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A microscopic formulation of the nucleon-nucleus imaginary inelastic form factor using
particle-hole intermediate states gives a result which is roughly the real form factor times
a function consisting of intermediate particle- and hole-scattering terms. These terms have
opposite signs, allowing the possibility of a radial dependence for the form factor similar to
the collective model. Numerical results for 30 MeV ¥Ca(z,n’)¥Ca (3-,3.73 MeV) scattering

are compared with the collective model.

inary form factor for ‘%Ca(n,n’)*°Ca(3~, 3.73 MeV).
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In recent years a number of informative pa-
pers'™® have clarified the origin and nature of the
imaginary part of the nuclear optical potential,
which arises mainly from second-order scattering
proceeding through open-channel intermediate
states. However, for inelastic scattering very
little is known about the imaginary part of the form
factor from a microscopic point of view, .although
the real part is quite well understood. In the col-
lective model the inelastic form factor is simply
proportional to the derivative of the optical poten-
tial, and therefore has a real and an imaginary
part. The data require® " an imaginary inelastic
interaction, and the collective model version
seems satisfactory.

The problem with the microscopic theory of in-
elastic scattering has to do with the nature of the
intermediate states. To elastic transitions, any
strong intermediate staten contributes significant-
ly in both steps of the transition i -» and n -4, and
all terms have the same phase since the absolute
square of the matrix element appears. For inelas-
tic scattering the intermediate state should have
substantial coupling to both the initial and final
state, but since the two matrix elements i—-#» and
n—f are different, there is no guarantee that the
phases of the various n terms are constructive.
They could be random and therefore destructive.®®
We will show that for a wide range of final states
there is no randomness of phase, and that sub-
stantial imaginary interaction is expected.

We make the following three assumptions: (1)
The initial and final nuclear states are assumed
. to be related by creation and destruction operators
as follows:

&=y Az,aka,®, (1)
min -

where m refers to an unoccupied state (particle),
and n, refers to an occupied state (hole) based on
the target. Equation (1).-would hold for the Tamm-
Dancoff approximation (TDA) collective states as
well as for simple single-particle transitions.

(2) The intermediate states can be taken as simple
particle-hole doorway states based on the ground
state. Actual nuclear states will be linear com-
binations of these and more complicated configura-
tions, not excited in this order. Energies will be
shifted, but the calculation is not extremely sensi-
tive to the energy of the intermediate Green’s fun-
ction anyway. (3) The identity of the projectile
with target nucleons is neglected, although rough
account is taken of exchange effects in determina-
tion of the interaction strength constant.

For elastic scattering any intermediate particle-
hole state can contribute, since it can always be
destroyed in the second step. By contrast, for in-
elastic scattering the first step must always take
the target nucleus “half way” to the final state;
that is, either the intermediate particle or hole
must be in the final configuration. Thus we find
two types of important intermediate states for each
particle-hole configuration mn in Eq. (1). They
are the particle-scattering type, and the hole-
scattering type, Figs. 1(a) and 1(b), respectively.
From the fermion anticommutation relations it
follows that the two contributions, Figs. 1(a) and
1(b), have opposite signs.

In order to understand the main characteristics
of the inelastic form factor, we have tried to for-
mulate our calculation as simply as possible. A
zero-range force of strength C, has been used and
we have avoided making angular momentum cou-
plings of each step, which, although straightfor-
ward, obscure the interpretation. We obtain the
following simple result for the second-order in-
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(a) (b) ]

FIG. 1. Diagrams showing the (a) particle-scattering
and (b) hole-scattering second-order interactions con-
tributing to the imaginary inelastic form factor.

elastic form factor:
FP=C, %" Az0 A0, (PG5, T), (2)
mn i -

where a spin-matrix element must still be taken
between single-particle functions ¢!(¥’) and
¢,(T), and

Gp= G5~ GY

2j,+1 22+1
=c S et oM L
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X Ry R5(r g, 7") =Ry )Ry (r")
ng?n'g("’,7')]Ptk(?"?l)Px(77”VA') . (3)

In Eq. (3) P, is the Legendre polonomial, R,(r)

is the radial wave function taken from a harmonic
oscillator, and g,5, is the projectile radial Green’
function as defined, for example, in Ref. 1. Dis-
cretized Woods-Saxon'® wave functions were also
tried for R,(r), but in the region where the form
factor was significantly large it did not make any
important changes. Were it not for the nonlocal-
ity,  and the fact that G, depends on m and n, the
mn sum of the function multiplying G, in Eq. (2)
would be just the first-order form factor F*? for
a zero-range spin-independent interaction. We
will now try to justify as a rough approximation
the use of a {(G) averaged over m and #, on which
we will make a local approximation to give the
following simple result.

ImF® = O (ImG)y | (4)

where 72 and G denote the local equivalents of
F'® and G. To get Eq. (4) we have neglected the
variation of ¢ (R -38)¢,(R+23) with §, where R

=3(T+7') and S=T - T/, With harmonic oscillator
functions the main dependence of ¢ ,(¥")¢,(F) on the
coordinate § is through the factor exp(—3a?s?),
which varies by 10 to 15% in the nonlocality length
of G.

The functions G% and G% in Eq. (3) are peaked at
locality ¥=T’, due to the peaking of both the
Green’s functions and the sums over particle or
hole intermediate states[these sums would give
6(r —r’) if the Green’s function g were energy in-
dependent, but Eq. (3) is far from that limit]. The
functions_’G have _Eypically a nonlocality length[in
which G(R -%8, R+358) drops by 1/e] varying from
~0.8 fm at low values of R to about 1.4 fm at R
=5 fm. The nonlocality is nearly spherical but
sometimes not quite; in these cases we have used
an rms value. We approximate the nonlocality by
a Gaussian but with a variable nonlocality length
obtained from our calculations of G. The local ap-
proximation!! is then made on this Gaussian func-
tion following Ref. 2. .

The function Gy, depends on m and n only through
the single-particlé energies at which the single-
particle Green’s function is evaluatéd. When a
particular channel is open, ImG% and ImG% do not
depend very sensitively on energy. As a rough
approximation we replace ImG? and ImG% with
values averaged with a weighting equal to the prob-
ability of a particular single-hole or single-par-
ticle state in the microscopic final-state wave
function. Thus we obtain Eq. (4).

A result very similar to Eq. (2) is obtained for
the optical potential, except that the kole-scatter-
ing term iS missing:

W =, S PUF )0, (FIGHF, F). (6)
. n - - -

The similarity between Egs. (6) and (2) demonstra-
tes the lack of randomness of the intermediate
states in the inelastic-scattering case, since in
both Eqgs. (6) and (2) one has functions G% and G%
with steady phases (in the local approximation)
times a density or transition density.

The local functions ImG, and ImG, have every-
where the sign of -C,, but they enter Eq. (3) with
opposite signs. Because G, is summed over oc-
cupied states, it is confined to the region of the
nucleus; on the other hand, since 5,, is summed
over unoccupied single-particle states, it has a
finite value both inside and outside of the nucleus.
6,, will be larger relative to G, at higher energies
because of an increasing number of particle states
and a decreasing number of high-energy hole
states. Thus one can imagine a situation in which
at low-energy ImG is negative inside the nucleus
and positive outside. This function multiplying a
surface-peaked collective real form factor can
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FIG. 2. Microscopic and collective functions G relat-
ing approximately real and imaginary form factors (see
text).

give a result like the collective model prescription
of taking the derivative of the imaginary potential
consisting of a volume plus surface term. At
higher energies G, will dominate, and the sign of
the imaginary form factor will always be opposite
that of the transition density, also resembling
qualitatively the energy dependence of the deriva-
tive of the optical potential. In the high-energy
limit G,, can be neglected in Eq. (4), giving agree-
ment with the impulse approximation and the “friv-

olous model” of Satchler.® In the collective model -

the magnitude of the imaginary potential is propor-
tional to that of the real part, since the strength
of each part is determined by the deformation
parameter B. In our result the strengths are also
related since the imaginary form factor contains
approximately the real one as a factor.

Calculations have been carried out for Y"O(n,n’)-
"0(57,0.86 MeV) and for “Ca(n,n’)°Ca(3,3.73
MeV) at 30 MeV incident energy with very similar
results. The intermediate projectile Green’s func-
tion was calculated using a complex Woods-Saxon
potential. A real potential gives similar results
but the functions G% and G’ show unrealistic res-
onance effects. The averaging procedure used to
produce the factorization in Eq. (4) was checked
for W and gives errors of the order of 10% for
Ca(n,n’).

Figure (2) shows a comparison of our micro-
scopic!? results for the function (ImG) with cor-
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responding quantities obtained from the collective
model®!? (see Fig. 2). The two-nucleon inter-
action strength is normalized to give the same
volume integral for W'® | collective and micro-
scopic, and this same value of C, is then used in
the determination of G. The magnitude is about
the same as in the collective model, although the
surface peak comes at too small a radius. The

imaginary form factor at its maximum is about

a factor of 3 greater than that of the collective
model, and its volume integral is a factor of 1.7
greater,

In summary, we have shown that there is ex-
pected to be a substantial imaginary form factor
in inelastic scattering which has the following
features: (1) The hole-scattering terms subtract
from the particle-scattering terms giving rise to
a peak at or beyond the nuclear surface. (2) The
real and imaginary form factors are related in
strength. Although the collective and microscopic
functions G are about the same magnitude, the
geometrical differences are great and would prob-
ably give rather different effects on scattering.

The theory needs several improvements. With
a finite-range interaction the position of the peak
of G would presumably occur at a larger radius,
giving better accord with the collective model.
The local approximation is not-very accurate for
a nonlocality as large as that which occurs at and
beyond the nuclear surface. The entire calculation
should really be done nonlocally. Although the
simple product particle-hole states give a com-
plete representation of the one-particle one-hole
space, the occurrence of low- and high-lying col-
lective intermediate states well described by the
random-phase approximation (RPA) may have a
systematic effect on the imaginary potential. In
addition, in contrast to elastic scattering, two-
particle two-hole components mixed into the inter-
mediate and final wave functions can make a non-
zero contribution to the second-order form factor.
It is known!® that transitions between excited
states are not accurately given by one-particle
one-hole components, but that two-particle two-
hole core-polarization components play an impor-
tant role. With a sum over intermediate states
many of these will appear with random phases and
will tend to cancel each other; further work is
needed to determine whether systematic effects
will arise and contribute significantly to the imag-
inary form factor.
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