldd+ )P
e I T+ D (12)

where a; are the expansion coefficients
|@) =3 asi,. (13)

Writing a ,2=a? +0a,?, where @® is the average
value of a,* and 6a,* is the fluctuation, the normal-
ization condition ) a;*=1, gives a® =N~! where N
is the number of J states. Ignoring the fluctuation
and keeping the leading term in expression (12)
gives a= f,:— Using expression (6) and (10) we get
the following expression for A using statistical
approximation

_ 5 {(H~=(@D)J,

A= g (14)
We would now like to see how the expressions
Ap_vyand A, compare with the expression given by

Skyrme. For this purpose we use the deformed
Hartree-Fock wave functions for the nuclei **C,
20Ne, *si, and **Ar which are tabulated by Ripka.*
The values of the various parameters A for these
nuclei are shown in Table I. In Table I we have
also shown the values of the parameter A which
are obtained using the first two values of £ ; which
are ‘obtained by exact projection.! We find from
Table I that the values of the parameter A using
statistical approximation are better than the ones
obtained using P-Y approximation. To check the
validity of statistical approximation further we
have also calculated the values of A not shown in

TABLE I. Values of the inverse inertia parameter given by exact projection of the first
two levels, Skyrme, Peierls-Yoccoz, and statistical approximations for 2s-1d shell nuclei.

Inverse of the inertia parameter A

First
Nucleus two levels Skyrme Peierls-Yoccoz Statistical
2c 0.54 0.55 0.46 0.58
20Ne 0.20 0.17 0.14 0.18
28gi 0.12 0.10 0.08 0.10
Ar 0.19 0.16 0.15 1 0.19
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Table I using the Hartree-Fock wave functions of
Stamp and Spencer.® These calculations are car-
ried out using a different two body interaction and
the projected spectra is obtained for the two nuclei
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*Ne and *°Si. We find that again the values of 4
calculated using statistical approximation are
much closer to Skyrme’s values than the ones
given by P-Y approximation.
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